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In developing brains, neural progenitors exhibit cell cycle-dependent nuclear movement

within the ventricular zone [interkinetic nuclear migration (INM)] and actively proliferate to

produce daughter progenitors and/or neurons, whereas newly generated neurons exit from

the cell cycle and begin pial surface-directed migration and maturation. Dysregulation of the

balance between the proliferation and the cell cycle exit in neural progenitors is one of the

major causes of microcephaly (small brain). Recent studies indicate that cell cycle machinery

influences not only the proliferation but also INM in neural progenitors. Furthermore, several

cell cycle-related proteins, including p27kip1, p57kip2, Cdk5, and Rb, regulate the migration of

neurons in the postmitotic state, suggesting that the growth arrest confers dual functions on

cell cycle regulators. Consistently, several types of microcephaly occur in conjunction with

neuronal migration disorders, such as periventricular heterotopia and lissencephaly. However,

cell cycle re-entry by disturbance of growth arrest in mature neurons is thought to trigger

neuronal cell death in Alzheimer’s disease. In this review, we introduce the cell cycle protein-
mediated regulation of two types of nuclear movement, INM and neuronal migration, during

cerebral cortical development, and discuss the roles of growth arrest in cortical development

and neurological disorders.

Introduction

The balance between the proliferation and differenti-
ation of progenitors determines the size of many
organs, including the brain. The timing of the cell
cycle exit of neural progenitors is important for the
brain morphology and functions, as the defects result
in several neurological disorders, including micro-
cephaly (small brain) (Mochida & Walsh 2004; Bond
& Woods 2006; Lizarraga et al. 2010; Miyata et al.
2010; Gruber et al. 2011). Furthermore, recent stud-
ies indicate that the regulation of cell cycle and

growth arrest may play some roles in subsequent
differentiation and maturation steps of postmitotic
neurons. Neural progenitors exhibit a cell cycle-
dependent nuclear movement within the ventricular
zone, named interkinetic nuclear migration (INM),
which influences cell fate determination as well as
neurogenesis, at least in zebrafish retina (Kosodo
2012). In addition, several cell cycle-related proteins
have additional functions in the postmitotic neurons
of the developing cerebral cortex (Frank & Tsai
2009). For example, the function of p27kip1, a regula-
tor for cell cycle exit, switches after growth arrest to
regulate the migration and morphology of postmitotic
neurons through actin cytoskeletal organization
(Kawauchi et al. 2006). In mature neurons, the
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disturbance of growth arrest, which induces cell cycle
re-entry, eventually leads to cell death (Herrup &
Yang 2007). Thus, growth arrest confers dual func-
tions on cell cycle-related proteins, and disrupting
growth arrest may be associated with neurodegenera-
tive diseases. In this review article, we introduce the
mechanisms for neurogenesis and neuronal matura-
tion, particularly focusing on INM and neuronal
migration, respectively, and discuss the possible roles
of growth arrest in brain development and several
neurological disorders, such as developmental and
neurodegenerative diseases.

Neural progenitor cells in mammalian
cerebral cortex

Neural progenitor cells, opposed to their offspring,
postmitotic neurons, exhibit cell cycle progression
and cell division during brain development. Before
the onset of neurogenesis, neural progenitor cells
expand their numbers by symmetric, proliferative
division, that is, one progenitor cell produces two
progenitor cells (also called ‘self-renewal division’).
After neurogenesis begins, the division mode switches
to asymmetric division, that is, one progenitor cell
produces one progenitor and one neuron or other
type of progenitor (Gotz & Huttner 2005; Fietz &
Huttner 2011). Currently, at least three types of neu-
ral progenitor cells have been identified in the devel-
oping mammalian cerebral cortex (Fig. 1A): apical
progenitor, basal progenitor, and outer subventricular
zone (OSVZ) progenitor (Fietz & Huttner 2011; Lui
et al. 2011). An apical progenitor [also known as a
neuroepithelial cell or radial glial cell (Gotz & Hutt-
ner 2005)] is an epithelial cell possessing two long
processes along its apico-basal polarity and undergoes
both symmetric, proliferative division and asymmet-
ric, neurogenic division at the most apical end (ven-
tricular side) of the ventricular zone (VZ) (Fig. 1A,
green). A basal progenitor [also known as an interme-
diate progenitor (Noctor et al. 2004) or nonsurface
dividing cell (Miyata et al. 2004)] lacks obvious pro-
cesses and undergoes mostly symmetric, neurogenic
division at the basal end of the VZ and subventricular
zone (SVZ) (Fig. 1A, orange). An OSVZ progenitor
[also known as an outer radial glial (oRG) cell (Han-
sen et al. 2010)] undergoes asymmetric, neurogenic
division at the OSVZ, the inner region of brain
parenchyma that is partitioned from the SVZ in pri-
mate cortex (Smart et al. 2002) (Fig. 1A, magenta).
Notably, time-lapse lineage analyses have showed that
apical progenitors can produce all three types of
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Figure 1 Major lineage of neural progenitors in mammalian

cerebral cortex and interkinetic nuclear migration (INM) of

apical progenitor. (A) Three kinds of neural progenitors iden-

tified in developing mammalian cortex (1–3) and postmitotic

neuron (4) are illustrated. 1: Apical progenitor (green). 2: Basal

progenitor (orange). 3: OSVZ progenitor (magenta). 4: Post-

mitotic neuron (light blue). Reported representative lineages

from each progenitor (Fietz & Huttner 2011; Lui et al. 2011)

are indicated in the square box. Cell cycle phases (G1, S, G2

and M) and the nuclear movement in each phase (arrow) of

apical progenitor are described. VZ, ventricular zone; SVZ,

subventricular zone; and OSVZ, outer subventricular zone.

See text for details. (B) Schematics of mode of nuclear move-

ments and proposed driving forces for INM. Arrows show

directions of nuclear movements in each cell cycle phase (red:

G1 phase, blue: G2 phase). Proposed driving forces for each

direction of nuclear movement are indicated as (a) two oppos-

ing driving forces, (b) uni-directed driving force and displace-

ment effect for the other direction from surrounded nuclei.

