
NAR Genomics and Bioinformatics , 2024, 6 , lqae057 
https://doi.org/10.1093/nargab/lqae057 
Advance access publication date: 25 May 2024 
High Throughput Sequencing Methods 

A single-cell str at eg y f or the identification of intronic 

v ar iants related to mis-splicing in pancreatic cancer 

Emre Taylan Duman 

1 ,† , Maren Sitte 

1 ,† , Karly Conrads 

2 , 3 , 4 , A di Mac ka y 

3 , 5 , Fabian Ludewig 

1 , 

Philipp Ströbel 3 , 5 , Volker Ellenrieder 2 , 3 , 6 , Elisabeth Hessmann 

2 , 3 , 6 , Argyr is P apantonis 

3 , 5 , 6 , * 

and Gabriela Salinas 

1 , 3 , * 

1 NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany 
2 Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany 
3 Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany 
4 Institute of Medical Bioinformatics, University Medical Center, Göttingen, Germany 
5 Institute of Pathology, University Medical Center, Göttingen, Germany 
6 Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany 
* To whom correspondence should be addressed. Tel: +49 551 39 65734; Email: argyris.papantonis@med.uni-goettingen.de 
Correspondence may also be addressed to Gabriela Salinas. Tel: +49 551 39 60778; Email: gabriela.salinas@med.uni-goettingen.de 
† The first two authors should be regarded as Joint First Authors. 

Abstract 

Most clinical diagnostic and genomic research setups focus almost exclusively on coding regions and essential splice sites, thereby overlooking 
other non-coding variants. As a result, intronic variants that can promote mis-splicing e v ents across a range of diseases, including cancer, are 
yet to be systematically investigated. Such investigations would require both genomic and transcriptomic data, but there currently exist very 
few datasets that satisfy these requirements. We address this by developing a single-nucleus full-length RNA-sequencing approach that allows 
for the detection of potentially pathogenic intronic variants. We exemplify the potency of our approach by applying pancreatic cancer tumor 
and tumor-derived specimens and linking intronic variants to splicing dysregulation. We specifically find that prominent intron retention and 
pseudo-e x on activ ation e v ents are shared b y the tumors and affect genes encoding k e y transcriptional regulators. Our w ork pa v es the w a y f or 
the assessment and exploitation of intronic mutations as po w erful prognostic markers and potential therapeutic targets in cancer. 
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Introduction 

Introns in human genes can be extraordinarily large (up to 1
Mbp, with ∼3400 being longer than 50 kb and ∼1200 longer
than 100 kb), and account for half of the non-coding human
genome. As mutations in introns do not directly affect protein-
coding sequences, they are usually overlooked ( 1–3 ). As a
result, little attention is paid to the importance of intronic-
located splicing regulatory elements that control the fidelity
of pre-mRNA splicing and transcription timing. This is sur-
prising given that pathogenic variants cause abnormal splic-
ing changes, typically by damaging existing splicing motifs or
creating novel splicing motifs and may comprise 15–60% of
all human disease variants ( 1–3 ). 

Recent studies have reported significant numbers of in-
tronic variants and deletions in protein-coding genes that are
associated with under- or overexpression of the affected genes
or of distant genes interacting in 3D, thus influencing their
regulation in normal or pathogenic conditions ( 4–6 ). It is
also well established that introns contribute to the control
of gene expression by including regulatory regions and non-
coding (yet functional) genes or even directly by their exten-
sive length ( 6 ). A substantial number of pathogenic variants
located deep within introns (i.e. > 100 bp from an exon-intron
boundary) were recently reported, suggesting that sequence
analysis of full introns may help to identify causal mutations
for many undiagnosed clinical cases ( 4–9 ). Moreover, direct
associations between intronic mutations and certain diseases
have also been reported, albeit sporadically ( 7–9 ). These re-
sults agree with the findings we present here. For instance,
we identified genes that are simultaneously overexpressed in
basal-like cells from pancreatic cancer (PDAC) tumors and
rank as the most mutated transcripts, particularly when we
consider intronic variants. In this regard, PDAC-associated
mutations were reported to synergize in tumorigenesis by
globally altering the splicing program of cell ( 10 ). More-
over, splicing factors were recently shown to either promote
the early events in pancreatic tumorigenesis and resistance to
chemotherapy or to limit the metastatic potential of PDAC
cells ( 11 ,12 ). A very recent publication has identified a splic-
ing signature specific to basal-like cells, distinguishing PDAC
subtypes as accurate survival predictors when considered in
the overall population of PDAC patients, as well as within
homogeneous subtype cohorts, indicating their efficacy as
biomarkers ( 13 ). 

However, there exist many limitations when investigating
intronic mis-splicing variants, the main ones being the lack of
approaches capable of simultaneously interrogating genomic
and transcriptional information, and the lack of guidelines de-
signed for assessing intronic variants and their contribution to
abnormal splicing changes in disease. We address these limi-
tations by introducing a novel pipeline that utilizes full-length
single-nuclei and bulk RNA sequencing strategy for the ‘deep’
characterization of genetic variability within introns and of
their effects on splicing and gene expression in PDAC. Indeed,
cancer is one of those diseases, where alternative splicing is
the basis for the identification of novel diagnostics, and ther-
apeutic strategies for therapy (e.g. antisense oligonucleotides
or small-molecule modulators of spliceosome ( 9 , 14 , 15 )). This
new approach therefore holds promise for both the elucida-
tion of fundamental biological principles connected to splic-
ing regulation, and the identification of therapeutic targets in
human disease. 
Materials and methods 

Patients’ sample information 

Utilization and characterization of human PDAC data and 

samples within the CRU5002 has been approved by the ethical 
review board of the UMG (11 / 5 / 17). Informed consent was 
obtained from all subjects involved in the study. Sequencing 
studies and the generation of organoids and PDX models have 
been performed using tumor tissue from CRU5002 PDAC 

patients with progressed disease upon histological PDAC 

confirmation. 

Generation of PDX models 

For the generation of PDX models, bulk tumor tissue was sub- 
cutaneously transplanted into SHO- prkdc scid Hr hr mice. En- 
grafted subcutaneous tumors were passaged in mice for three 
generations prior to snRNA-sequencing. 

