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Abstract: The gut–kidney interaction implicating chronic kidney disease (CKD) has been the focus
of increasing interest in recent years. Gut microbiota-targeted therapies could prevent CKD and its
comorbidities. Considering that CKD can originate in early life, its treatment and prevention should
start in childhood or even earlier in fetal life. Therefore, a better understanding of how the early-life
gut microbiome impacts CKD in later life and how to develop ideal early interventions are unmet
needs to reduce CKD. The purpose of the current review is to summarize (1) the current evidence
on the gut microbiota dysbiosis implicated in pediatric CKD; (2) current knowledge supporting the
impact of the gut–kidney axis in CKD, including inflammation, immune response, alterations of
microbiota compositions, short-chain fatty acids, and uremic toxins; and (3) an overview of the studies
documenting early gut microbiota-targeted interventions in animal models of CKD of developmental
origins. Treatment options include prebiotics, probiotics, postbiotics, etc. To accelerate the transition
of gut microbiota-based therapies for early prevention of CKD, an extended comprehension of gut
microbiota dysbiosis implicated in renal programming is needed, as well as a greater focus on
pediatric CKD for further clinical translation.

Keywords: chronic kidney disease; hypertension; children; short-chain fatty acids; developmental
origins of health and disease (DOHaD); gut microbiota; probiotics; prebiotics; trimethylamine-N-oxide

1. Introduction

Up to 10% of the population worldwide is affected by chronic kidney disease (CKD) [1].
CKD can be attributed to different negative conditions in early life [2–4], and therefore,
World Kidney Day 2016 made efforts to keep the public informed of the need to focus
on kidney disease in childhood and the antecedents of adult kidney disease [5]. During
development, the fetal kidney is susceptible to a suboptimal in utero environment, re-
sulting in alterations in function and structure by so-called renal programming [6]. The
phenomenon of adverse conditions during organ development resulting in adult disease
in later life is now termed “developmental origins of health and disease” (DOHaD) [7].
Conversely, adverse fetal programming could be reprogramming before clinical onset
of the disease by early therapeutic intervention [8]. Accordingly, a shift of focus from
treatment of established CKD towards the prevention of kidney disease in the earliest stage
is highly needed.

Although various organ systems can be programmed in response to in utero subopti-
mal conditions, renal programming is considered key in the development of CKD and its
comorbidities [6,9]. Renal programming is likely to constitute a first hit to the kidney, which
makes the kidney more vulnerable to postnatal insults (i.e., second hit) to develop CKD in
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later life. Up to now, researchers have proposed some mechanisms associated with renal
programming. These mechanisms, such as dysregulated nutrient-sensing signals [9], oxida-
tive stress [10], nitric oxide (NO) signaling [11], aberrant activation of the renin–angiotensin
system (RAS) [12], and gut microbiota dysbiosis [13,14], have been contributing to CKD in
later life [2–4,6,8,9].

Due to the low antioxidant capacity of embryos [15], the developing kidney is ex-
tremely vulnerable to oxidant stress injury. As reviewed elsewhere [16], a number of
animal models support that NO/reactive oxygen species imbalance-induced oxidative
stress is involved in renal programming. On the other hand, increasing evidence suggests
antioxidants can be used as reprogramming strategies to prevent kidney disease and hy-
pertension of developmental origins [17]. In the developing kidney, the RAS components
are highly expressed and play a key role in mediating proper physiological function and
renal morphology [18]. A transient biphasic response with downregulation of the classical
RAS axis in the neonatal stage becomes normalized with age [19,20]. Data from renal
programming models reported that various early-life insults can disturb this normalization
in adults, and consequently, the classical RAS axis is inappropriately activated, leading
to the development of kidney disease in adulthood [6,19,20]. Conversely, emerging evi-
dence supports that early RAS-based interventions could reverse programming processes
to prevent kidney disease of developmental origins [12]. Additionally, nutrient-sensing
signals play an essential role in normal renal physiology and the pathogenesis of kidney
disease [21]. Early-life nutritional insults can impair nutrient-sensing signals that affect fetal
development and, consequently, program chronic disease in later life [22]. Dysregulated
nutrient-sensing signals, such as AMP-activated protein kinase (AMPK) and peroxisome
proliferator-activated receptors (PPARs), have been linked to renal programming and the
risks for developing kidney disease in later life [23,24]. Despite the fact that the complete
mechanisms are still inconclusive, there seem to be interrelated aspects among them. Since
detailed reviews of each mechanism are beyond the scope of this paper, readers are referred
elsewhere [8–14].