See text for detail. The centrosome (yellow) may play an

important role in INM because the functions of many centros-

omal proteins are involved in INM. Tpx2 protein (magenta) is

required for INM (basal-to-apical movement) and only

observed in the apical process at G2 phase during interphase,

suggesting that Tpx2 links cell cycle machinery with INM.

See text for detail.
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progenitor cells, but other types of progenitors do
not produce the apical progenitors (Miyata et al.
2001, 2004; Noctor et al. 2001, 2004; Haubensak
et al. 2004; Shitamukai et al. 2011; Wang et al. 2011)
(Fig. 1A). Thus, apical progenitors can be considered
as the stem of all neural progenitor subtypes.

Interkinetic nuclear migration

What is INM?

During the progression of cell cycle phases, the
nucleus of an apical progenitor conducts a unique
mode of movement, named as ‘INM’ or ‘elevator
movement’ (Fig. 1). INM is initially proposed by
Sauer in 1935 in the embryonic vertebrate neural
tube (Sauer 1935). Sauer postulated that the translo-
cation of nuclear position occurs in accordance with
the cell cycle progression; the cell division (M phase)
of the neural progenitor cells takes place at the apical
(ventricular) surface, followed by the nuclear move-
ment from apical to basal during G1 phase. S phase
occurs at the most basal end of the VZ and then the
nucleus comes back to the apical position in G2
phase for the next cell division. A couple of decades
after the first report, an experimental proof of the
concept was demonstrated by labeling S-phase nuclei
with 3H-thymidine, resulting in the appearance of
radioactive label–incorporated chromatids in M-phase
cells at the apical surface (Sauer & Walker 1959; Sid-
man et al. 1959; Fujita 1962). Recent advances in
both light microscopy and tissue culturing methods
(Miyata et al. 2001; Noctor et al. 2001) allow direct
time-lapse imaging of INM.

INM has been identified not only in the embryo-
nic neural tube of vertebrates, but also in other
pseudostratified epithelial systems including inverte-
brates. For instance, retina in the developmental stage
is a good model to analyze INM because of its
relatively simple structure and accessibility for vari-
ous experimental approaches, especially live-imaging
to track nuclear migrations (Baye & Link 2007;
Agathocleous & Harris 2009). Although much
knowledge about INM has been derived from studies
in the central nervous system (ectodermal origin), it
has been demonstrated that INM also occurs in endo-
derm-originated digestive organs such as epithelia
emanating from the liver bud (Bort et al. 2006) or
intestin (Grosse et al. 2011) during development.
Considering the evolutional aspect, it is important to
compare vertebrate and invertebrate systems to clarify
the types of molecules originally used for INM.

Recent studies demonstrating the existence of INM
in the Drosophila wing disc (Meyer et al. 2011) and
Nematostella ectoderm (Meyer et al. 2011; Nakanishi
et al. 2012) showed that both microtubule and acto-
myosin motor systems (see below) are required in
more phylogenetically primitive organisms, suggesting
that it is difficult to presume which motor system
was primarily acquired during the nervous system
evolution (Kosodo 2012).

Molecular mechanisms of INM

It has been a fascinating trial to uncover the mecha-
nism of INM; how does the direction of nuclear
migration correlate to each phase of cell cycle?
Using drug treatments to disrupt cellular cytoskel-
etons, the importance of actin (Messier & Auclair
1974; Murciano et al. 2002) and microtubule (Lang-
man et al. 1966; Karfunkel 1972) organization for
INM was determined. Moreover, the molecular
machineries controlling several steps of INM were
recently revealed by advanced genetic manipulations.
For the basal-to-apical nuclear migration, the associ-
ation of the dynein motor proteins with Lis1 to the
microtubule cytoskeleton plays a major role (Gam-
bello et al. 2003; Tsai et al. 2005). Dynactin-1 and
NudC, proteins forming a complex with dynein/
Lis1, are also required for the basal-to-apical nuclear
migration (Del Bene et al. 2008; Cappello et al.
2011). Centrosomes, which localize at the apical
surface during interphase (Chenn et al. 1998), act as
a microtubule-organizing center. The disruption of
centrosomal protein functions, such as TACC,
Cep120, Hook3, PCM1, and Dock7, have been
found to perturb INM progression (Xie et al. 2007;
Ge et al. 2010; Yang et al. 2012) (Fig. 1B). KASH
proteins and SUN proteins form a physical link
between the nuclear envelope and the dynein com-
plex (Del Bene et al. 2008; Zhang et al. 2009; Yu
et al. 2011). In spite of accumulated evidence that
the microtubule motor system is important for the
basal-to-apical nuclear migration, this is not always
the case in INM of all epithelial tissue. It has been
reported that in the zebrafish retina (Norden et al.
2009; Leung et al. 2011) and Drosophila wing disc
(Meyer et al. 2011), not the dynein/microtubule
motor system but the nonmuscle myosin with actin
cytoskeleton is the main driver for the basal-to-
apical nuclear migration. Interestingly, Rac1, a Rho
family small GTPase involved in both microtubule
and actin cytoskeletal regulation (Kawauchi 2011), is
reported to control the basal-to-apical nuclear
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migration of neural progenitors (Minobe et al.
2009).

