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Abstract

Rationale: The monitoring of TB treatments in clinical practice and clinical trials relies on 

traditional sputum-based culture status indicators at specific time points. Accurate, predictive, 

blood-based protein markers would provide a simpler and more informative view of patient health 

and response to treatment.

Objective: We utilized sensitive, high throughput multiplexed ion mobility-mass spectrometry 

(IM-MS) to characterize the serum proteome of TB patients at the start of and at 8 weeks of 

rifamycin-based treatment. We sought to identify treatment specific signatures within patients as 

well as correlate the proteome signatures to various clinical markers of treatment efficacy.

Methods: Serum samples were collected from 289 subjects enrolled in CDC TB Trials 

Consortium Study 29 at time of enrollment and at the end of the intensive phase (after 40 doses 

of TB treatment). Serum proteins were immunoaffinity-depleted of high abundant components, 
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digested to peptides and analyzed for data acquisition utilizing a unique liquid chromatography 

IM-MS platform (LC-IM-MS). Linear mixed models were utilized to identify serum protein 

changes in the host response to antibiotic treatment as well as correlations with culture status end 

points.

Results: A total of 10,137 peptides corresponding to 872 proteins were identified, quantified, 

and used for statistical analysis across the longitudinal patient cohort. In response to TB 

treatment, 244 proteins were significantly altered. Pathway/network comparisons helped visualize 

the interconnected proteins, identifying up regulated (lipid transport, coagulation cascade, 

endopeptidase activity) and down regulated (acute phase) processes and pathways in addition 

to other cross regulated networks (inflammation, cell adhesion, extracellular matrix). Detection of 

possible lung injury serum proteins such as HPSE, significantly downregulated upon treatment. 

Analyses of microbiologic data over time identified a core set of serum proteins (TTHY, AFAM, 

CRP, RET4, SAA1, PGRP2) which change in response to treatment and also strongly correlate 

with culture status. A similar set of proteins at baseline were found to be predictive of week 6 and 

8 culture status.

Conclusion: A comprehensive host serum protein dataset reflective of TB treatment effect is 

defined. A repeating set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2, among 

others) were found to change significantly in response to treatment, to strongly correlate with 

culture status, and at baseline to be predictive of future culture conversion. If validated in cohorts 

with long term follow-up to capture failure and relapse of TB, these protein markers could be 

developed for monitoring of treatment in clinical trials and in patient care.
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1. Introduction

Tuberculosis (TB) is the leading cause of death from a single infectious agent [1]. According 

to the WHO, an estimated 10.4 million people fell ill with TB in 2016 with most of the 

incidents concentrated in developing countries [1]. Sputum-based culture remains the gold 

standard for monitoring response to treatment in clinical practice as well as in clinical trials 

[2–4]. Despite its long history in TB drug development, 8-week culture status and culture 

conversion as a measure of bacterial burden has limitations. First, the reliance on sputum 

is limiting given sputum production decreases rapidly on treatment. Additionally, analyses 

of performance of treatment culture conversion for predicting long term outcomes have 

shown variable results [5–7]. As a consequence, there has been a call for the development 

of new quantitative, non-sputum, nonculture-based TB biomarkers. If proven accurate 

and predictive, a blood-based biomarker signature would facilitate middle and phase 2 

development for new TB drugs and regimens, as well as provide information on individual 

response to treatment.

Recent technologic advances in mass spectrometry (MS) based proteomics now provide 

multiple, robust tools that allow for high-accuracy, high-throughput analysis of clinical 

samples [8,9]. As a result, a better depth of coverage with accurate quantification can be 
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obtained for a global proteome in complex clinical specimens. To date, discovery-based 

proteomics has primarily concentrated on investigating protein biomarkers of infection for 

early diagnosis of TB [10]. Early surface-enhanced laser desorption/ionization (SELDI) 

platforms compared serum samples from active TB patients with uninfected controls to 

identify possible discriminatory protein profiles, with recent studies involving a more in

depth separation [11,12]. Additionally, several liquid chromatography-mass spectrometry 