Recent studies have focused on the impact of the gut microbiome in CKD and its
associated complications [14]. Microbial metabolites can act as signaling compounds
via systemic circulation [14]. Currently, there are some proposed mechanisms linking
dysbiotic gut microbiota to CKD and related complications, such as alterations of the gut
microbiome, dysregulation of short-chain fatty acids (SCFA) and their receptors, activation
of aryl hydrocarbon receptor (AHR), increases of trimethylamine-N-oxide (TMAO), and
microbiota-derived uremic toxins [14,25–29]. Maternal insults have been shown to change
gut microbiome balance, leading to an increased risk of adult diseases [29]. Nevertheless,
relatively little is known about whether and how diverse prenatal insults could influence
gut microbiota, leading to CKD and its comorbidities in adult offspring.

This scoping review followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) to identify and examine
the evidence around the impact of gut microbiota behind the programming of kidney dis-
ease evidence documenting prevention of CKD and its related complications by early-life
gut microbiota-targeted therapy [30]. Our search strategy was designed to retrieve literature
relating to DOHaD, gut microbiota, and pediatric kidney disease from PubMed/MEDLINE
databases. We used the following search terms: “chronic kidney disease”, “developmental
programming”, “DOHaD”, “reprogramming”, “gut microbiota”, “probiotics”, “prebiotics”,
“synbiotics”, “postbiotics”, “mother”, “pregnancy”, “gestation”, “offspring”, “progeny”,
“uremic toxin”, “nephrogenesis”, “nephron number”, “kidney”, “aryl hydrocarbon recep-
tor”, and “hypertension”. Additional studies were then selected and assessed based on
fitting references in eligible papers. The last search was conducted on 25 January 2022.

2. Human Evidence for Developmental Programming of CKD

The development of the human kidney starts at week 3 and ends at week 36 of
gestation [31]. Hence, term neonates are born with a full complement of nephrons. In
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each kidney, the average number of nephrons, the basic unit of a kidney, is approximately
1 million with 10-fold interindividual differences [32]. Adverse in utero events could
interfere with nephrogenesis, resulting in a reduction of nephron numbers and a wide range
of congenital anomalies of the kidney and urinary tract (CAKUT) [33]. Reduced nephron
number causes glomerular hyperfiltration and compensatory glomerular hypertrophy,
consequently initiating a vicious cycle of further nephron loss [34]. Accordingly, reduced
nephron number could act as a first trigger to increase the offspring’s vulnerability to CKD
throughout their later life.

Strong support for the developmental programming of CKD came from a number
of epidemiological studies. Premature birth and low birth weight (LBW) are significant
risk factors for CKD in later life [35–38]. A meta-analysis study recruiting more than
2 million babies revealed that LBW babies were 70% more likely to develop CKD in later
life than those with normal birth weight [36]. In addition to premature birth and LBW,
a case–control study of 1.6 million infants revealed that maternal gestational diabetes,
maternal thalassemia/hemochromatosis, male gender, polyhydramnios or oligohydram-
nios, and first pregnancy are also risk factors for CAKUT [37]. Another case–control study
recruiting 2000 CKD children acknowledged several early-life risk factors, such as LBW,
prematurity, gestational diabetes, and maternal obesity, showed an increased risk of CKD
in adult life [38]. As we reviewed elsewhere, a number of environmental risk factors are
related to the developmental programming of CKD, such as maternal illness, nutritional
imbalance, environmental chemicals, medication use, substance abuse, infection, and ex-
ogenous stress [4]. For example, maternal obesity and diabetes are correlated with an
increased risk of kidney disease in adulthood [39,40]. Additionally, deficiencies in maternal
total energy [41], folate [42], and vitamin A [43] during pregnancy were associated with
detrimental influence on kidney structure and function. Epidemiological studies also
showed that maternal exposure to polycyclic aromatic hydrocarbon, per- and polyfluo-
roalkyl substances, and polycyclic aromatic hydrocarbon, as well as air pollution associated
with premature birth and LBW [44–47], are both risk factors for low nephron number.
Moreover, a number of drugs administrated to pregnant women have been known to affect
kidney development, resulting in CAKUT [48]. These medications include angiotensin
converting enzyme inhibitor, angiotensin receptor blockers, aminoglycosides, cyclosporine
A, dexamethasone, furosemide, anti-epileptic drugs, cyclophosphamide, etc. [48].

Although the risk of CKD has been evaluated in plenty of human studies, interventions
required to prove causation and to elucidate underlying molecular mechanisms remain
unknown. Most of our knowledge regarding the critical window of vulnerability for insults,
the types of insults driving renal programming, potential core mechanisms behind renal
programming, and therapeutic strategy arise out of studies in animal models.

3. Gut Microbiota and Kidney Disease

Trillions of microbes living in the gut—the gut microbiota—have coexisted with
humans in a state of mutually beneficial cohabitation. A diversity of environmental factors
can induce gut microbial imbalance (i.e., dysbiosis), which in turn can affect human health
and disease [49]. Although the role of gut microbiota in adulthood advanced CKD has been
extensively reviewed elsewhere [14,25,50,51], less attention has been given to investigate
its impact in early stages of kidney disease. Therefore, this section mainly discusses
evidence supporting the role of early-life gut microbiota in humans, with an emphasis on
pediatric CKD.