In contrast to what is known basal-to-apical
nuclear migration, little information is available for
apical-to-basal migration. Recent studies propose sig-
nificant roles for kinesin, microtubule-associated
motor, or actomyosin systems in nuclear apical-to-
basal movement (Schenk et al. 2009; Tsai et al. 2010)
(Fig. 1Ba). Notably, a critical role for physical dis-
placement as a nonautonomous driving force of INM
has been independently demonstrated in two systems
(Fig. 1Bb). In developing zebrafish retina, it has been
implicated that the trajectories of nuclear movements
are largely stochastic, as mathematically postulated to
fit nuclear positions (Norden et al. 2009). Subse-
quently, development of time-lapse quantitative anal-
ysis of nuclear movement in retina and hindbrain of
zebrafish led to the conclusion that stochastic nuclear
movement during phases other than the G2 phases
arises passively in response to apical migration in
neighboring cells (Leung et al. 2011). In developing
mouse cortex, it was demonstrated that apical-to-basal
migration is driven by a crowding effect in the epi-
thelial tissue that results from continuous accumula-
tion of nuclei due to the basal-to-apical active
nuclear migration. This conclusion is achieved by
nonautonomous movement of fluorescent beads from
apical to basal, perturbation of basally oriented move-
ment by disruption of basal-to-apical movement of
surrounding cells, and simulation analysis (Kosodo
et al. 2011). For active basal-to-apical movement, the
actomyosin (Norden et al. 2009) or dynein/microtu-
bule (Kosodo et al. 2011) motor system is used
(Fig. 1Bb). The uni-directed active movement in
INM would help to minimize the imbalance of
nuclear density in the apical and basal regions of
pseudostratified epithelia so as to preserve the
homeostasis of tissue architecture during these devel-
opmental stages (Kosodo et al. 2011).

Cell cycle regulations associated with INM

Relationship between cell cycle regulation and

INM

As discussed in the previous section, the nuclear
movement in INM is tightly coupled to the cell cycle
progression. From this standpoint, it arises the follow-
ing questions: whether cell cycle progression can be a
driver of INM or whether the nuclear positions can
control the cell cycle progression? Inhibition of INM
by the chemical inhibitor-mediated disruption of

microtubule or actomyosin has been shown to have
essentially no effect on cell cycle progression (Karfun-
kel 1972; Messier & Auclair 1974; Messier 1978;
Gambello et al. 2003). However, treatment with
drugs that interfere with several cell cycle steps result
in the ectopic accumulation of nuclei in the neuro-
epithelia of developing mouse and zebrafish (Ueno
et al. 2006; Kosodo et al. 2011; Leung et al. 2011).
At a molecular resolution, G1 phase arrest, achieved
by overexpressing p18Ink4c, an inhibitor protein of
cyclin-dependent kinase (CDK) 4 and/or CDK6
(Sherr & Roberts 1999; Thullberg et al. 2000), leads
to the accumulation of nuclei at a basal position in
the VZ of developing mouse brains (Kosodo et al.
2011). Taken together, these results indicate that cell
cycle progression likely regulates the activity of
migration machineries.

How then, does the cell cycle progression corre-
late to the driving force of INM? It has been demon-
strated that the function of Tpx2 protein connects
cell cycle phases to the organization of the micro-
tubule cytoskeleton required for INM. Tpx2, a
microtubule-associated protein, is not observed in G1
phase, but appears during S phase and accumulates
during G2 phase and then strongly associates to the
mitotic spindle in M phase in HeLa cells (Gruss et al.
2002). In the apical progenitors in mouse brains,
Tpx2 localizes on the microtubule in the apical pro-
cess (but not in the basal process) of G2-phase cells,
but not in G1 phase (Kosodo et al. 2011). Microtu-
bule bundles in the apical processes of G2 phase are
loosened by knockdown of Tpx2, resulting in a per-
turbation of basal-to-apical nuclear migration (Kosod-
o et al. 2011). Another study reported cell cycle
control of actomyosin motor systems in zebrafish ret-
ina. Visualization of myosin regulatory light chain
tagged with fluorescent protein showed its G2 spe-
cific recruitment to the basal side of nuclei. This is
required for the basal-to-apical nuclear migration,
likely by squeezing nuclei toward the apical side of
the neuroepithelium (Leung et al. 2011).

Possible involvement of INM in fate

determination

As described above, our understanding of INM has
greatly expanded, especially with regard to the
molecular machineries that generate the forces of
nuclear migrations. What remains to be uncovered in
the next stage of research is clarification as to
whether INM is linked to cell fate determination,
particularly in the developing central nervous system
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(Kosodo 2012). Interestingly, certain correlations
between the S-phase positions and the cell fate of
neural stem cell exist. In the retina of zebrafish, pro-
liferative cells can be distinguished from neurogenic
cells as different populations by the distance of
S-phase positions from the apical surface (Baye &
Link 2007). One possible scenario to generate this
difference in cell fate is the concentration gradient of
morphogen or signaling molecule along the axis of api-
co-basal polarity within the tissue, with nuclei receiv-
ing different amounts of neurogenic factor at specific
cell cycle phases during INM (Latasa et al. 2009). In
support of this hypothesis, Notch signaling–related
proteins, whose activity can promote proliferation and
cell cycle re-entry of neural stem cells (Pierfelice et al.
2011), show heterogenous apico-basal distributions.
INM defects caused by a dynactin mutation result in
altered exposure to Notch signals and impair neuro-
genesis in zebrafish retina (Del Bene et al. 2008).

Provided that S-phase positioning is one of the
regulating factors of cell fate in apical progenitors, it
is important to consider where nuclei enter into S
phase. Using an elegant time-lapse study in the devel-
oping zebrafish nervous system, nuclear movement in
each stage of cell cycle has been described (Leung
et al. 2011); there is a basal drift at the beginning of
G1 phase, strong basal-to-apical movement in G2
phase, and complete stochastic movement during S
phase. This result essentially matches the nuclear
movements observed in the developing mouse cortex
(Kosodo et al. 2011).

Given that S-phase nuclei have no underlying
directionality, how are the positions of S phase deter-
mined? Here, we need to consider the length of G1
phase and the mechanism of apical-to-basal nuclear
migration during G1 phase (see previous section). If
apical-to-basal nuclear movement is driven by an
active motor system, it is likely that the position at
the end of G1 phase (just before S-phase entry) from
the apical surface toward the basal region changes in
proportion to the length of G1 phase. However, if
G1 nuclear movement is driven by a passive displace-
ment factor, the position of the S-phase cell is likely
to be dependent on both the length of G1 phase and
the proportion of G2-phase length to the entire cell
cycle. A recent report on accelerating the G1 phase
of neural progenitors in the developing mouse brain
may answer this question.