(LC-MS/MS) based platforms have been used as well to perform this comparison, providing 

a complimentary list of differentiated host proteins [13,14]. Achkar et al., presented a more 

comprehensive diagnostic study using LC-MS/MS and multiple-reaction monitoring (MRM) 

based assay to identify panels of host proteins that can distinguish active TB from latent 

infections as well as other respiratory disorders [15]. Longitudinal studies of TB treatment 

and response have also been conducted using aptamer array-based methods applied to small 

cohorts of patients [16–18].

In the present study we evaluate treatment response through the use of a sensitive MS 

platform, with the addition of ion mobility separations (IM) to an LC-MS platform, 

providing a more robust and higher throughput discovery analysis pipeline capable of larger 

scale clinical study investigations [19]. We assayed a large collection of serum samples 

collected at baseline and after 8 weeks of treatment from participants enrolled in a phase 

2 clinical trial comparing rifapentine to rifampin, as part of combination therapy [20]. In 

this study, we sought to provide an unbiased characterization of the serum proteome in 

TB patients undergoing treatment, evaluating associations with clinical and microbiologic 

characteristics, comparing changes in protein biomarkers relative to culture status at time 

points 2, 4, 6 and 8 weeks during treatment, with the objective of identifying a serum protein 

signature indicative of treatment effect.

2. Materials and methods

2.1. Study population

CDC TB Trials Consortium (TBTC) Study 29 (ClinicalTrials.gov Identifier NCT00694629) 

is a prospective, multicenter, open-label Phase 2 clinical trial comparing the antimicrobial 

activity and safety of standard daily regimen containing rifampin, to that of the experimental 

regimen with daily rifapentine (10 mg/kg/dose), both given with isoniazid, pyrazinamide 

and ethambutol to adults with smear positive, culture-confirmed pulmonary TB. The primary 

efficacy endpoint of the trial was the proportion of patients, by regimen, having negative 

sputum cultures at completion of 8 weeks (40 doses) of treatment. All TB treatment was 

administered 5 days/week for 8 weeks and directly observed. All participants underwent 

HIV testing. Cultures were performed using both Lowenstein-Jensen (LJ) solid media 

(inoculum volume, 0.2 mL) and BACTEC mycobacterial growth indicator tube (MGIT, 

Becton Dickinson and Co, Franklin Lakes, New Jersey) liquid media (inoculum volume, 0.5 

mL) with the MGIT 960 system, and assessed for presence of M. tuberculosis. Additional 

information regarding the design, conduct, and results of TBTC Study 29 has been published 

[20].
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2.2. Selection of participants

Out of a total of 531 participants in the parent trial, we included 289 consecutively enrolled 

protocol-correct participants from CDC-TB Trials Consortium clinical trials sites in North 

America, South Africa, Uganda, and Spain, for this sub-study. The 289 participants included 

in the proteomic analyses had sputum smears positive for acid fast bacilli at baseline and 

were culture positive for drug-susceptible pulmonary TB. Detailed demographic, clinical, 

radiographic and microbiologic data were collected using CDC-TBTC developed case report 

forms as part of the parent clinical trial.

2.3. Sample processing

Serum was collected, processed and stored at baseline (time of enrollment), and after 8 

weeks (40 doses) as previously described [20], in a standardized manner according to 

a manual of operating procedures. The investigators conducting LC-IM-MS assays were 

blinded to all patient characteristics until after assay results were submitted to the TBTC 

Data and Coordinating Center. Individual human serum samples were partitioned and 

depleted of 14 specific highly abundant proteins using a ProteomeLab™ 12.7 × 79.0-mm 

human IgY14 LC10 affinity LC column (Beckman Coulter, Fullerton, CA), which was 

performed using the manufacturer’s instructions to disrupt protein-protein binding and 

capture of additional proteins. Further processed of the flow-through portion of the depletion 

included automated protein isolation, denaturation, tryptic digestion, and peptide isolation 

[19].

