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Abstract

The kinetochore is a protein complex that assembles on centromeric DNA to mediate chromosome–microtubule
interaction. Most eukaryotic cells form the spindle and establish kinetochore–microtubule interaction during mitosis, but
budding yeast cells finish these processes in S-phase. It has long been noticed that the S-phase spindle in budding yeast is
shorter than that in metaphase, but the biological significance of this short S-phase spindle structure remains unclear. We
addressed this issue by using ask1-3, a temperature-sensitive kinetochore mutant that exhibits partially elongated spindles
at permissive temperature in the presence of hydroxyurea (HU), a DNA synthesis inhibitor. After exposure to and removal of
HU, ask1-3 cells show a delayed anaphase entry. This delay depends on the spindle checkpoint, which monitors
kinetochore–microtubule interaction defects. Overproduction of microtubule-associated protein Ase1 or Cin8 also induces
spindle elongation in HU-arrested cells. The spindle checkpoint-dependent anaphase entry delay is also observed after ASE1
or CIN8 overexpression in HU-arrested cells. Therefore, the shorter spindle in S-phase cells is likely to facilitate proper
chromosome–microtubule interaction.
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Introduction

One of the most important events during the cell cycle is

chromosome segregation. This process requires each duplicated

chromosome to be captured by microtubules emanating from

opposite spindle poles in order to establish bipolar attachment. The

establishment of bipolar attachment satisfies the spindle checkpoint,

leading to the degradation of anaphase inhibitor Pds1 by APC

(anaphase-promoting complex) and the subsequent cleavage of

cohesins [1,2,3]. The presence of a single unattached kinetochore is

sufficient to activate the spindle checkpoint and thereby to prevent

anaphase entry [4]. Improperly attached chromosomes lead to

tension defects, which activate the tension checkpoint and prevent

anaphase entry as well [5]. Unlike other higher eukaryotic

organisms, in which kinetochore-microtubule interaction is estab-

lished during M-phase, the budding yeast undergoes spindle

formation and chromosome capture during S-phase [6]. The real

time analysis of spindle in budding yeast reveals several stages

during cell cycle [7]. Following spindle pole body duplication, the

spindle appears as a short bar on the side of the nucleus, ,1.2 mM

in length. After further spindle poles separation, a bipolar spindle

(1.5–2 mM) bisects the nucleus. On the basis of bud size, these two

stages may represent S- and M-phase spindles.

In budding yeast, chromosomes are attached to microtubules

during most of the cell cycle, but the duplication of centromeric

DNA results in the dissociation of kinetochore proteins from

centromeres, which is expected to disrupt kinetochore-microtubule

interaction [8]. Centromere replication has been shown to result in

the dissociation of chromosomes from microtubules for 1–2 min.

The detached chromosomes are recaptured by microtubules

immediately after completion of centromere replication [8].

Previous work shows that newly synthesized Cse4, the histone-

H3 variant specific for centromeres in budding yeast, replaces old

protein during DNA replication. Once assembled, Cse4-GFP is a

stable component of centromeres during mitosis [9]. Together, the

observations support the conclusion that the kinetochore-micro-

tubule interaction is disrupted and reestablished during S-phase in

budding yeast.

Hydroxyurea (HU) slows down DNA synthesis by depleting

dNTP pool, and the presence of high concentrations of HU arrests

yeast cells in S-phase with a short spindle. Mutant cells deficient in

S-phase checkpoint exhibit elongated spindle structure in HU-

arrested cells [10,11], but the cause for spindle elongation in S-

phase checkpoint mutants remains uncertain. Results from the

Bachant lab support the notion that the failure of bipolar

attachment results from the incomplete centromere replication

contributes to spindle elongation in S-phase checkpoint mutants in

the presence of HU [10]. In support of this notion, they observed

that some kinetochore mutants, ask1-3, mif2-2, and ipl1-321, failed

to maintain short spindles in the presence of HU when incubated at
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the nonpermissive temperature. As these mutants exhibit defects in