3.1. Early-Life Gut Microbiome

Although microbes colonize the neonatal gut immediately following birth [52], mi-
crobial colonization continues to develop and vary in species abundance until a typical
adult-like gut microbiota is established at the age of 2–3 years [53]. A variety of maternal
factors and early-life events determine the establishment of the gut microbiome, such as
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gestational age, type of delivery, maternal conditions, formula feeding, antibiotic exposure,
and ecological factors [52–55].

During pregnancy and lactation, the mother gut microbiota can influence offspring
gut microbial structure and composition, which highlights the importance of maternal
factors in the establishment of early-life gut microbiome [55]. Several risk factors related
to CKD of developmental origins have also been linked to alterations of gut microbiota,
such as gestational diabetes [56], maternal obesity [57], prematurity [58], LBW [59], and
maternal malnutrition [60]. Additionally, the establishment of the microbiome is highly
interconnected with development of the immune system, and CKD has strong immune
and inflammatory etiologies [61].

Moreover, several environmental chemicals that pregnant mothers are likely to be
exposed to are associated with developmental origins of kidney disease [62]. Among them,
exposure to heavy metals, polycyclic aromatic hydrocarbons, and dioxins also affect the gut
microbiome, accompanied with the development of adult diseases [63]. All of these studies
suggest that the early-life microbial alterations after the CKD-related adverse insults may
be involved in the development of kidney disease in later life.

3.2. The Gut–Kidney Axis

The pathogenic interconnection between the gut microbiome and kidney diseases
is termed the gut–kidney axis [14], which is implicated in CKD and its comorbidities.
A paucity of data exists regarding how the gut–kidney axis functions in the pediatric
population with CKD and what the impact of the gut microbiota is in this process. However,
a great deal of work on the impact of the gut–kidney axis in established CKD has been
conducted, including gut barrier dysfunction, inflammation, immune response, alterations
of microbiota compositions, dysregulated SCFAs and their receptors, uremic toxins, etc.
(Figure 1). Each of them are discussed.
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involved in the pathogenesis of chronic kidney disease and its comorbidities. LPS = lipopolysaccharide;
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First, CKD can impair the intestinal barrier by disrupting the epithelial tight junction
in a 5/6 nephrectomy rat model [64]. An apparent reduction of the tight junction proteins
was reported in the gut mucosa of CKD animals, possibly attributed to uremic toxins [44].
As a result, an increased intestinal permeability and translocation of lipopolysaccharide
(LPS) and bacteria across the intestinal barrier were reported. In CKD rats, gut bacteria
could activate a T-helper 17 (Th17)/Th1 T-cell response and increase the production of
inflammatory cytokines, and LPS could initiate innate immune cells through nuclear factor
kappa B (NF-κB) and toll-like receptor 4 (TLR4) pathways, all triggering inflammation and
immune response [65].

Second, changes in the composition of the gut microbiota are relevant to CKD. Uremia
profoundly alters 190 and 175 bacterial operational taxonomic units (OTUs) of the gut
microbiome in CKD humans [66] and rats [67], respectively. Specifically, the presence
of aerobic bacteria such as those belonging to the phyla Firmicutes, Actinobacteria, and
Proteobacteria in higher numbers, but fewer anaerobic bacteria, such as Sutterellaceae, Bac-
teroidaceae, and Lactobacillaceae, were observed in end stage kidney disease (ESKD) [45–47].
Notably, most research has consistently reported that animals and adult patients with CKD
had low abundance of genus Lactobacillus, whereas the proportion of family Enterobacteri-
aceae were increased [14,66–69]. A systemic review recruiting 25 studies with 1436 CKD
patients revealed that the α-diversity was decreased, and β-diversity of gut microbiota was
significantly more distinct in ESKD patients than in healthy controls [69].

Third, the gut microbiota produces diverse metabolites, which are involved in multiple
physiological processes, such as immunity and host energy metabolism [14]. Following
dietary exposures to certain nutrients, particular microbiota-derived metabolites could
be altered in ESKD patients [70]. Carbohydrates are fermented to generate SCFAs which
signal the host to increase energy expenditure, enhance G protein-coupled receptor (GPCR)
signaling, and act as an inhibitor for histone deacetylase (HDAC) [70–72]. SCFAs are made
up of one to six carbon atoms (C1–C6), mainly consisting of acetic acid (C2), propionic acid
(C3), and butyric acid (C4) [71]. In adult CKD patients, butyrate-producing microbes and
butyric acid production reduced with disease severity [73].