2.4. LC-IM-MS analysis

Analysis of processed serum samples was performed on an in-house built instrument that 

couples a 1-m ion mobility separation with an Agilent 6224 TOF MS upgraded to a 

1.5 m flight tube [19] coupled with LC and including a fully automated in-house built 

4-column HPLC system equipped with in-house packed capillary columns [21]. A 60-min 

gradient with shorter columns (30 cm long with same dimensions and packing) was used 

with the IM-MS platform and data were collected from 100 to 3200 m/z. This unique 

platform has been previously described in detail [19,22], and has been optimized for higher 

throughput larger scale clinical sample analysis as it provides the benefit of the inclusion 

of an orthogonal ion mobility separations for depth of coverage coupled with a reduced LC 

separations component for faster overall analysis times (60 min per sample).

2.5. Data processing

Identification and quantification of the detected peptide peaks was performed utilizing 

the Accurate Mass and Time (AMT) tag approach [23]. Briefly, three pooled human 

serum samples were created (baseline, 8 weeks negative culture status, 8 weeks positive 

culture status) and divided into 24 fractions each using HPLC high pH fractionation. 

LC-MS/MS was performed on each fraction using the LTQ Orbitrap Velos MS and a 

reverse phase low pH LC separation [19]. A subsequent AMT tag database was created as 

previously described [24,25]. All MS/MS data can be obtained at ProteomeXchange under 

identifier PXD009029. Multiple in-house developed informatics tools (publicly available 

http://omics.pnl.gov/software) were used to process the LCMS data and correlate the 
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resulting LC-MS features to an AMT tag database that contained accurate mass, LC 

separation elution time, and IMS drift time information for peptide tags generated from 

serum proteins. Among the tools used were algorithms for peak-picking and for determining 

isotopic distributions and charge states [26]. Further downstream data analysis incorporated 

all possible detected peptides into a visualization program, VIPER, to correlate LC-MS 

features to the peptide identifications in the AMT tag database [27].

2.6. Statistical analysis

Peptide values were log2 transformed and normalized for occurrence filtering and outlier 

removal as previously described [19]. Protein values were generated from the processed 

peptide level data utilizing the R roll-up approach as previously described [19]. All analyses 

were performed in the R environment, version 3.3.3. Linear mixed models were fit using the 

lme4 package in R. Contrasts were estimated using the package lsmeans in R (R Project 

for Statistical Computing, http://cran.r-project.org). Pathway enrichment statistics were 

calculated using a log-rank test on proteins that were ordered by significance level within 

each contrast. To determine which demographic, clinical, radiographic and microbiologic 

variables may drive protein expression during model building, univariate regressions or 

ANOVAs were assessed. Redundancy amongst variables was assessed using Spearman’s 

correlations of the variables themselves, as well as correlations calculated using protein 

abundance values, which shows the cross correlations of relevant clinical and demographic 

variables as well as bar plots, after only site/region adjustment, showing the number of 

significant proteins associated with each variable based upon the serum proteome results. 

Once the primary drivers of protein expression were determined, separate linear mixed 

models were fit to investigate the influence of culture conversion on protein expression 

in response to treatment (with adjustment for baseline disease severity). Baseline disease 

severity was determined by chest radiograph classification of cavitation status. All models 

adjusted for patient and study site as random effects, and the following fixed effects: 

geographic region, age, body mass index, sex, and HIV status.

Criteria to identify significantly different proteins included p-value < 0.05, minimum ± 

0.1 log2 abundance change between comparisons and quantified in at least 50 patient 

pairs per protein. Samples without quantitative protein information were treated as missing 

data and not included for that particular protein analysis. Immunoglobulin constant 

region proteins and other immunoaffinity depleted proteins were excluded as described 

previously [19]. Pathway mapping was performed utilizing GO annotations extracted from 

DAVID version 6.8 (https://david.ncifcrf.gov/) using the ontology for biological process 

(GOTERM_BP_DIRECT). Bonferroni correction for only those GO term pathways that 

had a p value < 0.05 were selected. Cytoscape version 3.5.1 was used to create the 

interconnections of the pathway networks.