the establishment of chromosome bipolar attachment [12,13,14],

the bipolar attachment is believed to restrain spindle elongation

during S-phase. Data from another lab suggest that the down-

regulation of microtubule-associated proteins, Cin8 and Stu2, by S-

phase checkpoint is the key to the short spindle structure in HU-

arrested cells [11]. Deletion of Cin8, a protein required for spindle

elongation, has been shown to suppress the spindle elongation

phenotype in S-phase checkpoint mutants. Therefore, both bipolar

attachment and down-regulation of proteins responsible for spindle

elongation are probably required to prevent spindle elongation in

HU-arrested yeast cells. A key question that remains open is why

yeast cells keep a short spindle structure during S-phase. One way to

address this issue is to determine what happens to yeast cells when

spindles elongate during S-phase.

We found that ask1-3 mutant cells exhibited partially elongated

spindles when arrested with HU at room temperature, even

though the mutant cells have no noticeable cell cycle defects in the

absence of HU treatment. We treated ask1-3 mutant cells with HU

and followed cell cycle progression after HU was washed off.

Strikingly, the mutant cells exhibited normal DNA synthesis, but

showed a dramatic anaphase entry delay that depends on the

spindle checkpoint, indicating improper kinetochore-microtubule

interactions. Deletion of CIN8 suppressed the premature spindle

elongation as well as the anaphase entry delay in ask1-3 mutants

after HU treatment. To further confirm that the premature

spindle elongation contributes to the anaphase entry delay, we

enforced spindle elongation in S-phase cells by overexpressing

ASE1 or CIN8, because their overexpression has been reported to

induce spindle elongation in HU-arrested cells [11,15]. We also

found that Ase1- or Cin8-induced spindle elongation in HU-

arrested cells also led to spindle checkpoint-dependent anaphase

entry delay after HU was washed away. Therefore, we conclude

that the short S-phase spindle is required for proper kinetochore-

microtubule interaction in budding yeast.

Results

The Examination of Kinetochore Integrity in HU-Arrested
Cells

In budding yeast, kinetochores interact with microtubules

during most of the cell cycle, but a transient chromosome

dissociation from microtubules occurs during S-phase [8].

Previous evidence indicates that centromeres are duplicated in

early S-phase, because they are close to early firing origins

[16,17,18]. Hydroxyurea (HU) slows down DNA synthesis, but it

remains untested whether HU treatment delays kinetochore

assembly. For this purpose, we examined the association of

kinetochore proteins with centromeric DNA in HU-arrested yeast

cells by chromatin immunoprecipitation (ChIP) assay. Ask1 is one

of the subunits of the DASH complex, which encircles microtu-

bules and mediates a stable kinetochore-microtubule interaction

[19,20,21]. The kinetochore-microtubule interaction can therefore

be reflected by the association of Ask1 protein with centromeric

DNA. Nnf1 is a component of the Mtw1 kinetochore complex,

which is required to bridge the DASH-centromere interaction

[20]. The association of Nnf1 with centromeric DNA would

indicate the assembly of core kinetochore structure.

So that the association of Ask1 and Nnf1 with centromeric DNA

could be examined, cells with myc-tagged Ask1 or Nnf1 were

synchronized in G1 phase and then released into HU medium.

Consistent with those of the previous studies, our results

demonstrate the association of Ask1 and Nnf1 with centromeric

DNA in cells arrested in G1 phase [12], indicating kinetochore-

microtubule interaction at this cell cycle stage. Interestingly, the

association decreased after release into HU medium for 1 and

2 hrs, suggesting the failure of kinetochore assembly on some

centromeres (Figure 1A). We speculate that either unduplicated

centromeres or closely localized replication machinery could

prevent kinetochore assembly in HU-arrested cells. After HU

wash-off, increased centromere binding of Ask1 and Nnf1 was

observed, indicating kinetochore reassembly and the establishment

of kinetochore-microtubule interaction (Figure 1A). These obser-

vations provide direct evidence for the presence of some

centromeres that lack the association of kinetochore proteins in

HU-arrested yeast cells.