Generation of organoids models 

Tumor tissue was minced and digested in Dulbecco’s modi- 
fied Eagle’s medium containing 5 mg / ml of collagenase XI 
(Sigma-Aldrich, C9407), DNAse final concentration 10 μg / ml 
(SIGMA D5025-150KU) and Y-27632 final concentration 

10.5 μM (Adooq Bioscience, 129830-38-2) and incubated at 
37 

◦C for 45 min. The material was further embedded in Ma- 
trigel (Corning, New York, USA; Cat#356231) and cultured 

in human pancreatic cancer complete medium (Wnt3a, R- 
spondin1, Gastrin, hEGF, A 83-01, hFGF-10, mNoggin, Pri- 
mocin, N-acetylcystein, Nicotinamide, B27 supplement and 

Y-27632). For passage, the Matrigel-containing organoid was 
digested by TrypLE™ Express (Thermo Fisher, 12605-028) 
with DNAse and Y-27632 as described above for 15 min. The 
sample was centrifuged at 500 × g for 5 min, and the precip- 
itated cells were embedded in GFR Matrigel and cultured in 

human pancreas organoid complete feeding medium. 

Nuclei extraction from primary PD A C and PD A C 

models 

Nuclei isolation of PDAC was performed according to the 
‘Nuclei Isolation from Cell Suspensions & Tissues for Single 
Cell RNA sequencing’, Document Number CG000124 Rev E,
10 × Genomics, (30 June 2021). For organoids, minor modi- 
fications were performed. The cells were spun down at 500 

× g, lysis took place for 15 minutes and only two washing 
steps were performed. Following the second wash, the nuclei 
pellet was resuspended in 1 ml (about 0.03 oz) wash buffer in 

preparation for the ICELL8 protocol. 

Full-length single-cell RNA-seq using ICELL8 

The Takara ICELL8 5184 nano-well chip was used with the 
full-length SMART-Seq ICELL8 Reagent Kit. Nuclei suspen- 
sions were fluorescent-labelled with Hoechst 33342 for 15 

min prior to their dispensing into the Takara ICELL8 5184 

nano-well chips. Cell Select Software (Takara Bio) was used to 

visualize and select wells containing single nuclei. Nine 5184 

nano-wells chips were used for all samples and 11 084 nu- 
clei were processed for data analysis. Specifically, after qual- 
ity control, 3416 nuclei were used for primary PDAC, 3037 

for PDX and 4631 for organoids respectively. cDNA synthe- 
sis and library preparation were done according to description 

in previous study ( 16 ). Libraries were sequenced on the HiSeq 
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000 (Illumina) to obtain on average ∼ 0.3 Mio reads per nu-
lei (SE; 50 bp). 

ulk-RNA-Seq from primary PDAC samples 

otal RNA was extracted from FFPE tumor patient sam-
les using the ReliaPrep™ FFPE Total RNA Miniprep Sys-
em (Promega). RNA Integrity was determined using the Frag-
ent Analyzer. Because of low RNA integrity (sizing from 50

o 140 bp), we performed a modified TruSeq Stranded Total
NA Library Prep Human / Mouse / Rat (Cat. No. 20020596)

tarting with 200 ng of total RNA. The modifications include
a) ignoring fragmentation step, (b) ligation optimization by
djusting adapters concentration during library preparation,
c) increasing PCR cycles (15 in total) and eliminating primer
imers prior to sequencing (Agencourt AMPure XP magnetic
eads, Beckman Coulter). Primary PDAC were sequenced on
he NovaSeq6000; S4 flow cell PE 300 cycles generating a data
et of 50–400 Mio reads per sample. 

ulk-RNA-Seq from organoids and PDXs 

NA libraries were prepared starting with 300 ng of total
NA using a non-stranded mRNA Seq (TruSeq RNA Li-
rary Preparation Cat. RS-122-2001) from Illumina accord-

ng to the manufacturer’s recommendations. Libraries were se-
uenced on the Illumina HiSeq 4000 (SE; 1 × 50 bp; 30–35
io reads / sample). 

hole genome sequencing 

GS data from two primary PDAC samples TM56 and TM27
ere sequenced at ∼40 × coverage on the Illumina NovaSeq
000 sequencer following the protocol provided by the sup-
lier. Libraries were performed using the PCR Free DNA li-
rary preparation from Illumina Cat. No.: 20041794). Align-
ent, variant calling, and benchmarking were performed us-

ng Illumina DRAGEN Germline pipeline 4.2.4. 

re-processing of single-nuclei RNA-seq data 

aw sequencing files were processed as described in ( 16 ).
riefly, Cogent NGS analysis pipeline (CogentAP) from
akara Bio (v1.0) was applied for de-multiplexing and creat-

ng the gene expression matrices from each FASTQ file. Reads
ere aligned against the human genome GRCh38 v107 ( https:

/ www.ensembl.org/ Homo _ sapiens/ Info/ Index ). Quality con-
rol of the data has been done by using CogentDS QC as
utlined in ( 16 ). QC considered the amount of usable unique
eads per nucleus (over 65%), the number of reads generated
er nucleus (over 250K), and the median mitochondrial con-
ent of the PDAC tumors of 18% (with 26% IQR-3). Intron
egions of genes were also included in further evaluation. Gen-
rated gene matrices were used as input for the SingleCellEx-
eriment R package (v3.0) ( 17 ) to generate SingleCellExperi-
ent objects for the subsequent downstream analysis. 

dentification of disease subtypes and cell types 

o identify the tumor subtypes and cell types of which the sin-
le cells are composed, two different methods were employed.
irst, we used the marker-based method AUCell ( 18 ) to iden-
ify the PDAC subtypes classical and basal-like tumor. This
nalysis was based on established marker genes ( 19 ). AUCell
anks the genes in each cell by decreasing expression value,
nd marks cells according to their most expressed marker
genes. Secondly, we performed cell type annotation for more
refined subpopulations to address the heterogeneity of the tu-
mor and its matched models. We utilized the reference data set
as provided by the SeuratData R package (panc8.SeuratData)
( 20 ) and the prediction function as implemented in the R
package SingleR ( 21 ). Downstream analyses performing the
UMAP algorithm were done as implemented in CogentDS
(v1.0) for dimensionality reduction and data visualization.
To determine which genes were differentially expressed be-
tween tumor subtypes and cell types in a particular patient,
Wilcoxon Rank Sum and Signed Rank Test was used, together
with P values adjustment with Benjamini–Hochberg method.