2.7. Ethics statement

Study 29 was approved by both CDC and local institutional review boards, and written 

informed consent was obtained from all study participants for collection of serum for TB

related research. The institutional review board at University of California, San Francisco 

approved this biomarker study (UCSF IRB Number: 12–10360).
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3. Results

3.1. Study population and serum proteins identified

A schema of the proteome study is provided in Fig. 1. Table 1 shows the clinical 

metadata of the 289 study participants from whom serum was collected and LC-IM-MS 

high-throughput analysis applied. In total, 10,137 peptides corresponding to 872 proteins 

were identified, quantified, and used for statistical analysis across the longitudinal patient 

cohort (Supplemental Table 1).

3.2. Treatment effect on serum protein abundances

A linear mixed model, fit to investigate the outcome associated with treatment effect of 

each serum protein abundance over time, identified 244 serum proteins deemed significantly 

changing after 8 weeks of treatment (Fig. 2A and Supplemental Table 2). A heat map of 

the 244 serum proteins identified, where values represent the quantitative change in protein 

abundance between baseline and 8 weeks per protein, is shown in Fig. 2B. Observed are 

subsets of proteins which are quantitatively differentiated in the serum due to either up (red) 

or down (blue) regulation upon treatment. The majority of protein alterations are upregulated 

upon treatment (138 out of 244). Network and pathway interaction mapping of these 

treatment related proteins identified interconnections of multiple pathway networks and their 

response after 8 weeks of treatment (Fig. 3). In addition to acute phase proteins, pathway 

networks emerged for lipid transport and metabolism; complement cascade; proteolysis; 

coagulation cascade; inflammation and defense; and cell adhesion and extracellular matrix, 

among others.

3.3. Serum protein signatures and culture conversion

By utilizing the same comparison model described above, patient serum protein results were 

divided and analyzed based upon either positive or negative culture status for a particular 

time point to determine protein significance. Looking at week 2 culture status stratifications, 

CRP and many other highly downregulated proteins (SAA1, A1AG1) have reduced fold 

change differences for patients who have quickly converted at week 2 compared to week 8 

stratifications where such proteins have similar or greater fold change differences between 

positive and negative stratification (Supplemental Table 3). Investigation of patients who 

remain culture positive after 8 weeks of treatment utilized the same model as previous but fit 

the outcome to culture status stratification at either 6 or 8 weeks of treatment. Fig. 4A and 

B shows the volcano plots of the week 8 and week 6 culture results respectively. Overall, 

we identified 41 and 54 proteins for week 8 and week 6 culture status respectively whose 

baseline to end of intensive phase biomarker changes were significantly differing between 

culture-negative and culture-positive patients. Fig. 4C shows the overlap between each 

comparison and the original 244 treatment effect serum proteins. Whereas these culture

status comparisons are statistically less significant, the 17 proteins which are consistently 

discriminatory for both week 6 and 8 culture status stratifications provide a promising 

list to explore further as predictive markers of culture conversion. (Fig. 4A and B and 

Supplemental Table 4).
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3.4. Baseline serum proteins predictive of culture status

Seventeen proteins were identified with concentrations at baseline that were associated with 

culture conversion status with a p < 0.001 at any time point stratification (Supplemental 

Table 5). Across all culture time points, these seventeen proteins were most discriminatory 

for the week 6 culture status. The top six baseline proteins that discriminate culture status 

at subsequent time points are shown in Fig. 5, and all overlap with those identified as 

significant in fold change comparisons from baseline to week 8.