We also examined the localization of GFP-marked centromere

of chromosome IV (Cen4-GFP) and mCherry-tagged Tub1

[22,23]. The majority of HU-arrested cells exhibited a single

GFP dot positioned either close to the middle of the spindle (30%)

or near to one of the spindle ends (56%). The chromosome IV in

cells with a Cen4-GFP dot near to one spindle end is likely to be

monopolar attached, because in a certain fraction of cells,

centromeres are not yet replicated in HU and only monolopar

attachment can form under these circumstances. We also found

that some Cen4-GFP dots were away from the spindle axis (11%),

and we reason that these chromosomes are either detached or

monopolar attached. After bipolar attachment, the applied tension

on chromosomes results in a transient sister centromere separation

and two dots can be visualized with GFP-marked centromeres

[24,25]. About 3% of cells exhibited two separated Cen4-GFP

dots in the presence of HU for 2 hr (Figure 1B). It has been shown

that 29% HU-treated cells exhibit two Cen15-GFP dots,

presumably due to the chromosome specificity or different

experimental conditions [24]. Taken together, we conclude that

detached, monopolar attached, or bipolar attached chromosomes

are all present in HU-arrested cells. As we observed decreased

association of kinetochore proteins with centromeres in HU-

treated cells, it is likely that only some chromosomes are

competent to establish bipolar attachment in the presence of HU.

ask1-3 Mutant Cells Show Delayed Anaphase Entry after
HU Treatment

ask1-1 was identified from a genetic screen for mutants that

exhibited elongated spindles in the presence of HU, but further

investigations have demonstrated that Ask1 is a kinetochore

Author Summary

The interaction of spindle microtubules with chromo-
somes is essential for proper segregation of chromosomes
into two daughter cells. Most eukaryotic cells form
spindles and establish the chromosome–microtubule
interaction after DNA replication, but the chromosomes
in budding yeast are attached by spindle microtubules
before the completion of DNA replication. Interestingly,
when yeast cells are arrested in S-phase by hydroxyurea, a
DNA synthesis inhibitor, they show a unique spindle
structure that is shorter than the metaphase spindle. The
focus of this study is to address how the shorter S-phase
spindle benefits chromosome–microtubule interaction. We
found that the increase in spindle length in yeast cells that
are arrested in S-phase results in an improper chromo-
some–microtubule interaction. It is likely that the shorter
S-phase spindle facilitates chromosome capture by micro-
tubules as well as the generation of tension on chromo-
somes, which is critical for flawless chromosome segrega-
tion.

Short S-phase Spindle and Chromosome Attachment
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component [12]. We generated a temperature-sensitive mutant,

ask1-3, that showed elongated spindles and missegregated

chromosomes when incubated at the nonpermissive temperature

[12]. ask1-3 mutants also exhibited elongated spindles in HU-

arrested cells when incubated at 37uC [10]. We determined

whether this mutant allele also shows HU sensitivity by growing

the mutant cells on HU plates. Interestingly, ask1-3 mutants failed

to form colonies on HU plates even when grown at 25uC
(Figure 2A). We also examined the HU sensitivity of another

DASH mutant, dam1-DDD, in which the Ipl1/Aurora-B phos-

phorylation sites are mutated to aspartic acids to mimic the

constitutive phosphorylation status [26]. dam1-DDD mutants also

exhibited HU sensitivity (Figure 2A), suggesting that compromised

DASH function results in HU sensitivity.

To determine the nature of the HU sensitivity, we examined the

viability of ask1-3 cells after incubation in the presence of HU. No

obvious viability loss was observed for ask1-3 mutant after a 5-hr

treatment with HU, suggesting that the HU sensitivity is unlikely

to be a result of defective checkpoints. Comparison of the cell cycle

progression in wild-type (WT) and ask1-3 mutant cells with and

without HU exposure revealed that, in the absence of HU, they

showed similar cell cycle progression when incubated at 25uC as

indicated by the nuclear division kinetics. However, ask1-3 cells

exhibited dramatically delayed nuclear division after release from

2-hr HU treatment (Figure 2B), suggesting that some defects halt

anaphase entry in ask1-3 cells after HU treatment. We reason that

the defects in ask1-3 mutants are insufficient to slow down cell

cycle when grown at 25uC without disturbance, but after HU

treatment, the consequence of compromised Ask1 function blocks

anaphase entry.