Pseudo-variant calling in snRNA and bulk RNA-seq 

data 

Bam files resulting from CogentDS were used as input for
the pseudo bulk variant calling using GATK best practices
pipeline for RNAseq variant calling ( 22 ). Consistent with the
recommendations of GATK, duplicates were removed with Pi-
card MarkDuplicates, and read groups were added with Pi-
card AddOrReplaceReadGroups. Subsequently, Cigar reads
were split into exon segment and hard-clip any sequences
overhanging into the intronic regions with SplitNCigarReads.
Variant calling was performed by HaplotypeCaller and all
variants were then hard filtered by the following criteria:
FS > 30 and QD < 2. Patient specific vcf files were intersected
or merged using bcftools-isec to collect shared or unique mu-
tations from the samples. Resulting variants were converted
into maf (mutation annotation file) using Ensembl VEP ( 23 )
annotation tool for the identification of the intronic, inter-
genic, and splice junction mutations (Figure 3 A). Finally, mu-
tations were grouped into three categories: SS, Proximal, and
Deep by using Ensembl GTF file version 107. Total number of
SS and Prox mutations were subtracted from total number of
mutations in maf files to calculate the number of deep intronic
variants. Negative values indicate that the deep intronic mu-
tation affects multiple transcripts of the gene. Pre-Ranked en-
richment analysis was performed by using mutation lists from
three locational groups. Mutation numbers from SS and Prox-
imal regions were normalized by using total intron number of
each gene. Deep mutation numbers were normalized by per
unit length (kb). Normalized values are ranked, and overall
survival was calculated using Kaplan–Meier analysis based on
TCGA-PAAD cohort. The result is shown as Kaplan–Meier
plot with P value from log rank test generated by the cBioPor-
tal ( 24 ). 

Integration of the SpliceAI and Pangolin scoring 

To perform scoring on the discovered variant list, hard filtered
and intersected VCF files were used. Scores of each variant
aggregated on their genes and maximum scores from both al-
gorithms have been taken. Genes that scored with higher than
0.1 one of the tools have been selected as possibly mis-splicing
related variants as it stated in their reference manual. SpiceAI
v1.3 and Pangolin have been used in our analysis with default
parameters with GRCh38 reference genome. 

PubMed annotation of identified genes from 

different approaches 

The role of specific genes as tumor suppressors and their rele-
vance to pancreatic cancer have been analyzed using PubMed
data through Entrez Python API (BioPython v-1.83) ( 25 ). Au-

https://www.ensembl.org/Homo_sapiens/Info/Index
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tomated PubMed queries have been done, identifying articles
that associate each gene with ‘tumor suppressor’ and ‘pancre-
atic cancer’ in their titles or abstracts related to the gene. The
outcomes are then aggregated into a DataFrame and visual-
ized in a heatmap to elucidate patterns of gene involvement in
tumor suppression and pancreatic cancer. 

Cell specific variant calling 

To perform single cell specific variant calling, bam files were
separated into chip- and sample-specific bam files. Separated
bam files were used for the variant calling pipeline, which was
applied to individual bam file as before, without the base qual-
ity recalibration step (BQSR) to be able to get more variants
possible per cell. Quality filtering was applied with the same
quality filters as mentioned in pseudo-bulk RNA variant call-
ing in the methods section. VCF files for each barcode were
used to collect barcode-specific mutations and visualize as a
mutation distribution plot using CogentDS UMAP functions.

Enrichment analysis of non-canonical (Deep) and 

canonical (SS-Prox) intronic variants 

Genes with high Intronic mutation numbers (Table 1 ) were
forwarded to over representation analysis (ORA) to identify
enriched pathways and GO terms using the gProfiler online
tool ( 26 ). Canonical and non-canonical intronic mutations
were separately analysed setting the P -value threshold to 0.05
under multiple correction method g:SCS. 

Identification of intron retention events from 

RNA-Seq data 

Intron retention analysis was performed using IRFinder 1.3.0
( 27 ). IRFinder calculates IR-ratios to measure IR level reflect-
ing the proportion of intron retaining transcripts. To compare
PDAC samples to normal tissue, we downloaded fastq files
from nine PDAC and nine healthy human pancreas samples
from NBCI GEO database (accession ID: GSE211398). These
were pre-processed using the same methods as described in
Bulk-RNA-Seq from primary PDAC. Tumor samples from
GSE211398 dataset were then analyzed using the IRFinder
pipeline to identify IR events. Intronic depth for all samples
normalized by CPM due to the library size variations between
the public data and CRU samples. Due to the different num-
ber of samples between the two dataset, weighted means of IR
scores were calculated to balance the variable sample sizes by
using 0.1 threshold among 80% of all samples. Normalized
intron depths were also used as further filtering to reduce the
number of identified possible false negative discoveries. 

Results 

Strategy for the identification of intronic variants 

affecting splicing in PD A C 

One of the most critical post-transcriptional mechanisms re-
programming transcriptional output and proteomic diversity
in cancer cells is the loss of splicing precision when remov-
ing introns from pre-mRNAs ( 28 ). Consequently, many mis-
spliced variants are instead targeted for nuclear degradation
or for nonsense-mediated mRNA decay (NMD) and thus, only
few annotated alternative isoforms correspond to the precur-
sors of the proteins mapped by large-scale proteomics studies
( 29 ). 
To investigate this mechanism, we applied a new pipeline 
using a full-length single nuclei RNA-seq (snRNA-seq) ap- 
proach to three primary PDAC tumors (TM16, TM27 and 

TM56) and matched tumor-derived preclinical PDAC models 
(i.e. organoids and subcutaneous patient-derived Xenograft,
PDXs). We then sought to determine pathogenic intronic vari- 
ants causing abnormal splicing in these patient samples (Fig- 
ure 1 A). All samples were part of a unique patient cohort re- 
cruited for the Clinical Research Unit 5002 ( https://gccc.umg. 
eu/ en/ cru-5002/ ). 

For our snRNA-Seq experiments, we used the ICELL8 plat- 
form previously established in our group connecting geno- 
type to phenotype in individual cells ( 16 ). In contrast to the 
chemistry used by droplet-based platforms (i.e. in 3 

′ -end ap- 
proaches), ICELL8 is based on the SMART full-length chem- 
istry allowing for the full read coverage of transcripts. No- 
tably, when single nuclei are processed with this platform 

and chemistry, a strong enrichment in pre-mRNA is ob- 
served, including comprehensive coverage of introns and ex- 
ons along these pre-mRNAs (Figure 1 A and Supplemental 
Figure S1 ). Furthermore, utilization of full-length chemistry 
allowed strong detection of intergenic and intronic sequences,
as well as of non-coding RNAs, especially long intergenic 
non-coding RNAs (lincRNAs) ( 16 ,30 ) as demonstrated in 

Figure 2 E. 
For the identification of intronic mis-splicing variants, we 

developed a variant-calling pipeline called ‘DeepVarSplice’ 
that combines (i) snRNA-seq data determining the variant’s 
position in the genome with (ii) bulk RNA-seq data mainly 
capturing mRNAs and thus, charting splicing events in our 
samples (Figure 1 B). 