Indoxyl sulfate (IS) and p-cresyl sulfate (PCS), both end-products of protein fermen-
tation, and TMAO, an end-product of microbial carnitine/choline metabolism, are well-
known microbiota-derived uremic toxins. Urinary excretion of several microbial trypto-
phan metabolites such as IS and PCS is decreased in patients with CKD. These tryptophan
metabolites mainly from the indole metabolic pathway are accumulated as uremic toxins,
which are ligands for AHR [74]. Activation of AHR is able to trigger inflammation, induce
oxidative stress, and modulate the Th17 axis, contributing to CKD progression in vivo and
in vitro [75,76]. The level of another uremic toxin, TMAO, is high in patients with ESKD
and associated with increased risk of cardiovascular disease [77,78]. TMAO generation
results from the fermentation by the gut microbiota of dietary carnitine/choline, which
is converted to trimethylamine (TMA) and transformed into TMAO by flavin-containing
monooxygenase (FMO) in the liver. Conversely, selective targeting of gut-microbiota-
dependent TMAO generation has been reported to protect CKD progression in a murine
model of CKD [79]. Although the uses of prebiotics, probiotics, postbiotics, and synbiotics
have shown potential positive effects against uremic toxin generation, their evidence is still
limited for the treatment and prevention of human CKD [80–82].

Together, the interaction between gut microbiota and CKD is bidirectional: CKD
may affect the structure of the gut microbiota and contribute to gut dysbiosis, while
dysbiosis in CKD patients may increase uremic toxin levels that in turn contribute to CKD
progression. Considering the gut is a potential cause of CKD-related complications, gut
microbiota-targeted therapeutic strategies in CKD will have a considerable impact on
CKD management.
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3.3. Gut Microbiota in Pediatric CKD

Table 1 summarizes the alterations of gut microbiota and its related metabolites
in pediatric kidney disease, as reported in the literature [83–89]. The study of the gut
microbiome in children with kidney disease mainly focused on three types of dysbiosis:
loss of diversity, shifts in keystone taxa, and alterations of microbial metabolites.

Table 1. Summary of studies investigated links between gut microbiota and pediatric chronic kidney
disease.

Study Study Population Age (Years) Alterations in Gut Microbiota and
Metabolites

Crespo-Salgado et al.,
2016 [83]

8 HD, 8 PD, 10 transplant,
13 controls

Control: 9.5 (3–16), HD: 13.6
(8–17), PD: 11.9 (3–17), transplant:

13.2 (2–18)

↓ Alpha diversity in PD and transplant
↓ Phyla Firmicutes and Actinobacteria but ↑

family Enterobacteriaceae in PD
↑ Phylum Bacteroidetes in HD

↑ Plasma levels of p-cresyl sulfate and
indoxyl sulfate in HD and PD

Tsuji et al., 2018 [84] 12 INS, 11 controls Controls: 5.1, relapsing INS: 3,
non-relapsing INS: 4.3

↓ Butyrate-producing bacteria belonging to
Clostridium clusters IV and XIVa
↓ Fecal butyric acid level

Hsu et al., 2018 [85] 60 CKD stage 1
26 CKD stage 2–3

11.3 (7.2–15.5)
11.3 (7.2–15.5)

↓ Urinary levels of DMA and TMAO in CKD
stage 2–3 vs. CKD stage 1

↓ Genus Prevotella in CKD children with an
abnormal ABPM profile

Hsu et al., 2019 [86] 78 CKD stage 1–4 11.2 (7.4–15.2)

↑ Plasma levels of propionic acid and
butyric acid in CKD children with an

abnormal ABPM profile
↑ Phylum Verrucomicrobia, genus

Akkermansia, and species
↓ Bifidobacterium bifidum in CKD children

with CAKUT

Kang et al., 2019 [87] 20 INS 3.5 ± 2.1 ↑ Genera Romboutsia, Stomatobaculum and
Cloacibacillus after 4-week initial therapy

Hsu et al., 2020 [88] 115 CKD stage 1–4 11.3 (7.2–15.5)

↑ Plasma levels of DMA, TMA, and TMAO
in children with CKD stage 2–4 vs. CKD

stage 1
↓ Phylum Cyanobacteria, genera
Subdoligranulum, Ruminococcus,

Faecalibacterium, and Akkermansia in CKD
children with an abnormal ABPM profile

Yamaguchi et al.,
2021 [89] 20 INS

INS with probiotics: 6.4 (3.7–10.6),
INS without probiotics:

4.7 (3.5–7.8)
↓ Butyrate-producing bacteria

Data on age are presented as mean ± standard deviation or median (interquartile range); PD = peritoneal dialysis;
HD = hemodialysis; CKD = chronic kidney disease; INS = idiopathic nephrotic syndrome; CAKUT = congenital
anomalies of the kidney and urinary tract; DMA = dimethylamine; TMA = trimethylamine; TMAO = trimethylamine-
N-oxide; ABPM = 24 h ambulatory blood pressure monitoring.