ask1-3 Mutants Exhibit Elongated Spindles and Abnormal
Kinetochore Localization in the Presence of HU

In the presence of HU, WT cells arrest with a 1–2 mM spindle

[10]. ask1-1 mutant cells have been shown to exhibit abnormal

spindle structure in the presence of HU [12]. In addition, the

spindles became elongated in ask1-3 mutant cells when incubated

in 37uC medium containing HU [10]. Since ask1-3 mutants show

HU sensitivity when incubated at room temperature, we examined

spindle morphology in HU-arrested ask1-3 mutant cells incubated

at 25uC and found that some cells showed partially elongated

spindles (Figure 2C). Only 7% of WT cells had a spindle longer

than 1.5 mM, but the number increased to 38% for ask1-3

mutants. We further determined whether the elongated spindle

leads to abnormal kinetochore distribution. For this purpose, WT

and ask1-3 mutant cells with mCherry-tagged Tub1 and GFP-

tagged Mtw1, a kinetochore protein, were incubated in HU

medium at 25uC for 4 hrs [23,27]. About 30% ask1-3 mutant cells

exhibited spindle length longer than 1.5 mM. Interestingly, 60% of

ask1-3 cells showed two clearly separated kinetochore clusters

(Mtw1-GFP), whereas the majority of WT cells exhibited one

unseparated kinetochore cluster (Figure 2D). dam1-DDD mutant

cells also exhibited partially elongated spindles and two separated

kinetochore clusters in the presence of HU (data not shown),

indicating that a functional DASH complex is required to restrain

spindle elongation during S-phase.

To understand the nature of the two separated kinetochore

clusters in HU-treated ask1-3 mutant cells, we examined the

localization of Cen4-GFP and mCherry-tagged kinetochore protein

Nuf2 [22,28]. In agreement with the result shown in Figure 2, 60%

of ask1-3 cells exhibited two Nuf2-mCherry clusters after incubation

Figure 1. Kinetochore-microtubule interaction in HU-treated cells. (A) Examination of kinetochore integrity and kinetochore-microtubule
interaction during S-phase. G1-arrested cells with untagged (U) or myc-tagged ASK1 and NNF1 were released into YPD medium containing 200 mM
HU for 2 hrs at 30uC and then released into 30uC YPD medium. Cells were collected at indicated time points for ChIP assay. DNA from total (input) and
immunoprecipitates (IP) were used for PCR reaction with primers specific to CEN1, CEN3, and ACT1. H and R stand for HU and Release, respectively.
The quantified association of Ask1 and Nnf1 with CEN3 is shown on the right panel. (B) Centromere localization in HU-arrested yeast cells. G1-arrested
TUB1-mCherry CEN4-GFP cells were released into YPD medium containing 200 mM HU. After incubation at 30uC for 2 hrs, cells were collected for the
examination of fluorescence signals. The percentage of cells with different Cen4-GFP distribution is shown on the right.
doi:10.1371/journal.pgen.1000262.g001

Short S-phase Spindle and Chromosome Attachment
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in HU medium for 4 hrs at 25uC, whereas only 10% of WT cells

showed two separated Nuf2 foci (Figure 3). In the ask1-3 cells with

two Nuf2 clusters, only one single Cen4-GFP dot was observed,

which colocalizes with one of the Nuf2-mCherry clusters. This result

suggests that the appearance of two kinetochore clusters in HU-

arrested ask1-3 cells is likely a result of random movement of

chromosomes close to one of the spindle poles.

ask1-3 Cells Exhibit Spindle Checkpoint-Dependent
Anaphase Entry Delay

We observed partially elongated spindles and abnormal

kinetochore distribution in HU-treated ask1-3 mutants. We next

asked why ask1-3 mutants show HU sensitivity by comparing cell

cycle progression in WT and ask1-3 mutant cells after HU

exposure. For this purpose, G1-arrested cells with Nuf2-mCherry

and Cen4-GFP were released into 200 mM HU for 2 hrs at 25uC.