4. Discussion

In this study, we identified a network of interconnected proteins and pathways representing 

the host response to TB treatment over 8 weeks that were differentially expressed in 

relation to culture conversion status. A total of 244 proteins were significantly altered 

in response to 8 weeks of intensive phase therapy. Pathway and network comparisons 

identify proteins that during treatment are up regulated (coagulation cascade, endopeptidase 

activity, lipid transport), with other proteins down regulated (acute phase), in addition 

to other cross regulated networks (inflammation, cell adhesion, extracellular matrix) (see 

Supplemental Tables 1 and 2). Across pathways and network comparisons, we discuss 

below selected proteins specifically associated with lung injury, bacterial load, and/or 

pulmonary bacterial infection in the published literature, in addition to proteins that are 

noted to be unique in terms of proteomic discovery outputs. The most significant changes 

between baseline and at 8-weeks of treatment occurred for proteins that were upregulated 

at the time of diagnosis and decreased significantly after treatment, predominated by 

acute phase reactants. Numerous proteins from coagulation and complement cascade 

pathways were also differentially expressed after treatment, including anti-coagulation 

proteins endothelial protein C receptor (EPCR) [28], plasma serine protease inhibitor (IPSP), 

alpha-2-macroglobulin (A2MG), coagulation factor XII (FA12) [29] and hyaluronan-binding 

protein 2 (HABP2), which aids in fibrinolysis [30] and prevention of fibrin clots formation 

by acting as an inhibitor of coagulation [29]. Additional coagulation-associated proteins 

included antithrombin III (ANT3) which participates in inhibition of several procoagulants 

[31], phosphatidylethanolamine-binding protein 1 (PEBP1) a serine protease inhibitor that 

inhibits thrombin, and Beta-2-glycoprotein 1 (APOH) and vitamin K-dependent protein 

C (PROC) that degrades factor V and VIII [32], further preventing formation of clots. 

Coagulation associated proteins that decreased with treatment were fibrinogen alpha chain 

(FIBA), factor IX (FA9), platelet factor 4 variant (PF4V) and vitamin K dependent protein 

S (PROS). Finally, we observed down-regulation of Ficolin-2 (FCN2), which acts as an 

opsonin that facilitates bacterial elimination via the complement cascade [33].

Several proteins involved in immune modulation and airway defense were also identified 

as differentially expressed, notably two antibacterial proteins that decreased with treatment: 

neutrophil defensin1 (DEF1) and platelet basic protein (CXCL7). Ashitani et al. reported an 

increased concentration of alpha-defensins in plasma of patients with active TB where the 

concentration of defensins reduced after 8 weeks of treatment [34]. Kalita et al. reported that 

human neutrophil peptides (HNP)s in conjugation with anti-TB drugs resulted in significant 

clearance of bacterial load [35] where the lower concentration post treatment is likely due 
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to a decreased bacterial load. CXCL7, produced by human phagocytes, has been proposed 

to have a significant influence on the immune response against mycobacterial infection 

[34] and LYSC has been known to have bacteriolytic properties - both proteins decreased 

significantly during treatment. We also identified down-regulation of protein ATP-binding 

cassette sub-family A member 3 (ABCA3), which acts in the formation of pulmonary 

surfactant by transporting lipids [36]. Pulmonary surfactants provide alveolar stability by 

lowering surface tension at the air-liquid interface and also serve a direct anti-microbial role 

[37]. The presence of ABCA3 in the blood serum is interesting, and the down regulation 

may provide a blood marker of decreasing bacterial load. Two other proteins, cystatin C 

(CYTC), a potent inhibitor of the proteolytic activity of cysteine cathepsins that drive lung 

fibrosis [38–40], and selenoprotein P (SEPP1) reported to have antioxidant properties [15], 

were upregulated after 8 weeks of treatment.