The pediatric gut microbiome in a uremic milieu has been evaluated in a small group
of ESKD children who underwent hemodialysis (HD, n = 8), peritoneal dialysis (PD,
n = 8), or kidney transplant (n = 10) [83]. Alpha diversity was decreased in children
undergoing PD or transplant. ESKD children undergoing HD had increased abundance of
phylum Bacteroidetes. Children on PD had an increase in the abundance of phyla Firmicutes
and Actinobacteria but a decrease in abundance of family Enterobacteriaceae. Additionally,
children on HD or PD had increased plasma levels of microbiota-derived uremic toxins,
IS, and PCS [83]. A similar pattern of gut dysbiosis was reported in adult patients with
ESKD [69,70].

In another small group of children (n = 12) with idiopathic nephrotic syndrome (INS),
butyric acid level in the feces was decreased in relapsing INS children coinciding with
decreased abundance of butyrate-producing bacteria belonging to Clostridium clusters IV
and XIVa [84]. These microbes included Clostridium orbiscindens, Faecalibacterium prausnitzii,



Int. J. Mol. Sci. 2022, 23, 3954 7 of 17

Eubacterium hallii, E. ramulus, E. rectale, E. ventriosum, Roseburia intestinalis, Eubacterium spp.,
and Butyrivibrio spp.

One study recruiting 60 children diagnosed with CKD stage 1 and 26 stage 2–3 chil-
dren showed that urinary levels of TMAO and dimethylamine (DMA, a metabolite of
TMAO) were lower in children with CKD stages 2–3 than CKD stage 1 [85]. Additionally,
the proportion of genus Prevotella was decreased in CKD children with blood pressure
(BP) abnormalities.

In 78 children and adolescents with CKD stage 1–4 and a median age of 11.2 years,
BP determined using 24 h ambulatory blood pressure monitoring (ABPM) was defined
out of range, and BP was related to increased plasma levels of propionic acid and butyric
acid [86]. Additionally, the abundance of phylum Verrucomicrobia, genus Akkermansia, and
species Bifidobacterium bifidum were higher in CKD children with CAKUT compared to
those with non-CAKUT.

In another study from our group, we recruited 115 children and adolescents with CKD
stages 1–4 [88]. We found plasma levels of DMA, trimethylamine (TMA), and TMAO higher
in children with CKD stage 2–4 vs. CKD stage 1. These data are consistent with previous
studies in CKD adults [90,91], showing that TMAO is increased in CKD and that there is a
negative association between circulating TMAO level and renal function. We also observed
that phylum Cyanobacteria, genera Subdoligranulum, Faecalibacterium, Ruminococcus, and
Akkermansia were decreased in CKD children stools with an abnormal ABPM profile.

CKD children with abnormal ABPM had a decreased proportion of genera Gemella,
Providencia, and Peptosreptoccocus. Of note is that these genera of bacteria are involved
in TMA production [92]. Accordingly, whether these microbes play a key role on the
development of hypertension via the TMA−TMAO metabolic pathway in CKD children
deserves further clarification.

In 20 children with INS who received oral prednisone therapy, abundance of gen-
era Romboutsia, Stomatobaculum, and Cloacibacillus was increased after a 4-week initial
therapy [87]. Another study recruited 20 children with INS and showed that probiotic
treatment protected against relapse and coincided with increases in butyrate-producing
bacteria and blood regulatory T cell (Treg) counts [89]. Considering gut microbiota shapes,
the Th17/Treg balance, and Th17 involved in renal inflammation, probiotic treatment may
have beneficial effects impacting the gut–kidney axis via immune regulation.

4. Gut Microbiota-Targeted Therapy

Recently, researchers have increasingly turned their attention on gut microbiota and its
derived metabolites as a potential target for therapeutics [81,82,93,94]. In clinical practice,
the most generally used gut microbiota-targeted therapies are probiotics and prebiotics.
Probiotics are live bacteria that have health benefits when administered [93]. Prebiotics can
promote the growth and activity of beneficial bacteria [93]. Synbiotics refer to a mixture
comprising probiotic and prebiotics that also confers a health benefit. Additionally, the
use of substances leased or produced through metabolism of the gut microbes, namely
postbiotics, have shown a positive effect on the host [94]. Another gut microbiota-targeted
therapy is fecal microbial transplantation (FMT). Although FMT is being broadly studied
in microbiome-associated pathologies [95,96], its potential application for the treatment
of CKD remains largely unknown. Moreover, treatment with oral intestinal absorbent
AST-120 can reduce microbiota-derived uremic toxins [97]. Although AST-120 treatment
has shown cardiovascular benefits in adult patients with CKD [98,99], its influence on
gut microbiota compositions and other CKD-related complications remains limited. A
summary of potential gut microbiota-targeted therapies in the treatment of developmental
programming of CKD and its comorbidities is illustrated in Figure 2.
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4.1. Human Evidence in Pediatric CKD