The fluorescence signals were examined after HU was washed off.

As shown in Figure 4A, both WT and ask1-3 mutant cells showed

a single GFP dot before release from HU arrest. 150 min after

release from HU arrest, most of WT cells showed two GFP dots,

one in each daughter cell, indicating anaphase entry. In contrast,

70% of ask1-3 cells exhibited two kinetochore clusters with one

Cen4-GFP dot (Figure 4A). To exclude the possibility that

unfinished DNA replication in ask1-3 mutants prevents sister

chromatid separation, we used FACS analysis to monitor DNA

synthesis and found that both WT and ask1-3 strains finished DNA

synthesis after release from HU arrest for 60 min (data not shown),

suggesting that the delayed sister separation is not a result of DNA

synthesis defects. The appearance of the single Cen4-GFP dot in

ask1-3 mutants after release from HU arrest for a long time could

be a result of either monopolar attachment or the lack of tension,

as tension generation results in transient sister centromere

separation before anaphase entry [24,25].

Chromosome-microtubule interaction defects have been shown

to activate the spindle checkpoint, which stabilizes Pds1 protein to

prevent anaphase entry [29]. To examine the kinetochore-

microtubule interaction defects in HU-treated ask1-3 mutants,

we compared Pds1 protein levels and nuclear division kinetics in

ask1-3 mutant cells after HU treatment in the presence and

absence of the spindle checkpoint. As shown in Figure 4B, WT

cells accumulated high levels of Pds1 protein in the presence of

HU, but Pds1 protein levels decreased dramatically after release

from HU arrest for 120 min. In contrast, Pds1 protein levels

remained persistent in ask1-3 cells, consistent with the delayed

nuclear division. However, deletion of MAD1, which encodes one

of the spindle checkpoint components, eliminated the delay in

Figure 2. Premature spindle elongation and abnormal kinetochore distribution in HU-arrested ask1-3 mutant cells. (A) ask1-3 and
dam1-DDD mutants show HU sensitivity. Cells with the indicated genotypes were grown to saturation. After 10-fold dilution, the cells were spotted
onto YPD plates with and without 100 mM HU. The plates were incubated at 25uC for 4 days before they were scanned. (B) HU treatment results in
dramatic anaphase entry delay in ask1-3 cells. G1-arrested WT and ask1-3 cells were released into YPD medium with and without 200 mM HU at 25uC.
HU was washed off after 2 hr incubation and the cells were then resuspended in 25uC YPD medium. a-factor was added to block the second round of
cell cycle. Cells were collected at the indicated time points for DAPI staining. (C) The spindle length in WT and ask1-3 mutants after HU treatment. G1-
arrested cells (TUB1-GFP and ask1-3 TUB1-GFP) were released into 25uC YPD medium containing 200 mM of HU for 2 hrs. The cells were then
collected, fixed with formaldehyde, and subjected to fluorescence microscopy. The spindle morphology is shown in the left panel and the percentage
of cells with different spindle lengths is shown on the right. More than 100 cells were measured for spindle length for each strain. (D) Premature
spindle elongation and abnormal kinetochore localization in HU-arrested ask1-3 cells. G1-arrested TUB1-mCherry MTW1-3GFP and ask1-3 TUB1-
mCherry MTW1-3GFP were released into medium containing 200 mM HU and incubated for 4 hrs at 25uC. Cells were collected and fixed for
fluorescence microscopy. Mtw1-GFP localization and spindle morphology in the representative cells are shown in the top panel; the percentage of
cells with elongated spindles or two separated kinetochore clusters is shown in the bottom panel.
doi:10.1371/journal.pgen.1000262.g002

Short S-phase Spindle and Chromosome Attachment
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both Pds1 degradation and nuclear division in ask1-3 cells

(Figure 4B). The results suggest that ask1-3 mutant cells exhibit

kinetochore-microtubule interaction defects after HU treatment,

which activate the spindle checkpoint to prevent anaphase entry.