The pipeline begins with a pseudo-bulk snRNA-seq variant 
calling analysis using the per-sample GATK method (Figures 
1 B ( 1–4 )), followed by an intersection of the individual find- 
ings to identify exact mutations present in all samples. The 
variants are then classified according to their genomic posi- 
tion considering intergenic, intronic and exonic regions us- 
ing the maf file (Mutation Annotation File). By filtering the 
intronic variants, the genes were normalized and ranked ac- 
cording to intronic mutation load. The intronic variants are 
then forwarded to two parallel branches of the pipeline. 

The first branch is set up for the investigation of these 
variants on the single cell level. Therefore, barcode-variant 
matrices containing the number of mutations for each gene 
(columns) and cell (rows) have been created to allow further 
transcriptional analysis related to the variants. 

Simultaneously, the second branch of the pipeline connects 
genes that exhibit intronic mis-splicing to pathogenic splic- 
ing events through the investigation of partial or total in- 
tron retention (IR) or pseudo-exon activation (PEA) using the 
IRFinder algorithm (Figure 1 B ( 5 )). Finally, the intron mutated 

genes from the snRNA data were merged with the intron re- 
tained genes from bulk RNA-Seq data. As an outcome, we 
highlight genes showing mis-splicing related intronic variants 
that contribute to malignancy and thus proposed as potential 
therapeutic targets in pancreatic cancer. 

To ensure the reliability of the variants detected by Deep- 
VarSplice, we conducted comprehensive whole-genome se- 
quencing (WGS) on two primary PDAC samples, namely 
TM27 and TM56. Our analyses encompassed gold-standard 

variant discovery, rigorous filtering, and benchmarking, uti- 
lizing both WGS and snRNA-Seq data, as depicted in 

Supplemental Figure S2 . Out of the 153 000 shared variants 
detected by DeepVarSplice (snRNA-Seq data) in the two pri- 

https://gccc.umg.eu/en/cru-5002/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
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A B

Figure 1. Strategy for the identification of intronic variants related to splicing in PD A C. ( A ) snRNA-seq using the ICELL8 platform and the SMART 
full-length chemistry allowing for full transcript coverage was applied to PD A C primary tumors (TM16, TM27 and TM56) and matched organoids and PDX 
lines. A total of nine 5184-nano w ell chips were performed (three for primary PD A C, three for organoids and three for PDX respectively and visualized in 
the UMAP. Finally, data from all nine nano w ell chips were merged. Bulk RNA sequencing was performed additionally for each of the samples. ( B ) 
DeepVarSplice variant calling pipeline combining snRNA-seq and bulk RNA-seq data determining intronic variant positions in the genome and intron 
retention e v ents. 1) Gold standard RNA-seq v ariant calling pipeline pre-processing; 2) sample-le v el v ariant calling; 3) combination strategies f or v ariant 
disco v ery (Shared-Combined); 4) Further filtering for RNA-editing variant removal; and 5) determination of shared intron retention events with weighted 
IR-ratio calculation between public and own PD A C samples. 
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ary PDAC samples, 127 000 (83%) were confirmed using
tringent criteria for variant calling in the WGS dataset. Both
ethods exhibited higher precision, with a Ti / Tv ratio of 2.3

or the snRNA-Seq data and 2.01 for the WGS data, thereby
ffirming the trustworthiness of the DeepVarSplice method. 

dentification of PD A C intronic variants using 

eepVarSplice on snRNA-seq data 

MAP visualization of single nuclei clustering from the pri-
ary PDAC tumors, organoids and PDXs (Figure 2 A) was

trongly influenced by the patient of origin of each sample.
o evaluate the consistency in transcriptomics and intronic
is-splicing variants, we merged data from all PDAC mod-

ls of each patient and regenerated separate UMAP plots for
M16, TM27 and TM56 (Figure 2 B). Then, by applying the
eepVarSplice pipeline (Figure 1 B) to this snRNA-seq data,
e observed that > 95% of the mutations we identified were

n non-coding sequences (i.e. in intronic or intergenic regions)
nd only ∼5% were found in protein-coding sequences. The
ost mutated genes at the level of introns included RBFOX1 ,
SMD1 , WWOX , CNTNAP2 and LRP1B and were notably

hared among PDAC tumors and models (Figure 2 C). 
To identify bona fide intronic variants, we determined the

i / Tv ratio in each primary tumor-, organoid- or PDX-derived
ataset. Interestingly, primary tumor data showed higher pre-
ision and a more realistic Ti / Tv ratio (2.18) in comparison
o organoid- and PDX-derived data (Figure 2 D). We therefore

ecided to focus on the three tumor-derived datasets for all  
ensuing analyses, which we complemented with bulk RNA-
Seq data generated for 24 primary PDAC tumors from the
CRU5002 cohort, as well as with public normal and tumor
pancreas tissues data (accession ID: GSE211398). 

In the end, variants shared between all three-tumor snRNA-
seq datasets amounted to ∼78 000 non-coding variants with
41 834 in introns, 25 449 in intergenic regions (IGR), 4390
in 3 

′ and 3882 5 

′ gene flanks, 610 in 3 

′ UTRs and 79 in 5 

′

UTRs (Figure 2 E). All shared variants detected in the primary
PDAC with QUAL > 30 is listed in Supplemental Table S1 .
Notably, 90% of these variants (69 488) were reported in the
dbSNP_RS database based on WGS data remarking the valid-
ity of the variant calling performed with the snRNA Seq data.
Moreover, the remaining 7926 intronic variants identified as
novel ones underscore the potential of snRNA-Seq datasets to
detect both validated intronic variants and novel ones, demon-
strating the added value of our approach. 

Of these, 98.82% ( n = 76 499) qualified as SNPs, 0.66%
( n = 510) as deletions, and 0.52% ( n = 404) as insertions.
Regarding the genomic annotation, most ( n = 36 412) are
mapped in protein-coding genes or lncRNAs ( n = 10 926) and
very few ( n = 121) in miRNAs (Figure 2 E and Supplemental 
Table S1 ). 