To date, limited data are available to examine whether alterations of gut microbiota by
microbiota-targeted therapies can protect against CKD progression and its comorbidities in
the pediatric population. For example, Clostridium butyricum is a butyrate-producing bacte-
ria used as a probiotic [100]. Oral administration of Clostridium butyricum during remission
was reported to reduce the frequency of relapse and the need for immunosuppressive
agents in children with INS [89]. The protective effect of probiotic therapy was associated
with increases in butyrate-producing bacteria and Treg cells. On the other hand, animal
studies targeting gut microbiota to prevent the development of CKD and its associated
complications have produced some compelling evidence.

4.2. Animal Models of Early-Life Gut Microbiota-Targeted Therapy

Here, we list in Table 2 a summary of studies documenting gut microbiota-targeted inter-
ventions in animal models of CKD of developmental origins and its comorbidities [101–110].
The therapeutic duration is during fetal and childhood stages. The literature review states that
gut microbiota-targeted interventions used to prevent CKD and its comorbidities primarily
include probiotics, prebiotics, and postbiotics.

As shown in Table 2, rats are the dominant species used by experiments, and hyperten-
sion is the most commonly studied CKD-related comorbidity. A variety of early-life insults
can lead to structural and functional changes in the developing kidney by the so-called
renal programming [6]. Unlike in humans, kidney development in rats continues up to
postnatal week 1–2. According to DOHaD theory, adverse environmental insults during
pregnancy and lactation period can interrupt kidney development, resulting in renal pro-
gramming and adult kidney disease. Several models of renal programming have been
used to examine gut microbiota-targeted interventions in CKD of developmental origins,
such as maternal high-fructose diet [101,108], perinatal high-fat diet [102,107,109], perinatal
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure [103], maternal adenine-induced
CKD [104], maternal TMAO and ADMA exposure [105], and maternal high-fructose diet
and TCDD exposure [110].
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Table 2. Summary of early-life gut microbiota-targeted therapies for CKD and its comorbidities.

Gut Microbiota-Targeted Intervention Animal Models Species/Gender Age at
Evaluation

Effects on CKD
and Its

Comorbidities
Reference

Probiotics

Daily oral gavage of Lactobacillus casei
rhamnosus (2 × 108 CFU/day) to mother rats

from pregnancy through lactation

Maternal
high-fructose diet SD rat/M 12 weeks Prevented

hypertension
Hsu et al.,
2018 [101]

Daily oral gavage of Lactobacillus casei
rhamnosus (2 × 108 CFU/day) to mother rats

from pregnancy through lactation
Perinatal high-fat diet SD rat/M 16 weeks Prevented

hypertension
Hsu et al.,
2019 [102]

Prebiotics

5% w/w long chain inulin to mother rats from
pregnancy through lactation

Maternal
high-fructose diet SD rat/M 12 weeks Prevented

hypertension
Hsu et al.,
2018 [101]

5% w/w long chain inulin to mother rats from
pregnancy through lactation Perinatal high-fat diet SD rat/M 16 weeks Prevented

hypertension
Hsu et al.,
2019 [102]

Resveratrol (50 mg/L) in drinking water to
mother rats from pregnancy through lactation

Perinatal TCDD
exposure model SD rat/M 12 weeks

Prevented renal
inflammation

and hypertension

Hsu et al.,
2021 [103]

Resveratrol (50 mg/L) in drinking water to
mother rats from pregnancy through lactation

Maternal
adenine-induced CKD SD rat/M 12 weeks Prevented

hypertension
Hsu et al.,
2020 [104]

Resveratrol (50 mg/L) in drinking water to
mother rats from pregnancy through lactation

Maternal TMAO and
ADMA exposure SD rat/M 12 weeks Prevented

hypertension
Hsu et al.,
2021 [105]

Resveratrol (50 mg/L) in drinking water to
mother rats from week 6 to week 12

Pediatric
adenine-induced CKD SD rat/M 12 weeks

Prevented renal
dysfunction and

hypertension

Hsu et al.,
2021 [106]

Resveratrol butyrate ester (25 mg/L or
50 mg/L) in drinking water to young rats

from week 6 to week 12

Pediatric
adenine-induced CKD SD rat/M 12 weeks

Prevented renal
dysfunction and

hypertension

Hsu et al.,
2021 [106]

Daily oral gavage of garlic oil (100
mg/kg/day) to mother rats from pregnancy

through lactation
Perinatal high-fat diet SD rat/M 16 weeks Prevented

hypertension
Hsu et al.,
2021 [107]