To clarify whether the appearance of a single Cen4-GFP dot in

ask1-3 mutants after HU treatment is due to the failure of bipolar

attachment, we followed Cen4-GFP separation and nuclear

division in ask1-3 and ask1-3 mad1D mutants after they were

exposed to HU for 2 hr. After release from HU arrest for 120 min,

the cells were collected for DAPI staining. Surprisingly, only 4% of

ask1-3 mad1D cells exhibited Cen4-GFP missegregation, i.e., Cen4-

GFP stays with one of the divided nuclei, whereas no missegrega-

tion was observed in mad1D and ask1-3 mutants. As a result, 40%

of ask1-3 mad1D cells lost viability after treatment with 200 mM

HU for 2 hr.

As most of ask1-3 mad1D mutant cells are able to separate Cen4-

GFP after HU treatment, defects other than the failure of bipolar

attachment may also contribute to the appearance of a single

Cen4-GFP dot in ask1-3 mutants. It is possible that most

chromosomes are able to establish bipolar attachment, but the

failure of tension generation prevents the transient separation of

sister centromeres before anaphase. To test this possibility, we

visualized Cen4-GFP separation in ask1-3 and ask1-3 sgo1D
mutants after HU treatment. It was obvious that the deletion of

the tension checkpoint SGO1 suppressed the sister centromere

separation delay in ask1-3 mutants [30], although the suppression

was not as complete as mad1D (Figure 4C). The results suggest that

defects in both chromosome attachment and tension generation

are responsible for the anaphase entry delay in ask1-3 mutants

after HU treatment.

Deletion of CIN8 Partially Suppresses the HU Sensitivity of
ask1-3 Mutants

ask1-3 mutant cells show prematurely elongated spindles in the

presence of HU, which could contribute to the observed HU

sensitivity. If that is the case, prevention of spindle elongation would

suppress the HU sensitivity. As Cin8 has been shown to be involved

in spindle elongation during mitosis [31], we compared the HU

sensitivity of ask1-3 and ask1-3 cin8D mutants. In agreement with

our prediction, ask1-3 cin8D grew much better than ask1-3 single

mutant cells on HU plates, although strains differed in growth

(Figure 5A). Ase1 is a spindle midzone protein required for spindle

elongation and stabilization [32]. Deletion of ASE1 also suppressed

the HU sensitivity of ask1-3 mutants, but the suppression was less

significant compared to cin8D (data not shown).

To address why cin8D deletion suppresses the HU sensitivity of

ask1-3, we first examined the spindle morphology in ask1-3 and

ask1-3 cin8D cells after HU treatment for 2 hrs. Strikingly, the

average spindle length decreased from 1.28 mM in ask1-3 to

1.01 mM in ask1-3 cin8D mutants after incubation in HU

(Figure 5B). The number of cells with spindle length longer than

1.5 mM also decreased in the double mutants. The examination of

the kinetochore cluster separation in ask1-3 cin8D mutants in the

presence of HU indicated that the phenotype in ask1-3 mutants

was partially suppressed by the deletion of CIN8 (Figure 5C). We

then compared the cell cycle progressions of the single- and

double-mutant cells after HU treatment. The delayed nuclear

division in ask1-3 mutants was suppressed significantly in ask1-3

cin8D double mutants, albeit not completely (Figure 5D). There-

fore, the premature spindle elongation in HU-arrested ask1-3

mutant cells is likely responsible for the improper kinetochore-

microtubule interaction, which contributes to the HU sensitivity.

Ase1 or Cin8-Induced Spindle Elongation in HU-Arrested
Cells also Causes Improper Kinetochore–Microtubule
Interaction

The results we obtained using ask1-3 mutant support the

conclusion that premature spindle elongation during S-phase leads

to improper kinetochore-microtubule interaction, but we could

not rule out the possibility that the compromised kinetochore

function in ask1-3 mutants directly contributes to the chromosome

attachment defects during the recovery from HU arrest.

Clarification of this issue will require alternative ways to induce

spindle elongation without disturbing kinetochore function.