Classification and validation of intronic mis-splicing
variants based on location 

Next, to classify intronic variants we first performed a rank-
ing based on the number of variants detected per gene nor-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
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A C

B

D E

Figure 2. Identification of intronic variants using snRNA-seq data. ( A ) UMAP plot for three primary PD A C tumors and corresponding model’s organoids 
and patient-derived Xenograft, PDXs (TM16, TM27 and TM56). ( B ) UMAP plot showing clustering by patients (primary PD A C and models) for TM16, 
TM27 and TM56. ( C ) Pie charts of the three PD A Cs (tumor, organoids and PDX) showing percentage of exonic and intronic mutations (above) and bar 
charts represent number of top intronic mutated genes (below). ( D ) Ti / Tv ratio of the variant analysis of primary PD A C and their corresponding model’s 
organoids and patient-derived Xenograft, PDXs (TM16, TM27 and TM56). ( E ) Shared intronic variants and their classifications among all primary PD A C: 
TM16, TM27 and TM 56. Number of totals disco v ered and quality filtered intronic mutations from each sample (left), distribution of variant types among 
shared (78K) intronic mutations (middle), pie charts showing the distribution and location of the intronic variants in intronic, intergenic and coding 
regions, and a pie chart showing the intronic variants detected on coding and non-coding transcripts (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

malized by the length and number of introns in each gene
(top 20 visualized in Supplemental Figure S3 ). Then, to link
intronic variants to mis-splicing, we stratified mutations lo-
cated 1–2 and 3–20 nt away from the nearest exon-intron
junction, which we classified as donor / acceptor sites (SS) and
branchpoint-proximal regions (BPs), polypyrimidine tracts
(PPTs). All other variants > 20 nt are categorized as ‘deep
intronic’ 5 . (see Table 1 and Supplemental Table S2 ). Based
on these indexes, many genes showed a high number of deep
intronic variants, and some of these were reported as tumor
suppressors expressed in specific tissues or only in tumor cells,
e.g. LRP1B , CSMD1 , WWOX , FHIT , MTUS2, MAPK4 and
MAP3K14 ( 31–38 ) ( Supplemental Table S2 ). The most promi-
nent of these was RBFOX1 and showed 208 deep intronic
variants. The RBFOX family of RNA-binding proteins is well
known to regulate alternative splicing (AS) ( 39 ,40 ). Recently,
RBFOX2 was reported to modulate a metastatic AS signature
in pancreatic cancer ( 41 ). 

We next examined the fraction of intronic variants over
all variants at each position (Figure 3 A). 99.6% of them
were located deep in introns. Variants located in the prox-
imal region are 0.32% of the total, with just 0.02% near
SSs. By conducting functional network analysis on the key
genes identified as mutated in the splice site (SS), proximal,
and deep intronic regions outlined in Table 1 , we discov-
ered connections among genes implicated in mRNA capping
( HNRNPH1 , INTS10 , TBPL1 , POLR2L , SNRNP35 ) ( 42 ),
as well as in the regulation of transcription via histone methy-
lation and H3K4-specific histone methyltransferase activity 
( SMYD3 , KMT2C , JMJD1C , ASH2L ), as illustrated in Fig- 
ure 3 B. Pathway enrichment analysis carried out on genes 
mutated in the SS and proximal regions revealed enrichment 
in RNA polymerase II transcription elongation (REA C:R - 
HSA-75955) and the TP53 regulates transcription DNA re- 
pair genes pathway (REA C:R -HSA-6796648) as depicted in 

Figure 3 D. Additionally, gene ontology analysis conducted 

exclusively on genes mutated deep within introns demon- 
strated enrichment in histone H3K4 trimethyltransferase ac- 
tivity (GO:0140999) and pathways associated with adenoid 

cystic carcinoma (WP:WP3651), also shown in Figure 3 D. 
Finally, visualization of the distribution of intronic vari- 

ants in top mutated genes WWOX , SMYD3 , JMJD1C and 

NAV ( Supplemental Figure S1 ) exemplifies read coverage 
from snRNA-seq and bulk RNA-seq in primary PDAC tu- 
mors and how these can be superimposed to evaluate splicing 
events. 

Notably, DeepVarSplice identified 1132 genes showing a 
substantial density of intronic variants that could potentially 
be linked to abnormal splicing. These genes were selected 

based on the modified Z -score method. This method is partic- 
ularly apt for the normalized variant numbers dataset, which 

exhibits a non-normal distribution. The modified Z -score uses 
the median and the Median Absolute Deviation (MAD), pro- 
viding robustness against skewed distributions (Figure 3 A). 

To validate our findings, we also employed recently devel- 
oped deep learning based tools, specifically (i) Pangolin ( 43 ) 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data


NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 2 7 

BA

C D

Figure 3. Selection and classification of genes exhibiting highest numbers of intronic variants. ( A ) Mutation percentages of all disco v ered mutations 
based on the variant locations on the left (SS, Prox, Deep) log 2 converted counts of each group represented in y-axis, base-pair distances for SS and 
PROX regions and locational percentages for intronic region in x-axis. ( B ) Protein network representation with nodes colored according to the location of 
identified mutations. ( C ) Performance of deep learning-based methods for mis-splicing detection: Validation of DeepVarSplice with SpliceAI and 
Pangolin. ( D ) Pathw a y Enrichment Analysis of SS and Prox Intronic Mutations (top) and GO Enrichment Analysis Deep Intronic Mutations (bottom) using 
the g:Profiler online tool. 
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nd (ii) SpliceAI ( 44 ) designed for detecting potential intronic
ariants causing pathogenic splicing (Figure 3 C). 

Out of the 78000 variants originally identified
 Supplemental Table S1 ), 295 variants affecting 107 genes
ere scored as potentially pathogenic by at least one of these

ools (Figure 3 C). Through a direct comparison involving
angolin, SpliceAI, and DeepVarSplice, we identified 34
enes depicted as tumor suppressors in pancreatic cancer in
 Supplemental Figure S4 ). One explanation for the height-
ned sensitivity of variant detection using our approach is
ts ability to access variants deep within introns from the
ntronic regions of pre-mRNAs present in sn-RNA data.
n fact, a limitation of SpliceAI and Pangolin is their op-
imization primarily for variants located within 50 bp on
he splice site defined as SS and proximal intronic regions,
ffecting canonical splicing. Furthermore, it’s important to
cknowledge that both Pangolin and SpliceAI were developed
redominantly using bulk-RNA sequencing methods, leading
o potential gaps in the dataset due to the absence of intronic
equences. This limitation highlights the advantage of our
pproach in capturing a more comprehensive spectrum of
ntronic variants. 

ranscriptional regulation relates to mis-splicing in 

asal-like tumor cells 

e performed transcriptional subtyping of single tumor nuclei
nto the more aggressive / drug-resistant ‘basal-like’ (BL) or the
etter prognosis-associated ‘classical’ subtype (CLA) using a
anking markers method described previously on snRNA-seq
ata ( 18 ). The distributions of each subtype in each tumor
showed BL cells highly represented in primary tumors, and
partially in matched PDXs. In contrast, CL cells predominated
in our organoid models (Figure 4 A). It is important to note
that the resolution of our analysis of these patient-matched
models PDX and organoids undergo quite some selection that
can change a substantial part of their transcriptional pro-
files. Specifically, tissue samples prepared for organoid gen-
eration are only small parts of the whole tumor. The higher
heterogeneity of PDAC primary tumors questions the reliabil-
ity of substituting small pieces for whole tumor tissues espe-
cially replicating the complexity of the patient-specific envi-
ronment, e.g. tumor stroma and tumor types possess distinct
immune components and different cell quantities affecting the
cell composition in the early stage of tumoroid cultures. 