Co-over-expression of Cdk4 and cyclinD1 using
in utero electroporation in the developing mouse cor-
tex results in a shortened G1 phase, which evokes
delayed neurogenesis (Lange et al. 2009). In this

study, INM progression with over-expression or
down-regulation of Cdk4/cyclinD1, which causes
shortening or lengthening of G1 phase, respectively,
is examined. Surprisingly, the positions of S-phase
entry and exit are essentially the same between un-
transfected cells and electroporated cells in both
shortened and lengthened G1 phase without affecting
the number of apical progenitors (Lange et al. 2009).
The experimental results show that the length of G1
phase was shortened to 65% by the over-expression
of Cdk4 and cyclinD1 (from 9.0 to 5.9 h). As the
position of S-phase entry is same in the overexpressed
situation, this data do not appear to fit the active
migration model unless the velocity of G1-phase
nuclei was increased due to a side effect of Cdk4 and
cyclinD1 over-expression on the motor system for
the apical-to-basal nuclear migration. Next, it was
demonstrated that the proportion of G2 phase
(including M phase) to the entire cell cycle length
increases by 1.36 times (from 14% to 19%) in the
Cdk4 and cyclinD1 over-expressed condition. An
increased proportion in the G2 phase raises the num-
ber of descending nuclei in a unit of time, which
results in the higher density of nuclei in the apical
region. According to the displacement model (see
previous section), increased density of the apical
region would raise the pressure to translocate nuclei
in G1 phase from apical to basal. This might increase
the velocity of apical-to-basal nuclear migration and
compensate for a shortened G1-phase length, which
would result in no obvious change for the nuclear
position of S-phase entry. Perhaps, such a robust
mechanism of INM might minimize effects of local
disturbances of cell cycle progression on the architec-
ture of the developing brain.

Neuronal migration

Multistep mode of neuronal migration

Newly generated immature neurons begin the pial
surface-directed migration from the ventricular (api-
cal) side, which is essential for the formation of
architectural and functional cerebral cortex with a
six-layered structure (Rakic 2006; Ayala et al. 2007;
Kawauchi & Hoshino 2008; Marin et al. 2010;
Govek et al. 2011; Kwan et al. 2012). A number of
previous studies have indicated that migrating neurons
exhibit multistep migration with various morphologi-
cal changes (Kawauchi & Hoshino 2008) (Fig. 2).
Migrating neurons first exhibit multipolar morphologi-
es and subsequently form a leading process and an axon
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while retracting other neurites (Stensaas 1967; Shouki-
mas & Hinds 1978; Tamamaki et al. 2001; Tabata &
Nakajima 2003; Noctor et al. 2004). The resulting
bipolar-shaped neurons, called locomoting neurons,
migrate over long distances along radial glial fibers, api-
cal progenitor-derived long processes, with backward
elongation of their axons (locomotion mode) (Rakic
1972, 2006; Nadarajah et al. 2001; Hatanaka & Mura-
kami 2002; Noctor et al. 2004). At the final phase of
migration, neurons switch from the migration mode
into a radial glial fiber-independent terminal transloca-
tion mode (Nadarajah et al. 2001; Sekine et al. 2011).
During the terminal translocation, dendrite maturation
begins. Thus, neuronal migration is required for not
only finding the final position but also neuronal matu-
ration (Fig. 2). Defects in neuronal migration cause
several neurological disorders, such as periventricular
heterotopia and lissencephaly (Gleeson & Walsh 2000;
Kawauchi & Hoshino 2008).

c-jun N-terminal kinase pathway and

microtubule-associated proteins

The first molecules identified to be involved in the
morphological changes of migrating immature neu-

rons were a Rho family small GTPase, Rac1, and its
downstream kinase, c-jun N-terminal kinase (JNK)
(Kawauchi et al. 2003) (Fig. 3). JNK regulates the
transition from multipolar cells into locomoting neu-
rons. JNK phosphorylates several microtubule-associ-
ated proteins, such as microtubule-associated protein
1B (MAP1B) and DCX (also known as doublecortin)
(Chang et al. 2003; Kawauchi et al. 2003, 2005;
Gdalyahu et al. 2004) (Fig. 3). Mutations in DCX
gene cause X-linked lissencephaly in males and sub-
cortical band heterotopia (also known as double cor-
tex syndrome) in females (Gleeson et al. 1998; des
Portes et al. 1998). Although both MAP1B and DCX
promote microtubule stability (Francis et al. 1999;
Gleeson et al. 1999; Goold et al. 1999; Horesh et al.
1999; Gordon-Weeks & Fischer 2000; Kawauchi
et al. 2005; Trivedi et al. 2005), JNK-mediated phos-
phorylation diminishes their microtubule-binding
affinities, resulting in decreased the microtubule sta-
bility (that is, increases the microtubule dynamics)
(Chang et al. 2003; Kawauchi et al. 2003, 2005;
Gdalyahu et al. 2004). Consistent with the fact that
microtubule stability is kept at low levels at the tips
of neurites (Shea 1999), phosphorylated MAP1B is
strongly observed at the tips of axons (Goold et al.

CP

IZ

VZ

MZ

Axon
SVZ

Multipolar neuron

Locomoting
neuron

Neural progenitors

Terminal 
translocating
neuron

Figure 2 Multistep mode of neuronal migration. Postmitotic excitatory neurons are generated at the ventricular zone (VZ) or

subventricular zone (SVZ) (See the enlarged drawing of the VZ and SVZ in Fig. 1) and migrate radially toward the pial surface

(Blue cells). Neurons first display multipolar morphology at the lower part of the intermediate zone (IZ) and transform into

locomoting neurons. Locomoting neurons possess a leading process and migrate over a long distance along radial glial fibers with

elongation of an axon in a reverse direction. The migration mode switches from the locomotion mode into a radial glial

fiber-independent terminal translocation mode during the final phase of migration. CP, cortical plate; IZ, intermediate zone; MZ,

marginal zone; SVZ, subventricular zone; and VZ, ventricular zone.
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1999; Gordon-Weeks & Fischer 2000). It has been
reported that suppression of JNK or MAP1B disturbs
neurite elongation (Takei et al. 2000; Kawauchi et al.
2003; Oliva et al. 2006; Eto et al. 2010). In vivo sup-
pression of JNK disturbs the leading process
morphology of migrating neurons and the pial sur-
face-directed neuronal migration (Kawauchi et al.
2003).