Postbiotics

Magnesium acetate (200 mmol/L) in drinking
water to mother rats from pregnancy

through lactation

Maternal
high-fructose diet SD rat/M 12 weeks Prevented

hypertension
Hsu et al.,
2019 [108]

1% conjugated linoleic acid to mother rats
from pregnancy through lactation Maternal high-fat diet SD rat/M 18 weeks Prevented

hypertension
Gray et al.,
2015 [109]

Others

1% DMB in drinking water to mother rats
from pregnancy through lactation

Maternal
high-fructose diet SD rat/M 12 weeks Prevented

hypertension
Hsu et al.,
2019 [108]

1% DMB in drinking water to mother rats
from pregnancy through lactation

Maternal high-fructose
diet and TCDD

exposure
SD rat/M 12 weeks Prevented

hypertension
Hsu et al.,
2020 [110]

Studies tabulated according to types of intervention, animal models, and age at evaluation.
TCDD = 2,3,7,8-tetrachlorodibenzo-p-dioxin; CKD = chronic kidney disease; TMAO = trimethylamine-N-oxide;
ADMA = asymmetric dimethylarginine; SD = Sprague-Dawley rat; DMB = 3,3-maternal dimethyl-1-butanol.

Taking the example of the maternal high-fructose diet model, high-fructose intake
during pregnancy and lactation modified over 200 renal transcripts from nephrogenesis
stage to adulthood [111]. Using whole-genome RNA next-generation sequencing (NGS),
high-fructose-induced alterations of the renal transcriptome were reported in kidneys from
1-day-, 3-week-, and 3-month-old male offspring. NGS identified genes in arachidonic acid
metabolism (Cyp2c23, Hpgds, Ptgds and Ptges) that contribute to renal programming and
hypertension. Notably, this renal programming model has been used to examine the repro-
gramming effects of gut microbiota-targeted therapy on fructose-induced developmental
programming [112]. Since the above-mentioned renal programming models have been
established and linked to adverse renal outcomes in adult offspring, readers are referred to
original references. There was only one study conducting an adenine-induced pediatric
CKD model to determine the effects of probiotic resveratrol on CKD progression [106].
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Review elsewhere showed that several probiotic microorganisms and prebiotics have
benefits on adult CKD [81,82], while there was only very limited evidence regarding their
role on CKD of developmental origins. Supplementation with Lactobacillus casei rhamnosus
from pregnancy through lactation protected adult male rat progeny against hypertension
programmed by a maternal high-fructose diet [101] or perinatal high-fat diet [102].

Additionally, inulin as a prebiotic has been examined for its protective effect in hy-
pertension of developmental origins [101,102]. In a high-fat model [102], we previously
demonstrated that inulin treatment protected against hypertension in adult rat offspring
coinciding with alterations of the gut microbiota, particularly increasing the abundance
of Lactobacillus, a well-known probiotic strain. Likewise, perinatal supplementing to rat
dams with inulin protected adult offspring against maternal high-fructose diet-induced
hypertension, which coincided with an increased plasma level of propionic acid [102].

Resveratrol can modulate gut microbiota composition, undergo biotransformation to
activate metabolites via the intestinal microbiota, affect gut barrier function, modify the
Firmicutes to Bacteroidetes (F/B) ratio, and reverse the gut microbial dysbiosis [113–116].
With a prebiotic effect for gut microbes, increasing evidence supports the beneficial effects
of resveratrol on many diseases, including CKD [117,118]. One study revealed that peri-
natal resveratrol therapy could protect adult offspring against hypertension and CKD of
developmental origins [119]. Studies using a maternal TCDD exposure rat model showed
TCDD-induced renal hypertrophy and hypertension in adult progeny, and both are key
features of early CKD. TCDD-induced hypertension is associated with activation of AHR
signaling, induction of TH17-dependent renal inflammation, and alterations of gut micro-
biota compositions [103]. Conversely, the induction of AHR- and TH17-mediated renal
inflammation could be counterbalanced by perinatal resveratrol supplementation. The
beneficial effects of resveratrol are associated with reshaping the gut microbiome by aug-
menting microbes that can inhibit TH17 responses and reduce the F/B ratio, a microbial
marker of hypertension [14]. In a maternal CKD model, adult offspring developed renal
hypertrophy and hypertension [104]. Perinatal resveratrol therapy protected hyperten-
sion, coinciding with the restoration of microbial richness and diversity and an increase
in Lactobacillus and Bifidobacterium [104]. Similar to TMAO, asymmetric dimethylarginine
(ADMA) is a well-known uremic toxin [120]. Another study using a maternal TMAO plus
ADMA exposure model demonstrated that adult offspring born to dams exposed to uremic
toxins had renal dysfunction and hypertension [105]. Conversely, maternal treatment with
resveratrol rescued hypertension induced by TMAO plus ADMA exposure, accompanied
by increased butyrate-producing microbes and fecal butyric acid level.