Next, we performed differential expression analysis (DEG)
between BL and CL tumor cells, where we identified a
few hundred markers for both subtypes with absolute
log 2 FC > 0.5 and P adj < 0.05 ( Supplemental Table S3 ) and
visualized the most prominent ones in UMAP plots (Figure
4 B). 

Tumor heterogeneity was assessed by evaluating cell types
using snRNA-seq from all models at hand. As expected,
primary tumors exhibited the highest heterogeneity as re-
gards cell type composition while organoids mostly con-
tained ductal-like cells (Figures 5 A-C). Strikingly, RBFOX1 ,
CSMD1 and CNTNAP2 , our topmost intronic mutated genes
(Figures 1 B and 4 C) appear to be simultaneously the genes
most upregulated in BL cells (Figure 5 A). At the same time,
the markers found in CL cells have already been described as
biomarkers for pancreatic cancer: MALA T1 , NEA T1 , CEA-
CAM6 or MUC1 ( 45–48 ). For the lncRNA NEAT1 , two novel

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
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Table 1. Classification of high intronic-mutated genes based on variant 
location 

Gene_ID 

Number_ 
of_Total 

Number_ 
of_SS 

Number_ 
of_Prox 

Number_ 
of_Deep 

RBFOX1 208 0 0 208 
CSMD1 125 0 0 125 
WW O X 80 0 0 80 
BAGE2 75 0 0 75 
SMYD3 64 0 0 64 
MTUS2 61 0 0 61 
CDH13 58 0 0 58 
LRP1B 57 0 0 57 
MAGI2 57 0 0 57 
PTPRN2 52 0 0 52 
DLG2 52 0 0 52 
EXOC4 50 0 1 49 
JMJD1C 48 0 0 48 
LINC02055 48 0 0 48 
NRG1 47 0 0 47 
SLC30A10 47 0 0 47 
SNX29 47 0 1 46 
FHIT 47 0 0 47 
NRXN3 45 0 0 45 
HHAT 45 0 0 45 
ALK 44 0 0 44 
PRKN 43 0 0 43 
NOS1AP 43 0 0 43 
NAV2 44 0 1 43 
CNTNAP2 42 0 0 42 
KMT2C 41 0 0 41 
THSD4 41 0 0 41 
MAPK4 6 0 0 6 
GNAQ 15 0 0 15 
BCAS3 31 0 1 30 
OAS1 4 11 0 -7 
SUPT5H 3 1 0 2 
ASAH1 3 1 1 1 
POU6F2 14 1 0 13 
ACTG1 5 2 4 -1 
MDM2 4 1 0 3 
ASH2L 3 1 0 2 
EPHB6 1 5 3 -7 
C12orf43 1 1 1 -1 
RHNO1 2 1 0 0 
HNRNPH1 1 0 10 -9 
MGAT5B 10 0 7 3 
CARD8 1 0 9 -8 
MACF1 23 0 5 18 
COBLL1 11 0 6 5 
MFF 6 0 5 1 
MPHOSPH9 22 0 5 17 
FOXRED1 1 0 5 -4 
TBPL1 1 0 3 -2 
POLR2L 2 0 1 1 
ELOB 1 0 2 -1 
TM4SF5 5 0 4 1 
RPL26L1 4 0 5 -1 
SNRNP35 1 0 1 0 
INTS10 6 0 3 3 
RPL27 3 0 2 1 
DDR2 18 0 2 16 
ADAMTS12 12 0 1 11 
BCAT1 8 0 3 5 

Classification of highly intronic mutated genes based on the variant location: 
donor and acceptor splice sites (SS, 1–2 bp away from the nearest exon-intron 
junction); proximal site (3–20 bp away from the nearest exon-intron junction), 
and deep intronic ( > 20 bp away from the nearest exon-intron junction). Total 
number of intronic mutations based on genes described in Supplemental Table S2 . 

 

 

 

 

 

 

 

 

 

 

 

mutations are reported here for the first time ( Supplemental 
T able S1 ). T aken together, CL cells and models are charac-
terized by less abundance and relevance of intronic variants
according to the output of our pipeline, thus suggesting that
mis-splicing mechanisms are linked to the aggressiveness of
BL tumors (Figure 5 D). 
Contribution of intronic mis-splicing variants to 

pathogenic splicing and poor PD A C prognosis 

In general, mis-splicing affects the regulation of genes (up- or 
downregulation) or generates new isoforms in normal and tu- 
mor tissues ( 49–51 ). However, our focus here is on the iden- 
tification of potentially pathogenic splicing events in PDAC.
It is important to note that the definition of pathogenicity in 

this study is based on comparisons to human references (via 
SNP calling) or to non-tumor pancreatic tissues when assess- 
ing mis-splicing findings. Nevertheless, we acknowledge that 
conclusive assertions regarding pathogenicity necessitate the 
inclusion of functional studies. 

To determine intronic retention (IR), we employed the 
IRFinder tool by intersecting the findings of bulk RNA-seq 

from 24 primary PDACs recruited for CRU5002 and 9 public 
PDACs (GSE211398). To ensure robustness and significance,
we included additional healthy and tumor pancreas tissues 
sourced from credible databases to visualize and verify the 
IRFinder results (SRA and GEO). A common challenge in uti- 
lizing public transcriptomic (bulk RNA-Seq) data for this re- 
search field is the limited sequencing depth, which often hin- 
ders precise IR event identification. To address this limitation 

proactively, we sequenced 24 primary PDAC samples from the 
CRU 5002 with higher depth, guaranteeing a minimum of 
100 million reads per sample, specifically for splicing inves- 
tigations resulting on a total of 2489 shared IR events (listed 

in Supplemental Table S4 ). 
Next, we take a closer look into those genes found previ- 

ously to be (i) most enriched for intronic variants (Table 1 ) 
and (ii) simultaneously found overexpressed in BL tumor cells 
( RBFOX1 , CSMD1 and CNTNAP2 from Figures 1 B and 4 C).
All three are long genes with many (mostly small-, < 100 nt,
and micro-, < 60 nt) exons, and with relatively small introns.
Moreover, all intronic variants discovered within these genes 
were situated deep within the intronic regions, establishing 
an association with non-canonical splicing regulation. Among 
these genes we have made a noteworthy discovery of combina- 
torial abnormal splicing ( 5 ) showing multiple splicing events 
within a single gene. For example, we reported a combina- 
torial splicing in a small portion of the CSMD1 gene (chr8: 
3187000–3202000) that showed an unusual exon skipping 
in the middle of the exon (chr8: 3189980–3190067) followed 

by two PEA events (chr8: 3197495–3197578 and 3200391–
3200466; Figure 6 A). 