As JNK belongs to a MAP kinase family, its activ-
ity is controlled by MAPKKs and MAPKKKs (Huang
et al. 2004) (Fig. 3). Gene disruption of MKK4 or
MKK7, MAPKKs for JNK, delays neuronal migration
and disturbs axon formation (Wang et al. 2007;
Yamasaki et al. 2011). Although the phosphorylation
of MAP1B, but not DCX, is decreased in MKK4-
deficient mice, the phosphorylation of both is sup-
pressed in the MKK7 knockout mice. In addition,
inhibition of DLK/MUK, a MAPKKK for JNK,
results in similar phenotypes (Hirai et al. 2006). Inter-
estingly, gene targeting for MEKK4, another MAP-
KKK for JNK, shows severe migration defects,
resembling periventricular heterotopia (Sarkisian et al.
2006). Filamin A, a causative gene product of peri-
ventricular heterotopia (Fox et al. 1998), has also
been reported to mediate the JNK signaling pathway

in non-neuronal cells (Nomachi et al. 2008; Nakaga-
wa et al. 2010) as well as the morphological changes
and migration of cortical neurons (Nagano et al.
2004). Thus, the JNK-mediated pathway has impor-
tant roles in neuronal migration and axon formation,
and its defects may be associated with several cortical
malformations.

Cdk5 and cell adhesion

DCX is also phosphorylated by cyclin-dependent
kinase 5 (Cdk5) and MAP/microtubule affinity–regu-
lating kinase 2 (MARK2, also known as Par-1)
(Schaar et al. 2004; Tanaka et al. 2004) (Fig. 4A).
Cdk5 is an unconventional CDK because its activity
is mainly observed in postmitotic neurons (Tsai et al.
1993). Cdk5 is activated by p35, p39, and cyclin I,
but not cyclin D, E, and A (Lee et al. 1996; Hisanaga
& Saito 2003; Brinkkoetter et al. 2009; Su & Tsai
2011). In vivo suppression of Cdk5 activity by gene
targeting, in vivo RNA interference and dominant
negative experiments, has been shown to lead to
severe neuronal migration defects (Ohshima et al.
1996; Gilmore et al. 1998; Kawauchi et al. 2003,
2006) (Fig. 4B). Similar to JNK, Cdk5 is required for
the formation of leading process of migrating imma-
ture neurons (Kawauchi et al. 2006). However, Cdk5
also regulates multipolar cell morphologies, compared
to the lesser effect of JNK on this aspect (Hirai et al.
2006; Kawauchi et al. 2006). A recent study showed
that Cdk5 activity is required for the locomotion
mode of neuronal migration (Nishimura et al. 2010),
indicating that Cdk5 is a central regulator for multi-
step migration of immature neurons (Fig. 4B).

Cdk5 phosphorylates many substrate molecules,
including p27kip1 (Kawauchi et al. 2006), Dixdc1
(Singh et al. 2010), Ndel1 (also known as Nudel)
(Niethammer et al. 2000), focal adhesion kinase
(FAK) (Xie et al. 2003), p21-activated kinase 1
(PAK1) (Rashid et al. 2001), neurabin I (Causeret
et al. 2007), as well as DCX (Tanaka et al. 2004)
(Fig. 4A). Ndel1 binds to Lis1, a causative gene
product for lissencephaly (Reiner et al. 1993), and
Ndel1 and Lis1 cooperatively control cytoplasmic
dynein functions (Niethammer et al. 2000; Sasaki
et al. 2000; Yamada et al. 2008). The Ndel1 phos-
phorylated by Cdk5 interacts with 14-3-3e, which
regulates the localization of Ndel1 and Lis1 (Toyo-
oka et al. 2003). FAK is phosphorylated on Ser732
by Cdk5, and this phosphorylation is required for
perinuclear microtubule organization (Xie et al. 2003).
However, Cdk5 phosphorylates a neuron-specific

Figure 3 c-jun N-terminal kinase (JNK) pathway in postmi-

totic migrating neurons. JNK is required for the formation of

a leading process (a surface-directed thick neurite of a loco-

moting neuron, see Fig. 2) and neuronal migration through

the regulation of microtubule dynamics. MAP1B and DCX

stabilize microtubules, but the phosphorylation by JNK

enhances their dissociation from microtubules, resulting in an

increase in microtubule dynamics.
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F-actin-binding protein, neurabin I (Causeret et al.
2007). Furthermore, Cdk5-mediated phosphorylation
of p27kip1 promotes actin reorganization, as described
below. In vivo suppression of these Cdk5 substrates,
p27kip1, Ndel1, FAK, and Neurabin I, disturbs neuro-
nal migration mainly due to cytoskeletal defects.

In addition to cytoskeletal proteins, Cdk5 is
known to regulate cell adhesion. Cell adhesion can

be classified into cell-to-cell adhesion and cell-to-
extracellular matrix (ECM) adhesion (Kawauchi
2012). Recent studies indicate that N-cadherin-medi-
ated cell-to-cell adhesion plays essential roles in the
multipolar and locomotion modes of neuronal migra-
tion (Kawauchi et al. 2010; Shikanai et al. 2011),
whereas a5b1-integrin, a cell-to-ECM adhesion mol-
ecule that binds to fibronectin (Kawauchi 2012), is
required for the terminal translocation (Sekine et al.
2012) (Fig. 4B). Rab family small GTPases, Rab5
and Rab11, regulate the intracellular trafficking of
N-cadherin, which is required for the locomotion
mode of neuronal migration (Kawauchi et al. 2010;
Kawauchi 2011). A ras family small GTPase, Rap1,
promotes the activities of N-cadherin and integrin at
the early and final phases of neuronal migration,
respectively (Franco et al. 2011; Jossin & Cooper
2011; Sekine et al. 2012) (Fig. 4B). Interestingly,
Cdk5 can control both N-cadherin and integrin in a
small GTPase-independent manner in vitro (Kwon
et al. 2000; Huang et al. 2009), although it is still
unclear whether Cdk5-mediated regulation of cell
adhesion is involved in neuronal migration in vivo.