Cavitation in pulmonary TB results in degradation of structural fibers and extracellular 

matrix (ECM) protein components [41], which can provide altered protein signatures in 

serum. We identified several likely ECM protein markers for further investigation. Fibrillar 

type I collagen in ECM is responsible for providing the tensile strength in lung tissues 

[41]. It has been reported that Mtb induces an increased expression as well as secretion 

of matrix metalloproteinase (MMP-1), which has been reported to increase following 

bacterial infection [42]. Metalloproteinase inhibitor-1 (TIMP-1) is an inhibitor of MMP-1 

[42], and in our study, we found TIMP-1 decreased following treatment in conjunction 

with increasing MMP secretion. As cavitation resolves during treatment, upregulation of 

matrix and cell adhesion proteins that are involved in the repair process of the ECM 

of lung tissue is expected. Indeed, we found matrix proteins upregulated after treatment, 

including neural cell adhesion molecule L1-like protein (NCHL1) which facilitates cell-cell 

or cell-matrix interactions [43], lumican (LUM) known to regulate ECM’s function such 

as tissue hydration and collagen fibrillogenesis [44], fibronectin (FINC), which binds to 

integrins promoting cellular adhesion [45], laminin subunit beta-1 (LAMB1), an ECM 

protein, collagen alpha-1 chain (CO1A1), a major structural components of the lung [42], as 

well as gelsolin (GELS) and talin (TLN1) both involved in cell-matrix interactions [18,46].

Several proteases and peptidases were differentially regulated on treatment with a majority 

of peptidases and proteases up-regulated. Fetuin A (FETUA) enhances phagocytosis of 

apoptotic cells, and has been reported to decrease in whole blood samples of patients with 

active TB [47]. Olivier et al., found that both Fetuin A and Fetuin B (FETUB) are negative 

markers of acute phase reaction. We saw a similar trend, as both these peptidases were 

downregulated in patients at baseline and increased significantly post treatment [48]. Inter

alpha-trypsin inhibitor heavy chain (ITIH-H1 and H2) is known to contribute to extracellular 

matrix stability by covalently binding to hyaluronic acid [49]. This is in line with their 

upregulation post treatment. N-acetylmuramoyl-L-alanine amidase (PGRP2) was also up

regulated, likely due to its role in digesting biologically active bacterial peptidoglycan 

into inactive fragments [50]. In contrast, heparanase (HPSE) was down-regulated post

treatment. Heparanase is an endoglycosidase which cleaves heparan sulfate proteoglycans 

for extracellular matrix degradation and remodeling [51]. Among other functions, recent 

reports have it associated with acute lung injury [52], where heparanase was associated 

with loss of heparin sulfate in glycocalyx degradation, leading to neutrophil adherence and 
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inflammation. Inhibition of heparanase prevented neutrophil adhesion and attenuated sepsis 

induced acute lung injury in mice [52]. In humans, heparanase was observed higher in 

abundance in lung biopsies with alveolar damage as well as higher plasma heparan sulfate 

degradation activity [53]. Identification and quantification of heparanase in the serum is 

significant as it groups with the acute phase markers of infection, and possibly provides a 

lung specific marker reflecting lung tissue damage and recovery.

Consistent with other reports [33], several lipid transport proteins were significantly 

upregulated after treatment. Hypocholesterolemia has been reported in TB patients [54], 

and it has been proposed that Mtb may derive carbon and energy from cholesterol 

[55]. Other lipoproteins with anti-inflammatory properties, namely platelet-activating factor 

acetyl hydrolase (PAFA) and phosphatidylcholine-sterol acyltransferase (LCAT) were also 

up-regulated with treatment. Binding proteins also provide indication of nutritional status 

and were down-regulated at the time of diagnosis. Examples include corticosteroid binding 

protein (CBG), transthyretin (TTHY), serotransferrin (TRFE), insulin-like growth factor

binding protein 3 (IGBP3) [56], albumin (ALBU) and tetranectin (TETN) and afamin 

(AFAM). Retinol binding protein (RET4) increased expression post-treatment might be due 

to retinoic acid’s ability to induce monocyte differentiation [42]. This helps in inhibition 

of bacterial proliferation in macrophages, thus further reducing the bacterial load [42]. 