To assess potential non-canonical splicing mechanisms trig- 
gered by deep intronic variants in the CSMD1 gene, we con- 
ducted a search for RNA binding motifs near the observed 

mis-splicing events. The presence of these variants generates 
motifs, such as SR-protein binding sites, leading to the ac- 
tivation of introns (PEA). Following motif analysis for SR- 
protein binding sites, we identified two intronic variants in our 
snRNA-seq data creating two de novo SRSF2 motifs ( 52 ): i.e.
C > G substitution: CA C GCT > CA G GCT; p.3194680 and 

C A C GAA > C A G GAA; p.3196860 (Figure 6 A). This suggests 
that intronic variants are located deep in the intron and cre- 
ating additional SR binding sites that may synergistically con- 
tribute to activate PEA events. To this day, few examples of 
PEA have been reported as caused by deep intronic mutations 
without directly changing a splice site sequence ( 53 ,54 ). 

In addition to genes with significant mutations deep within 

introns, our findings include other genes exhibiting high mu- 
tation rates in the SS and adjacent proximal intronic regions.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae057#supplementary-data
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A B C

Figure 4. Tumor subtype and marker identification at the single-nucleus le v el. ( A ) UMAP plot of single cells from the three patients TM16, TM27 and TM 

56 (colored by tumor model (left) and by inferred tumor subtype on CL and BL tumor pancreatic cells (right). ( B ) UMAP plot showing the gene expression 
of the top transcriptional markers comparing CL vs BL cells in primary PD A Cs, organoids and PDXs. ( C ) UMAP plot showing mutated cells (intronic 
v ariants) f or CNTNAP2 , CSMD1 and RBFOX1 in primary PD A Cs. 

A B

DC

Figure 5. Identification of markers for classical-like (CL) and basal-like (BL) tumor cells. ( A ) Heatmap showing gene expression of the top 15 BL and CL 
mark ers o v ere xpressed in all PD A Cs: ‘T’ primary PD A Cs, ‘O’ organoids and ‘P’ PDXs. Venn diagrams illustrate the o v erlap of mark er genes betw een 
tumor PD A C patient samples. ( B ) Dot plot sho wing e xpression of the mark ers in each of the pancreas cell subtypes. Circle siz e is proportional to the 
percentage of cells in each cell type expressing the marker and circle color represents the average marker gene expression in the cell type. ( C ) UMAP 
plots by patient showing clusters annotated to specific cell subtypes. The violin plots below represent prominent CL tumor pancreas markers across cell 
subtypes. ( D ) Table showing the number of intronic mutations of the top CL and BL marker genes. 
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A

B

Figure 6. Combinatorial splicing e v ents related to intronic variants in PD A C. ( A ) Partial e x on skipping with pseudo-e x on activ ation in CSMD1 (chr8: 
31870 0 0–32020 0 0). 1: partial e x on skipping in CSMD1 (chr8: 3189980–3190067); 2: pseudo-e x on activ ation in CSMD1 (c hr8: 31 97495–31 97578); 3: 
pseudo-e x on activ ation in the CSMD1 (chr8: 320 0391–320 0466). ( B ) Four combinatorial IR e v ents in HNRNPH1 (Chr5: 1 79613890–1 79623583). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One example is HNRNPH1 , reported by our pipeline for car-
rying high number of intronic variants in proximal regions
(Table 1 ). For HNRNPH1 we detected combinatorial splic-
ing involving four IR events (Figure 6 B). HNRNP nucleopro-
teins are known to associate with pre-mRNAs in the nucleus
and influence their processing and other aspects of mRNA
metabolism and transport ( 55 ). 

Several transcripts encoding members of the Integrator
complex ( INTS10 , INTS3 , INTS11 ) were affected by multiple
IR events (see INTS3 examples in Figure 7 C and D). As the
Integrator complex interacts with the C-terminal domain of
RNA polymerase II to allow processing of U1 and U2 small
nuclear RNAs, these splicing alterations could indirectly af-
fect splicing in PDAC. Closer inspection of the two IR events
in INTS3 revealed a G-rich motifs function as intronic splicing
enhancers. These give rise to partially overlapping recognition
motifs for SRSF1 and SRSF2 (Figure 7 E) and could function
synergistically as splicing enhancers to compensate for weak
PPTs tracts ( 56 ). The high intronic mutation load we uncov-
ered using snRNA-seq suggests that the occurrence of such
events at the single-cell level might be more frequent than pre-
viously presumed ( 54 ). 

Finally, we assessed the clinical outcomes and significance
of intronic variants associated with mis-splicing in pancre-
atic cancer by combining the sn-RNA-seq from the PDACs
with the bulk RNA-Seq data from the PDACs (sourced from
the CRU5002 and public data). The scatter plot depicted in
Figure 7 A illustrates shared intronic retention (IR) events,
represented in blue, between the bulk RNA-Seq data from
the CRU5002 and public datasets. Additionally, genes with a
high mutational rate in introns (SS-Proximal and deep), iden-
tified in the sn-RNA-seq data from primary PDACs using our
pipeline, are shown in green. Consequently, from this analysis,
we identify and highlight a subset of 22 candidates. Notably,
survival analysis performed with the TCGA-PAAD cohort and 

generated by the cBioportal for the 22 genes revealed their sig- 
nificant association with poor prognosis in PDAC (Figure 7 B).
Six of these genes ( METTL3 , HNRNPH1 , INTS3 , ELOB ,
EHMT1 and KMT2C ) are linked to the GO and pathway 
enrichment of the most mutated intronic genes (SS, proximal 
and deep variants) related to RNA polymerase II transcrip- 
tional elongation, the TP53 regulates transcription DNA re- 
pair genes and he histone H3K4 trimethyltransferase activity 
previously described in Figure 3 A and D. 

