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Disability is common following joint injury and/
or surgery, including anterior cruciate ligament 
ruptures and reconstructions,3,43,49,67,76 meniscectomy,71 

osteoarthritis,15,72 total knee arthroplasties,4,32 acute ankle sprain,8 
and chronic ankle instability.16,45 Neuromuscular alterations 
following ankle and knee injuries may play a role in altering 
functional performance, potentially contributing to disability in 
different populations.12,55

Neuromuscular alterations following joint injury represent 
complex clinical impairment that can manifest as inhibition53,54 
or abnormal facilitation53 of uninjured musculature surrounding 
an injured joint. This neural response likely has 2 major 
physiologic purposes: (1) decreasing excessive loads around an 
injured joint to protect against further injury30 and (2) providing 
compensatory motor strategies for ambulation and maintenance 
of upright stance in the presence of muscle inhibition.22 Joint 
protection and the ability to generate compensatory movements 

are both important acute responses to lower extremity joint 
injury. Interestingly, some people never regain preinjury 
neuromuscular function,80 which leads to prolonged alterations 
in neuromuscular muscle function and extremity movement.18 
These changes in neuromuscular function contribute to altered 
biomechanics, which may be an important factor in long-term 
functional outcomes following lower extremity joint injury.55,58,66 
While neuromuscular alterations can occur at any joint in 
the body, this review focuses on neuromuscular alterations 
surrounding the knee and ankle joints.

Current Hypotheses Regarding 
Neural Alterations to Joint Injury

Neural alterations following joint injury are likely a result of micro- 
or macrotrauma to joint structures.9,25,78 The joint injury or effusion 
excites a variety of receptors, including pacinian corpuscles, 
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Ruffini fibers, Golgi tendon organs, and free nerve endings, 
which are located in and around human joints.33 These receptors 
relay sensory information from joints to the central nervous 
system.33 The neuromuscular dysfunction of the uninjured 
musculature surrounding an injured joint may be a result of 
arthrogenic muscle response53,54: a protective mechanism used 
to manage forces around the injured joint. These neuromuscular 
alterations may be resistive to traditional therapy29,61 and a factor 
in the development of further joint degeneration.55

The contributions of pain to neuromuscular responses to 
joint injury are not fully understood.20,47,62 Both pain and 
mechanoreceptor function alter muscle excitability.25 Joint pain 
can modify muscle function independently of joint injury,20 and 
joint effusion seems to alter muscle function independently 
of pain.22,54 Quadriceps muscle function during stair ascent 
has been affected by knee pain induced by a hypertonic 
saline injection into knee joints of healthy participants.20 
This suggests that pain can alter muscle function without 
injury. In contrast, decreased quadriceps spinal reflexive 
excitability21,22,53,54 and altered neuromuscular control57,79 have 
been observed following a nonnoxious knee joint effusion, 
suggesting that inhibition can be initiated independent of 
pain. Artificial joint effusions that generate very little pain can 
cause a significant neuromuscular response at the knee53,54 
and ankle.53 Additionally, following intervention, changes in 
muscle activation and pain occur independent of each other,62 
suggesting that these clinical impairments may be initiated by 
different neural pathways.

Neuromuscular Alterations 
Following Joint Injury and The 
Potential Impact on Physical 
Function and Disability
Central Nervous System Pathways

Movement relies on 2 major nervous system pathways: spinal 
reflexes and voluntary excitation descending from the motor 
cortex.33,70 The function of these neural pathways dictates the 
ability of muscles to contract in the periphery.

Spinal Reflex Pathway

Spinal reflexes can be studied with a joint effusion 
model.22,24,26,52-54 Simulated effusion of the knee joint causes 
almost immediate decreases in quadriceps spinal reflexive 
excitability.22,24,26,53,54 Inhibitory mechanisms can influence 
sensory signals in the central nervous system via pre- or 
postsynaptic inhibition.53,54 Presynaptic inhibition helps control 
movement,33 through the modulation of the afferent signal 
by using a third neuron that decreases neurotransmitter 
released by afferent nerves synapsing on interneurons in the 
central nervous system.28,54 The amplitude of the excitatory 
postsynaptic potentials correlates with the amount of 
presynaptic inhibition.28 Conversely, postsynaptic inhibition is 
in part modulated by Renshaw cells, responsible for decreasing 
activation of involved alpha motor neurons.28