TETN binds plasminogen, increasing its activity and resulting in more plasmin formation 

promoting fibrinolytic activity [57]. Afamin as a vitamin E binding protein is reduced at 

baseline likely due to a known decrease in concentration of antioxidants in TB infections 

[58]. Conversely, upregulation of Thyroxine binding globulin (THBG) upon treatment may 

be attributed to the hepatic effect of the use of rifamycins in the regimens studied in the 

parent trial [59]. Regarding drug effects, we found sex hormone-binding globulin (SHBG) 

to be significantly increased on treatment. Rifamycins have been shown to increase the 

expression of SHBG [60]. This is proposed to be due to the induction of cytochrome P450 

mediated monoxygenase activity, which is believed to be a rate limiting step in the synthesis 

of testosterone and estrogen from cholesterol through pregnanolone [60]. As a result of the 

increase synthesis of these androgens, SHBG expression increases proportionally as well.

Utilizing culture status conversion data through 8 weeks, the change in protein serum 

concentrations over this timeframe provided mechanistic insights when correlating how 

quickly (or slowly) patients recover from TB disease. We observed a consistent set of 

proteins that represent a signature of a slower response to treatment (Fig. 4C). We focused 

on proteins which were consistently discriminatory for both 6 and 8 weeks of culture status 

stratification as these two time points represent the inflection point where the majority 

of patients convert from positive to negative. Interestingly, regardless of the time point 

stratification, the majority of these proteins overlap with those previously identified in the 

overall treatment effect changes, 17 proteins, implying they are associated with treatment or 

disease resolution. Each of these proteins has the same directionality of change regardless 

of time point stratification, see Supplemental Table 4. This suggests an overall delay in 

recovery response for those patients remaining culture positive at week 6 through week 

8. Specifically, all acute phase proteins in this list, CRP, A1AT, A1AG1, A1AG2, SAA1, 

have lower fold changes for culture positive patients compared to culture negative patients 

at both week 6 and week 8, Supplemental Table 3. These proteins are the most reduced in 
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abundance due to treatment and that reduction is attenuated for those still culture positive at 

these later time points. Similarly, proteins heparanase (HPSE) and DEF1 were also highly 

downregulated in treatment and showed diminished downregulation in culture positive 

individuals. The changes in heparanase abundance, which infers correlation with lung injury, 

has the potential to provide a unique specific serum marker of lung injury/and recovery 

in Mtb patients. Conversely, lipid transport proteins (APOA4, APOH), binding proteins 

(TTHY, AFAM, RET4), as well as protease PGRP2 were seen as upregulated overall due 

to treatment and disease resolution but this upregulation was diminished in patients still 

culture positive at 6 and 8 weeks. Though these proteins consistently correlated with disease 

severity and resolution, how predictive they are in regard to relapse cases will need further 

investigation.

An evaluation of baseline protein values in the serum identified a core set of proteins which 

correlated well with future culture conversion. Many of these proteins overlap with our 

treatment effect analyses, suggesting that for these particular proteins, the initial protein 

abundance at baseline appears to relate to their change in abundance in regard to patient 

culture status conversion, and hence can provide an important initial baseline indicator of 

treatment efficacy. Baseline values of proteins TTHY, AFAM, CRP, and PGRP2 showed 

the greatest differentiation, however we did see variations in predictive ability across the 

week stratifications. CRP differentiated best in early time points but gradually reduced out 

to week 8. Interestingly, TTHY, AFAM, and PGRP2 showed increased discrimination at 

week 6. It is somewhat unclear as to why, however it does appear to be driven by a drop 

in the remaining culture positive patients. Week 6 also had the most balanced stratification 

between culture positive/negative patients. The Study 29 serum sample set used in our study 

was also evaluated using directed immunoassays for a pre-selected panel of biomarkers, 

focusing primarily on biomarkers of inflammation and immune response [61]. We saw 

overlap in markers that were significantly modulated by treatment (CRP, SAA, MMP-1, 

TIMP-1) and in the biomarkers associated with early conversion (CRP). The non-directed 

MS approach used in the current study, however, was able to identify additional pathways 

than were found using the directed approach.