Discussion 

The current study proposes a new strategy for the investiga- 
tion of intronic mis-splicing variants and their role in pro- 
moting pathogenic splicing in PDAC. In contrast to prior 
investigations utilizing whole-genome sequencing and tran- 
scriptomic data, our approach employs a comprehensive full- 
length snRNA-seq method, offering high-resolution identifica- 
tion of intronic variants. For this new method we developed a 
comprehensive pipeline, the DeepVarSplice that takes advan- 
tage of integrating multi-omics information e.g. variant call- 
ing, transcriptomics and splicing within a cell and thus offers 
a more holistic view of the underlying molecular mechanisms 
in complex diseases. 

Simultaneously, we address the challenges associated with 

DeepVarSplice in handling low-covered regions, non-uniform 

read distribution and thus, increased false positive find- 
ings. To overcome these limitations, we employed gold stan- 
dard methodologies, specifically conducting whole-genome 
sequencing to validate our SNP calling performances using sn- 
RNA-seq data ( 57 ). Additionally, we utilized well-established 
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E

C DA

B

Figure 7. Analysis of IR related to intronic variants in PD A C. ( A ) Scatter plot of IR ratios from CRU5002 bulk RNA-seq data with their corresponding 
normalized read depths. Filtered and shared IR events between public PD A C and CRU-5002 data (blue). IR e v ents of high intronic mutated genes 
(Total-SS-P ro ximal; green). List of genes exhibiting IR events related to high intronic mutations (right). ( B ) Kaplan–Meier survival analysis generated via 
the cBioPortal shows overall survival time of PD A C patients with or without mutations in the top 22 IR genes shared by all three tumors. ( C ) Region of 
high percentage IR e v ent detected b y IRFinder f or the INTS3 gene shared in CR U and public PD A C (Mean IRraio: 0.45). ( D ) Second IR e v ent in the INTS3 
gene (mean IRraio: 0.25). ( E ) SR binding motifs identified in INTS3 . Two CA GCA GG binding sites for SRSF1 and one CTCCCGG motif for SRSF2. 
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rtificial intelligence tools (AI tools), including Pangolin and
pliceAI to affirm our results concerning intronic variants
ssociated with potential pathogenic splicing. Notably, both
angolin and SpliceAI exhibit limitations when assessing in-
ronic variants deep within introns, as they were primarily
ptimized for variants in the splice site (SS) and proximal re-
ion (within 50 bp of the splice site). Notably, these tools were
riginally developed using bulk RNA sequencing datasets. For
he first time in this study, we employed both tools using our
ull-lenght sn-RNA-seq approach. Consequently, our Deep-
arSplice pipeline demonstrated enhanced sensitivity in in-

ronic variant detection, capitalizing on the presence of pre-
RNAs in sn-RNA data and achieving full coverage of both

ntronic and exonic regions within a gene. Lastly, it’s crucial to
mphasize that, for both splicing analysis and variant detec-
ion using sn-RNA-seq approaches, a deep sequencing strat-
gy is vital to enhance sensitivity and reliability of findings.
onsequently, we conducted 300 to 400K median reads per
ucleus for snRNA-Seq and 100 to 200 million reads per sam-
le, paired-end, with 300 cycles for bulk RNA sequencing. 
In this study, we have identified a signature of mis-spliced

enes in PDAC primary tumors, linking intronic retention
vents to potential pathogenic intronic mutations. Our find-
ngs reveal a correlation between mis-splicing and BL cells
n pancreatic cancer, highlighting BL markers present in pri-
ary PDAC tumors and their corresponding models, PDX and
rganoids. Despite the observed high tumor heterogeneity in
DAC primary tumors to the models, there is a notable con-
istency in our findings across all PDACs investigated, evident
n both transcriptional and mutational analyses, as depicted
in Figures 3 C and 5 C, respectively. These results align with
a recent publication proposing a splicing signature specific to
BL cells, thereby distinguishing PDAC subtypes and suggest-
ing their potential utility as biomarkers ( 13 ). 

Our approach delivers extensive information on the
landscape of primary transcripts, especially near potential
pathogenic splicing events. Thus, we can begin to decipher the
complexity of RNA sequences acting as suppressors or activa-
tors of splicing in the context of PDAC. Recent high through-
put characterization of exon splicing enhancer and silencer
(ESE and ESS) motifs has indicated that pseudo-exons can be
discriminated from genuine exons on the basis of their low
ESE and high ESS contents ( 58 ,59 ). Moreover, these motifs
can be found both in exons and introns, and function via the
recruitment of sequence-specific RNA-binding proteins that
can dictate splicing choices ( 60–62 ). Our analyses suggest that
splicing dysregulation in PDAC can be linked to non-canonical
sequence signals, i.e. to intronic variants affecting RNA motifs
located deep in introns. For instance, we found several mo-
tifs for SR RNA-binding proteins (e.g. SRSF1 and SRSF2), en-
riched for GGG and CCC, distributed in the SS-proximal re-
gions of introns and, in some cases, exhibiting extensive over-
lap (Figure 7 ) ( 52 ,62 ). Although RNA-binding proteins like
SR proteins bind to RNA with high sequence specificity, it is
difficult to obtain well-defined consensus motifs for each of
them ( 52 , 61 , 62 ). However, cooperation and competition be-
tween the SRSF1 and SRSF2 proteins have been reported in
the regulation of alternative splicing events, which are related
to synergistic and compensatory interactions with target RNA
( 49 ). Still, the exact mechanism by which these variants affect
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the splicing machinery, and its downstream choices remains to
be dissected, and very few examples of deep-intronic disease-
causing mutations have been described to date ( 53 ,54 ). 

The complex nature of splicing events and their regulation
necessitates the development and implementation of new ap-
proaches to uncover nuanced relationships between mutations
and splicing choices. We described a pseudo-bulk variant-
calling pipeline, the DeepVarSplice exploiting dense and full-
length coverage of snRNA-seq datasets to detect putatively
pathogenic deep intron variants and link them to mis-splicing
events occurring in PDAC tumors, while also gauging cell het-
erogeneity. As our method generates a multidimensional out-
put that typically serves as the foundation for machine learn-
ing models (ranging from Support Vector Machines to Con-
volutional Neural Networks), we envisage a near-future com-
bination that would vastly improve our understanding of the
combinatorial code regulating splicing choices in the context
of cancer. 
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Omnibus, Bulk RNA-Sequencing GSE228844 and snRNA-
Sequencing GSE229007. Any other relevant data is available
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github.com/ UKHG-NIG/ DeepVarSplice ) and Zenodo ( https:
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