Gamma (γ) motor neuron deficits following injury may 
indirectly affect muscle activation.37-39 The γ motor neuron 
system regulates the length of intrafusal muscle spinal fibers 
and functionally dictates the sensitivity of the stretch reflex.33 
Therefore, desensitized muscle spindles may alter sensory 
signals propagated to the central nervous system.39 Diminished 
quadriceps γ motor system function has been found with 
anterior cruciate ligament deficits38 and reconstructions.37 These 
γ motor deficits can occur bilaterally following unilateral knee 
injury.39

Ankle joint effusion affects spinal reflexive excitability of 
the anterior tibialis, fibularis longus, and soleus.53 Acute lateral 
ankle sprains (24-72 hours postinjury) produce abnormal 
facilitation of the soleus and inhibition of the anterior tibialis 
to position the ankle in plantar flexion.36 Patients with 
chronic ankle pathology, such as functional ankle instability, 
demonstrate decreased soleus and fibularis longus activation.46

Cortical Pathways

Transcranial magnetic stimulation (TMS) allows for 
evaluation of cortical pathways using an exogenous magnetic 
stimulus applied over cortical neurons to elicit an evoked 
potential, which is measured with electromyography in the 
corresponding peripheral muscle.70 Altered cortical control 
of the quadriceps has been demonstrated following anterior 
cruciate ligament injuries19 and in those with joint pain.51 
Cortical excitability may be upregulated following joint injury 
in surrounding musculature.51 While the functional outcome 
of these alterations remains unknown, it is possible that 
these increases in cortical excitability may be related to a 
compensatory neuromuscular strategy used in the presence of 
a joint injury.

Voluntary Activation and Muscle Strength

Voluntary muscle performance is determined by motor unit 
recruitment and firing rate, which is potentially influenced 
by both spinal and cortical pathways.34,75 These deficits in 
voluntary quadriceps activation have been found bilaterally 
following unilateral injury,60,81 making it difficult to delineate 
if these neuromuscular alterations are a result of joint injury 
or a predisposing factor to joint injury. Decreased voluntary 
quadriceps activation in combination with muscle weakness 
predicts disability in patients with knee osteoarthritis.12 
Voluntary quadriceps activation deficits are common in patients 
with acute knee injury17 or surgery, as well as in patients with 
chronic knee osteoarthritis.60

The relationship between volitional quadriceps activation and 
strength is complicated. While a positive correlation between 
voluntary activation and muscle strength exists,40 muscle 
atrophy is likely not the sole determinant of strength deficits 
following joint injury.59 Strength deficits exist in stabilizing 
musculature around the ankle2 and proximal muscles of the 
hip13 following lateral ankle sprains. Increased voluntary 
quadriceps activation in patients with chronic ankle instability 
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may be caused by neural facilitation due to decreased muscle 
function around the ankle.

Biomechanical and Functional Performance 
Changes Related to Neuromuscular Alterations

Compensatory motor strategies may be a product of altered 
neuromuscular function.58,79 Artificial knee joint effusions 
facilitate reflexive excitability of multiple muscle groups, 
including the hamstrings79 and soleus musculature,21 which may 
have a dramatic influence on functional movement. Decreased 
knee flexion angles have been found in those with effused 
knees when landing from a jump.58 Decreased knee angles 
during the stance phase of gait6,42 may be a consequence 
of the inability of the quadriceps muscles to eccentrically 
contract. Additionally, external knee flexion moments are 
decreased during the stance phase of gait in those with knee 
osteoarthritis.42 Quadriceps dysfunction following acute knee 
injury may be a factor in the risk of developing posttraumatic 
osteoarthritis, as weakness and/or inhibition likely produces 
irregular force attenuation at the knee joint.55,65 Additional 
alterations in performance, specifically balance deficits1 and 
gait abnormalities,11 are common in patients with ankle sprains.

Theoretical Clinical Framework 
and Potential Limitations

Neuromuscular alterations following joint injury at the knee 
and ankle are linked to biomechanical or functional deficits 
present in patients after knee and ankle injury. This model 
focuses on neural influences and does not take into account 
factors such as body weight, age, or morphologic changes 
within the muscle, which may also predict muscle changes.

Treatment Options for 
Neuromuscular Deficits

Resistance training alone may not be sufficient when 
neuromuscular deficits are present.27,57 Conventional quadriceps 
strengthening alone will not increase quadriceps activation 
in those with activation deficits.61 Therefore, attempting to 
traditionally strengthen a muscle may not influence the central 
nervous system.62,63 Currently, there seem to be 3 potential 
points in the nervous system at which therapeutic interventions 
may be able to target neuromuscular deficits: motor cortex, 
spinal reflexive pathways, and inhibited muscle.