Our study has limitations. First, long-term outcomes of interest (relapse versus durable 

cure) were not a component of the parent phase2 trial, and our analyses were focused 

on biomarker associations with baseline severity and microbiologic indicators of treatment 

effect only. An evaluation of the most promising biomarkers we discovered should be 

pursued as part of clinical trials with long-term follow-up. Second, we were limited in 

our ability to explore the dynamics of biomarker change given two time points for serum 

collection. An assessment of the best performing markers in our study, across additional 

time points would improve our understanding of the predictive performance of these 

biomarkers. Third, the parent trial allowed for TB treatment prior to the randomization 

visit when serum was collected and study drugs initiated. This may have impacted 

baseline biomarker levels, however, in sensitivity analyses limited to participants with no 

pre-treatment, the biomarkers with the strongest associations with baseline severity and 

treatment effect remained the same.
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In sum, we provide a comprehensive host serum protein dataset reflective of TB treatment 

effect. A core set of core serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2, 

among others) were found to change significantly in response to treatment, to strongly 

correlate with culture status, and at baseline to be predictive of subsequent culture 

conversion. The protein signatures identified here have the potential to be informative of 

disease resolution throughout the treatment time course. If validated in cohorts of patients 

with longer treatment and follow-up, the proteins identified may serve as blood-based 

markers of treatment effect with applications in clinical care and clinical trials.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic workflow of the experimental design and analysis procedure. Utilization of the 

LC-IM-MS platform generated peptide level peak intensity data for each of the 578 samples 

(289 baseline samples and 289 8-week samples) from which protein level data was inferred. 

Protein level data was the basis to investigate the dynamic changes in the serum proteome 

after 8 weeks of treatment.
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Fig. 2. 
Visual representation of the serum proteins differential abundant due to 8 weeks of antibiotic 

treatment. A) Volcano plot of all proteins analyzed via linear mixed model to determine 

differential abundance due to antibiotic treatment at 8 weeks. Red lines correspond to 

thresholds of acceptance (pval < 0.05 and > ±0.1 log2 fold change). B) Heat map of 244 

proteins representing quantitative changes in protein abundances between baseline and 8 

weeks from 289 patients. Red magnitude representing increase in abundance with treatment, 

blue magnitude representing reduced serum abundance upon treatment. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the Web version of 

this article.)
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Fig. 3. 
Protein based pathway mapping of the patient response in the serum to antibiotic treatment. 

The GO annotations of 244 significantly altered proteins were extracted from DAVID and 

after corrected p-value filtering was visualized in Cytoscape to create the interconnected 

pathway network. Yellow squares: Pathways, spatial proximity indicates similarity in 

pathways; Red circles: proteins upregulated following 8 weeks of therapy; Blue circles: 

proteins downregulated following 8 weeks of therapy. Color intensity represents degree of 

fold change, darker signifying larger fold change. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. 
Plots and diagram of proteins significantly altered based upon culture status at week 6 and 

week 8 treatment. Volcano plot showing log2 values calculated from the difference of fold 

change from baseline to week 8 for culture positive (culture+) patients compared to culture 

negative (culture-) patients at (a) Week 6 culture status and B) Week 8 culture status based 

upon a linear mixed model. Proteins labeled are those most significant and found in common 

across both week 6 and week 8 results. C) Venn diagram representing overlap between the 

244 treatment serum proteins and discriminatory proteins for week 6 and week 8 culture 

status stratification.
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Fig. 5. 
Plots of 6 serum proteins measured at baseline with highest significance in discriminating 

subsequent culture status across all culture time points. Black dots represent the average 

log2 protein abundance for that protein, red error bars (standard deviation) represent positive 

culture status patients, where green error bars represent patients with negative culture status. 

(For interpretation of the references to colour in this figure legend, the reader is referred to 

the Web version of this article.)
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