Linking mechanisms of cell cycle exit and
neuronal migration

Cdk5 and p27kip1 in cell cycle exit, neuronal

differentiation and migration

The cell cycle exit, neuronal differentiation, and
migration occur concurrently, along with suppression
in the activities of cyclin–CDKs. However, as
described above, Cdk5 is strongly activated in post-
mitotic neurons. Although many studies indicate that
Cdk5 is a regulator for cytoskeletal organization and
signal transduction, rather than cell cycle, some nota-
ble facts remain. One is that Cdk5 directly phospho-
rylates p27kip1, a CDK inhibitor protein (Kawauchi
et al. 2006). In addition, some mature neurons in the
cortical plate abnormally re-enter the cell cycle in
Cdk5-deficient mice (Cicero & Herrup 2005), similar
to what is observed in the brains of p27kip1/p19Ink4d

double knockout mice (Zindy et al. 1999), suggesting
a functional relationship between Cdk5 and other cell
cycle proteins.

It is known that p27kip1 regulates G1 length and
cell cycle exit in the ventricular zone of the develop-
ing cerebral cortex via suppression of conventional
CDK activities (Sherr & Roberts 1999; Mitsuhashi
et al. 2001; Tarui et al. 2005). In contrast, Ser10 of
p27kip1 is phosphorylated by Cdk5 in postmitotic
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Figure 4 Roles of Cdk5 and cell adhesion molecules in multi-

step mode of neuronal migration. (A) Cdk5 phosphorylates

many substrate molecules, including microtubule- and actin

cytoskeleton-regulatory proteins (purple and green arrows,

respectively). (B) Cdk5 is required for multiple steps of neuronal

migration. Cdk5 (blue) regulates multipolar morphology of

migrating neurons in a p27kip1-dependent manner, but its func-

tion in the transition into locomoting neurons is independent of

p27kip1 as suppression of p27kip1 does not affect this step. Several

small GTPases (green) also play important roles in the multistep

mode of neuronal migration. Their functions are partly medi-

ated by the regulation of cell adhesion molecules, N-cadherin

and a5b1-integrin (red).
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neurons and this phosphorylation promotes its protein
stability through the protection of p27kip1 from pro-
teasome-dependent protein degradation (Ishida et al.
2000; Kotake et al. 2005; Kawauchi et al. 2006), sug-
gesting that Cdk5 is an upstream positive regulator
for p27kip1, a CDK inhibitor protein, in G0-arrested
neurons, although p27kip1 acts as a negative regulator
for conventional CDKs (Fig. 5). Furthermore, the
increased protein levels of p27kip1 have essential roles
in cortical neuronal migration and the formation of
multipolar cell morphologies (Kawauchi et al. 2006).
Cdk5-p27kip1 pathway enhances actin reorganization
via the suppression of RhoA activity and thereby
activation of an actin-binding protein, cofilin (Ka-
wauchi et al. 2006). It has been reported that p27kip1

is also involved in the regulation of microtubule
organization (Baldassarre et al. 2005; Godin et al.
2012). Interestingly, a recent study indicates that
connexin 43, a component of gap junction involved
in both neural progenitor proliferation and neuronal
migration (Elias & Kriegstein 2008), acts upstream of
p27kip1 to regulate the multipolar morphology of

migrating neurons (Liu et al. 2012). Taken together,
these findings suggest that p27kip1 acquires additional
functions in cytoskeletal regulation and neuronal
migration during growth arrest and that this func-
tional switch is mediated at least in part by Cdk5
(Fig. 5).

Cdk5-mediated phosphorylation of Dixdc1 also
functions as a molecular switch between neural pro-
genitor proliferation and neuronal migration (Singh
et al. 2010). Nonphosphorylated Dixdc1 binds to
Disrupted in Schizophrenia-1 (DISC1) and controls
neural progenitor proliferation. In contrast, Cdk5
phosphorylates Dixdc1 in postmitotic neurons, result-
ing in increased interaction between Ndel1 and
DISC1 and promotion of neuronal migration.

In addition to the dual functions in neural progen-
itors and migrating neurons, p27kip1 is involved in
neuronal differentiation. A previous report showed
that p27kip1 increases the protein levels of Neuroge-
nin 2 (Ngn2), a basic helix-loop-helix-type transcrip-
tion factor required for neuronal differentiation, and
promotes neuronal differentiation (Nguyen et al.
2006). Furthermore, Cdk5 deficiency partially dis-
turbs neuronal differentiation (Cicero & Herrup
2005; Zheng et al. 2010) as well as neuronal migra-
tion, and Cdk5-mediated phosphorylation of p27kip1

at Ser10 and Thr187 is involved in the regulation of
neuronal differentiation (Zheng et al. 2010). Interest-
ingly, p35, an activator for Cdk5, was identified as a
target molecule of Ngn2 (Ge et al. 2006), and it has
been reported that Ngn2 is also required for neuronal
migration (Hand et al. 2005; Ge et al. 2006; Heng
et al. 2008). These findings implicate a positive feed-
back loop of Cdk5/p35-p27kip1-Ngn2-p35 that has
important roles in the growth arrest–associated neuro-
nal differentiation and initiation of migration (Kawau-
chi & Hoshino 2008) (Fig. 5). The identity of the
molecule(s) that turn on the positive feedback loop
for the synchronized cellular events of cell cycle exit,
neuronal differentiation, and initiation of neuronal
migration is still unclear, but there is evidence to
indicate that Notch signaling suppresses p27kip1

mRNA and/or protein levels (Sarmento et al. 2005;
Vernon et al. 2006; Murata et al. 2009), suggesting
that weakened Notch signal may enhance p27kip1

expression and thereby the positive feedback loop.

Other CDK inhibitor proteins and Rb-E2F

Other cell cycle-related proteins have also been
reported to have dual functions in proliferating and
arrested cells. CDK inhibitor proteins include
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Figure 5 A possible link in mechanisms between cell cycle

exit, neuronal differentiation, and neuronal migration. In the

developing cerebral cortex, cell cycle exit, neuronal differenti-

ation, and initiation of neuronal migration occur concurrently.