Increasing Cortical Motor Excitability

Transcranial magnetic stimulation (TMS) can stimulate areas 
on the motor cortex that consequently excite muscles in 
the periphery.70 A single pulse of TMS during a maximal 
quadriceps contraction superimposes twitches in the knee 
extensors.50 TMS can excite the quadriceps beyond voluntary 
effort after meniscectomies.14 While TMS shows some potential 
to improve cortical motor excitability, integrating TMS 
treatment into clinical practice may be a challenge due to high 
equipment costs and needed expertise.

Electromyographic biofeedback is used with therapeutic 
exercise after knee joint injury to target decreasing cortical 
stimuli.73 Biofeedback may increase muscular strength 
and neuromuscular control by improving motor unit 
recruitment7,41,44 and/or optimizing firing rates.

Targeting Spinal Reflex Pathways

The goal of modality use is to increase afferent stimuli around 
the injured joint that can be excitatory to the central nervous 
system.62 Excitatory afferent stimuli may increase motor 
neuron response. Transcutaneous electrical nerve stimulation 
(TENS) may return quadriceps reflexive excitability to pre-
effusion levels26 and decrease presynaptic inhibition31 known 
to modulate arthrogenic muscle responses.54 This increase 
in reflexive excitability may activate the quadriceps within 
a single 45-minute treatment in tibiofemoral osteoarthritis.62 
TENS applied during therapeutic exercise and activities of daily 
living may improve voluntary muscle activation and strength.61 
These improvements in voluntary activation were sustained 
following the removal of TENS.62 TENS is a reasonable 
intervention option for increasing quadriceps spinal reflexive 
excitability, voluntary activation, and muscle strength. Walking 
speed and gait cadence are increased following a 4-week 
TENS and exercise program.5 Conversely, TENS and quadriceps 
strengthening did not alter sagittal plane moments and knee 
joint angles during gait.65

Current clinical guidelines utilize TENS directly over the 
injured joint, usually around the patella, to minimize contact 
with adjacent musculature.63 A continuous strong submotor 
sensory stimulus over the joint is currently recommended.26,63 
Increased voluntary activation has been seen using a biphasic, 
pulsatile current (~150 Hz, 150 microseconds) during strength 
training sessions and activities of daily living (~8 hours per 
day) over a 4-week period.61,62

Joint cooling may increase motor excitability of surrounding 
musculature by exciting thermoreceptors around the injured 
joint.26 Focal knee cooling increases spinal reflexive excitability 
following artificial knee effusions26 as well as maximal 
quadriceps activation in healthy64 and osteoarthritic patients.62 
Focal ankle cooling increases spinal reflexive excitability 
and muscle strength in the soleus muscle.23 In addition, a 
subsensory random electrical or vibratory stimulus (stochastic 
resonance therapy) has improved postural control in chronic 
ankle instability.68,69

Stimulating Inhibited Muscle

Neuromuscular electrical stimulation (NMES) has been used 
to activate inhibited muscle to limit atrophy. This method is 
significantly different because NMES does not target inhibitory 
pathways. NMES augments a voluntary contraction, creating 
an involuntary contraction of inhibited muscle.48,77 NMES may 
provoke sustainable change in neural excitability. Muscle 
strength seems to improve following NMES and exercise, but 
there are no definitive benefits in functional performance 
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or self-reported function.35 A recent study of patients with 
chronic knee injuries demonstrated no significant difference 
in quadriceps activation or strength following NMES training 
compared with traditional strength training.56

A recent systematic review35 of NMES on quadriceps strength 
following anterior cruciate ligament reconstruction shows 
strong improvements in strength when the longest phase 
durations (300-400 microseconds) were used.10,74,82 The longest 
“on times” for the duty cycles (15 seconds on, 50 seconds off) 
demonstrated strong effect sizes despite the shortest treatment 
durations (4-6 weeks, 12-15 sessions). The majority of studies 
utilized a maximal tolerable intensity for NMES. However, 
increasing the lengths of pulse width and “on times” may 
stimulate greater improvements in muscle strength.

Conclusions

Neuromuscular deficits following joint injury are common and 
may affect muscle strength and biomechanics. These clinical 
impairments may be dictated by underlying spinal reflexive 
or cortical pathways and can result in abnormal facilitation 
or inhibition of affected musculature. Inhibition of muscles 
surrounding an injured joint may be a natural protective 
mechanism to decrease excessive forces. While compensatory 
movements may be helpful in completing specific tasks, they 
may be suboptimal.58 Traditional therapeutic exercise may 
not adequately improve strength or muscle activation.61 The 
literature demonstrates that development of a new therapeutic 
paradigm that focuses on restoring proper upstream neural 
function may have significant effects on downstream 
neuromuscular control and patient function.
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