Of note is that the low bioavailability of resveratrol diminishes its efficacy and clin-
ical translation [121]. Accordingly, we produced resveratrol butyrate ester (RBE) via the
esterification of resveratrol with the SCFA butyrate to improve the efficacy [122]. Using
a pediatric CKD model [85], we recently found low-dose RBE (25 mg/L) is as effective
as resveratrol (50 mg/L) in protecting against hypertension and renal dysfunction. The
beneficial effects of RBE include regulation of SCFA receptors, decreased AHR signaling,
and increased abundance of the beneficial microbes Blautia and Enterococcus.

Although there are many prebiotic foods, only garlic oil has shown beneficial effects
against high-fat diet-induced hypertension in adult progeny [106]. These effects include
increased α-diversity, increased plasma levels of acetic acid, butyric acid, and propionic
acid, and increased beneficial bacteria Lactobacillus and Bifidobacterium.

In addition to probiotics and prebiotics, postbiotics is another gut microbiota-targeted
therapy. Postbiotics include various components, such as microbial cell fractions, extracellu-
lar polysaccharides, functional proteins, cell lysates, extracellular vesicles, cell-wall-derived
muropeptides, etc. [94]. Nevertheless, very limited information exists regarding the use of
postbiotics in CKD. Acetate supplementation within gestation and lactation was reported
to protect offspring against high-fructose-diet-induced hypertension, a major complication
of CKD [108]. However, its protective effects on other complications of CKD are still
waiting for clarification. Another example of postbiotic use in hypertension of develop-
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mental origins is conjugated linoleic acid [109]. Linoleic acid is a gut microbial metabolite
derived from dietary polyunsaturated fatty acids (PUFA) [123]. Several gut microbes
have been identified as producing PUFA-derived intermediate metabolites [124]. Admin-
istration of PUFA-derived bacterial metabolites such as linoleic acid has been shown to
provoke anti-obesity and anti-inflammatory effects [125]. However, unlike probiotics and
prebiotics [126,127], currently there is a lack of a clear definition for postbiotics. Consider-
ing the complex nature of postbiotics [94], a clear definition is important for future research
from a regulatory perspective.

Moreover, there are other microbiota-related therapies applied for preventing CKD
and its comorbidities. Microbe-dependent TMA and TMAO formation can be inhibited
by 3,3-dimethyl-1-butanol (DMB), a structural analogue of choline [128]. Recently, two
studies reported that maternal oral administration of DMB protected hypertension in adult
rat progeny exposed to a maternal high-fructose diet [87] or high-fructose diet plus TCDD
exposure [110]. This was accompanied by affecting the metabolic pathway of TMA-TMAO
and reshaping gut microbiota [110].

As far as the multifaceted relationship between the gut and kidney, there might
be other potential approaches by which the gut microbiota might prevent CKD and its
associated complications. For example, RAS blockers are currently the most common
therapies used for renoprotection and antihypertension [129]. Considering drug-mediated
alterations in the gut microbiota compositions can have beneficial effects on the host [130],
a greater understanding of mechanisms driving drug–gut microbiota interactions might
aid in guiding the development of microbiota-targeted pharmacological interventions.
Together, early microbiota-targeted therapies, in the long term, may enable the capacity
to prevent the development of CKD and its comorbidities in a desired favorable direction.
However, there is an urgent need to identify and fill the knowledge gaps on gut microbiota-
targeted therapies between established CKD and CKD of developmental origins.

5. Conclusions and Perspectives

Mounting evidence in support of the link between gut microbiota and CKD starting in
early life is intriguing but incomplete. One major unsolved problem is the gap in published
child- and adult-focused clinical CKD research. Most pediatric CKD studies have limited
power due to a small sample size. Although substantial evidence indicates an association
between gut microbiota and CKD in adult patients with different stages of CKD and/or
various comorbidities, we still lack such information in the pediatric population. Therefore,
future work in large multicenter studies regarding CKD and its comorbidities is required
to enable the establishment of more robust true relationships in the pediatric population.

Prior research has indicated that the early-life gut microbiome might influence renal
programming and exert CKD in later life. Our review highlights the value of gut microbiota-
targeted therapies, if applied early, to help prevent CKD and its related complications.
Nevertheless, many probiotics and prebiotics used in adult CKD have not been examined
in childhood CKD yet, especially in CKD of developmental origins.

In conclusion, gut microbiota dysbiosis is a highly pathogenetic link in the develop-
ment of CKD and its comorbidities. After all of this significant growth in understanding of
the gut microbiota in the pathophysiology of pediatric CKD and its targeted interventions,
it may open new avenues for prevention of CKD in childhood or even earlier in fetal life.
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