A cyclin-dependent kinase (CDK) inhibitor protein, p27kip1,

controls the G1 length and cell cycle exit in neural progenitors

via the suppression of Cyclin-CDK activities. In addition to

these cell cycle regulatory functions, p27kip1 promotes neuro-

nal differentiation via the up-regulation of Ngn2 protein level

and neuronal migration through the suppression of RhoA

activity and thereby activation of an actin-binding protein,

Cofilin. Ngn2 activates the transcription of p35 as well as neu-

ronal differentiation-related genes. In postmitotic neurons, p35

binds to and activates Cdk5, which directly phosphorylates

and stabilizes p27kip1 protein and is required for the mainte-

nance of growth arrest. A proposed feedback loop of Cdk5/

p35-p27kip1-Ngn2-p35-Cdk5 is shown (red circle).
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members of Cip/Kip (p21cip1, p27kip1, and p57kip2)
and Ink4 (p16Ink4a, p15Ink4b, p18Ink4c, and p19Ink4d)
families (Sherr & Roberts 1999) (Fig. 6A). Although
p57kip2 mainly controls the cell cycle exit of early-
born neurons (deep layer neurons), p27kip1 preferen-
tially regulates the growth arrest of late-born neurons
(upper layer neurons) (Mairet-Coello et al. 2012)
(Fig. 6B). In the postmitotic neurons, it has been
reported that not only p27kip1 but also p57kip2 is
involved in neuronal migration (Itoh et al. 2007).
Consistently, both proteins are localized at the lead-
ing process and cell soma as well as nucleus in
migrating neurons (Kawauchi et al. 2006).

Furthermore, retinoblastoma (Rb) protein and E2F
family transcription factors are reported to regulate
both cell cycle in neural progenitors and migration in
postmitotic neurons. Rb protein binds to and
represses the E2F functions, whereas Cdk-dependent
phosphorylation of Rb dissociates E2Fs from the Rb
protein, allowing E2Fs to interact with target DNA
sequences (Giacinti & Giordano 2006) (Fig. 6A).
Knockout of the Rb gene perturbs the neuronal posi-
tioning in cerebral cortex, and the phenotypes are
rescued by double knockout of Rb and E2F3, but
not E2F1 (Ferguson et al. 2005; McClellan et al.
2007). Although the switching mechanism of Rb-
E2F functions is unclear, a recent study shows that
Cdk5 has the ability to phosphorylate Rb protein
(Futatsugi et al. 2012). In addition to the regulators
for G1/S transition, Aurora A and anaphase-promot-
ing complex/cyclosome (APC/C), both of which
mainly function at M phase, are reported to regulate
neuronal migration and axon/dendrite formation
(Konishi et al. 2004; Kim et al. 2009; Mori et al.
2009; Takitoh et al. 2012). Therefore, growth arrest
signals may provide additional functions beyond cell
cycle regulation for some cell cycle-related proteins.

Growth arrest and developmental
neurological disorders

Disruption of the balance between progenitor self-
renewal and cell cycle exit (neuronal differentiation)
leads to several neurological disorders. For example,
abnormally enhanced cell cycle exit of neural progeni-
tors leads to premature differentiation and thereby
exhaustion of neural progenitors, resulting in micro-
cephaly (small brain) (Mochida & Walsh 2004; Bond &
Woods 2006; Lizarraga et al. 2010; Miyata et al. 2010;
Buchman et al. 2011; Gruber et al. 2011). Interest-
ingly, microcephaly is sometimes accompanied by neu-
ronal migration disorders. Mutation in ArfGEF2 causes

CDK4/6

Cyclin D

Rb Rb
E2F

P
P P

P

Cyclin E

CDK2

Ink4 family: p16, p15, p18, p19

DissociationG1 S

E2F

Proliferation, Neuronal migration (E2F3)

Cip/Kip family: p21, p27, p57

Late-born
neurons

CDK4/6

Cyclin D

p27

Early-born 
neurons

p57
p27 p57

p27

p57

CDK4/6

Cyclin D

(A)

(B)

Figure 6 Cyclin-dependent kinase (CDK) inhibitor proteins

regulate cell cycle progression, growth arrest, and postmitotic

neuronal migration. (A) Molecular mechanisms for G1/S

transition. The transition from G1 to S phase is dependent

on CyclinD-Cdk4/6 and CyclinE-Cdk2 activities, which
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The activities of Cyclin-CDK complexes are suppressed by

CDK inhibitor proteins, which are composed of a Cip/Kip

family (p21cip1, p27kip1, and p57kip2) and Ink4 family

(p16Ink4a, p15Ink4b, p18Ink4c, and p19Ink4d). (B) Roles of

CDK inhibitor proteins, p27kip1 and p57kip2, in cell cycle

exit and subsequent neuronal migration. p57kip2 and p27kip1
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for early-born (deep layer) and late-born (upper layer) neu-

rons, respectively. p27kip1 mainly functions in basal progeni-

tors (orange cells) rather than apical progenitors (green cells).

Both p27kip1 and p57kip2 have been shown to regulate the

migration of postmitotic neurons as well as the cell cycle

exit.
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microcephaly and periventricular heterotopia (Sheen
et al. 2004). ArfGEF2 encodes Big2/ArfGEF2 protein,
which regulates membrane trafficking from Golgi
apparatus via the activation of Arf family small GTPas-
es. Furthermore, it is reported that Big2 is also localized
at recycling endosomes (Shin et al. 2004). Consistent
with this, endocytosis and recycling of a cell-cell adhe-
sion molecule, N-cadherin, are known to play essential
roles in the locomotion mode of neuronal migration
(Kawauchi et al. 2010; Shikanai et al. 2011). Interest-
ingly, N-cadherin is also required for the maintenance
of neuroepithelial (ventricular zone) structures (Kado-
waki et al. 2007), whose disruption is observed in the
brains with periventricular heterotopia (Ferland et al.
2009). Therefore, the regulation of membrane traffick-
ing may be another mechanism that links neural pro-
genitor proliferation and neuronal migration.

Human mutations in the Nde1 gene result in
microcephaly with lissencephaly (referred to as ‘micr-
olissencephaly’) (Feng & Walsh 2004; Alkuraya et al.
2011). Furthermore, knockdown of abnormal spindle
microcephaly (ASPM), a causative gene for autosomal
recessive primary microcephaly (MCPH, for micro-
cephaly primary hereditary), disturbs neuronal migra-
tion as well as neural progenitor proliferation in mice
(Fish et al. 2006; Buchman et al. 2011). In addition to
human neurological disorder–related genes, many
molecules, including Lis1, dynein, SUN proteins, and
Rac1, are required for both INM and neuronal
migration (Hirotsune et al. 1998; Gambello et al.
2003; Kawauchi et al. 2003; Tsai et al. 2005, 2007;
Yoshizawa et al. 2005; Minobe et al. 2009; Zhang
et al. 2009; Kawauchi 2011; Yu et al. 2011). Because
most of these proteins function in both neural pro-
genitors and postmitotic neurons, neural progenitor
proliferation and neuronal migration share several
common intracellular pathways in centrosome and/or
microtubule regulation. Considering that Cdk5 acts
upstream of Lis1, dynein, and Rac1 (Niethammer
et al. 2000; Xin et al. 2004; Govek et al. 2011) and
that p27kip1 is involved in the regulation of micro-
tubules as well as actin cytoskeleton (Baldassarre et al.
2005; Kawauchi et al. 2006; Godin et al. 2012), the
growth arrest-mediated Cdk5 activation by the up-
regulation of p35 protein may alter the function of
several cell cycle-related proteins, which exert differ-
ent cellular events in part using common machineries.

Growth arrest in postmitotic mature cells

In adulthood, many cells, including mature neurons,
maintain a quiescent state throughout life. It has been

reported that cyclin E binds to and suppresses the
activity of Cdk5, resulting in the enhancement of
synapse formation (Odajima et al. 2011). This sug-
gests that some cell cycle-related proteins also func-
tion in mature neurons. Thus, alternative functions
for cell cycle-related proteins are important for
growth-arrested cells. However, several studies have
indicated that cell cycle re-entry by perturbing
growth arrest is a trigger for cell death.

Mammalian auditory epithelium, composed of hair
cells and supporting cells, has limited capability for
regeneration, which remains an obstacle for the
development of therapeutics for sensorineural hearing
loss (Roberson & Rubel 1994; Forge et al. 1998;
White et al. 2006). In contrast, in the avian auditory
epithelium, the loss of hair cells leads to re-entry of
supporting cells into the cell cycle, giving rise to both
hair cells and supporting cells (Corwin & Cotanche
1988; Ryals & Rubel 1988). For the purpose of pro-
moting regeneration of the cochlea in mammals,
knockdown of p27kip1 in the postmitotic supporting
cells of mouse auditory epithelia was performed (Ono
et al. 2009). That study reported the successful
re-activation of the proliferative capacities of the
auditory supporting cells, but induction of the apop-
totic pathway occurred several days later (Fig. 7A).

Re-activation of cell cycle machinery in mature
neurons is also associated with cell death. In
the brains of Alzheimer’s disease mouse models,
re-expression of cell cycle proteins, such as cyclin A
and PCNA, and DNA replication are observed before
neuronal cell death (Yang et al. 2001, 2003; Varvel
et al. 2008). These ‘cell cycle events’ themselves do
not seem to directly induce neuronal cell death, but
are thought to be important priming phenomena for
neurodegenerative diseases (Yang & Herrup 2007).
Furthermore, it has been reported that the abnormal
activation of Cdk5 is involved in neurodegeneration.
Inhibition of Cdk5 induces cell cycle events, suggest-
ing that Cdk5 suppresses the cell cycle in mature
neurons (Cicero & Herrup 2005; Zhang et al. 2008).
The activator for Cdk5 is changed from p35 into a
more stable isoform, p25, through a calpain-mediated
cleavage in brains with neurodegenerative diseases
(Patrick et al. 1999; Kusakawa et al. 2000; Lee et al.
2000). It is known that Cdk5/p35 and Cdk5/p25
exhibit different substrate specificities. Unlike Cdk5/
p35, Cdk5/p25 strongly phosphorylates tau and
MAP1B (Patrick et al. 1999; Kawauchi et al. 2005),
and their hyperphosphorylation is observed in Alzhei-
mer’s diseased brains (Hasegawa et al. 1990; Ulloa
et al. 1994; Cruz et al. 2003; Hisanaga & Saito 2003;
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Tsai et al. 2004; Su & Tsai 2011). Cdk5/p25 interacts
with and inhibits the activity of histone deacetylase 1
(HDAC1), and suppression of HDAC1 induces
double-stranded DNA breaks and cell cycle activity

in neurons (Kim et al. 2008). These results indicate
that the re-activation of cell cycle machinery, includ-
ing DNA replication, in mature postmitotic cells
induces cell death and further suggest that the growth
arrest of mature neurons plays essential roles in neu-
ronal survival and normal brain functions.

Conclusion remarks

The tight regulation of cell cycle proteins is essential
for the proliferation and cell cycle exit of neural pro-
genitors during brain development. Recent studies
also indicate that cell cycle-related proteins contribute
to much broader events beyond the cell cycle regula-
tion in the developing and adult brains (Fig. 7A). In
neural progenitors, the cell cycle machinery is closely
associated with and actively controls INM at least in
part through Tpx2-mediated organization of micro-
tubules. Even after growth arrest, cell cycle-related
proteins, such as p27kip1 and Rb, exhibit alternative
functions that affect the migration and changes in
morphology of postmitotic neurons. Interestingly,
although these alternative functions are essential for
brain development, disruption of growth arrest in
mature neurons or other postmitotic cells is closely
associated with cell death, suggesting that re-activa-
tion of cell cycle progression itself may be harmful to
postmitotic neurons. As a large proportion of cells in
adulthood are in a postmitotic state, it is possible that
growth arrest contributes to the maintenance of cellu-
lar homeostasis in the whole body.
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