Overexpression of ASE1 has been shown to induce premature

spindle elongation in HU-arrested cells [15]. Because there is no

evidence indicating a direct kinetochore function of Ase1, a

spindle midzone binding protein, the kinetochores should function

normally in cells overexpressing ASE1 [15,32,33]. We first

confirmed Ase1-induced spindle elongation phenotype and found

that 42% of cells overexpressing ASE1 showed a spindle longer

than 1.5 mM after incubation in HU for 2.5 hr, compared to 11%

for the control cells (Figure 6A and B).

We have shown that the premature spindle elongation in HU-

treated ask1-3 mutants leads to abnormal kinetochore distribution.

To determine whether this is the case in cells overexpressing ASE1,

we synchronized cells harboring a vector or a PGAL-ASE1 plasmid

Figure 3. The abnormal kinetochore localization in HU-
arrested ask1-3 cells is not a result of bipolar attachment. G1-
arrested NUF2-mCherry CEN4-GFP and ask1-3 NUF2-mCherry CEN4-GFP
were released into YPD medium containing 200 mM HU for 4 hrs at
25uC. Cells were collected and fixed for fluorescence microscopy. The
localization of Nuf2-mCherry and Cen4-GFP falls into two categories (A
and B). (A) A representative cell with a single Nuf2-mCherry cluster and
Cen4-GFP dot. (B) A representative cell with two Nuf2 clusters but one
Cen4-GFP dot. (C) The percentage of cells with phenotypes shown in A
and B.
doi:10.1371/journal.pgen.1000262.g003

Short S-phase Spindle and Chromosome Attachment
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in G1 phase and released them into galactose medium containing

200 mM HU. After incubation for 4 hrs, ASE1 overexpression

resulted in scattered Nuf2-mCherry signals along the spindle in

61% of cells and all these cells exhibited a single Cen4-GFP dot

(Figure 6C and D). This result indicates that the spindle elongation

enforced by ASE1 overexpression also causes abnormal kineto-

chore distribution. It has been shown that overexpression of CIN8

leads to spindle elongation in HU-arrested cells [11]. Next, we

examined spindle elongation and kinetochore distribution in cells

overproducing Cin8 and found that these cells showed a more

dramatic phenotype than those overexpressing ASE1 (Figure 6).

Cdc13 is the telomere protein and telomere ends are not protected

in cdc13-1 mutants; the DNA damage checkpoint is therefore

activated and arrests cells at preanaphase [34]. To determine

whether this phenotype is specific to cells in S-phase, we also

overexpressed ASE1 and CIN8 in cdc13-1-arrested cells. In contrast

to HU-arrested cells, no obvious abnormal kinetochore distribu-

tion was observed in cdc13-1-arrested cells overexpressing ASE1 or

CIN8 (Figure 6D), suggesting that only S-phase cells are sensitive to

enforced spindle elongation.

ask1-3 mutants show delayed anaphase entry after HU

treatment and we speculate that the partially elongated spindle

is responsible for this delay. If that is the case, Ase1 and Cin8-

induced spindle elongation in HU-arrested cells should also lead to

anaphase entry delay. Therefore, we synchronized cells with either

plasmid PGAL-ASE1, PGAL-CIN8 or a vector in G1-phase and then

released them into galactose medium containing 200 mM HU to

induce Ase1 and Cin8 expression. After 3 hrs of incubation, HU

was washed off and cells were resuspended in glucose medium at

30uC to terminate the expression of ASE1 and CIN8. In the

Figure 4. The anaphase entry delay in ask1-3 mutant cells after HU treatment. (A) ask1-3 cells exhibit delayed chromosome segregation
after HU treatment. G1-arrested NUF2-mCherry CEN4-GFP and ask1-3 NUF2-mCherry CEN4-GFP cells were released into YPD medium containing
200 mM HU and incubated at 25uC. Two hours later, HU was washed off and the cells were released into YPD medium. a-factor was added back to
block the second round of cell cycle. Cells were collected for the examination of fluorescence signals. The localization of Nuf2 and Cen4 at the
indicated times is shown in the top panel. The percentage of budded cells with one Cen4-GFP dot is shown in the bottom panel. (B) ask1-3 cells
exhibit spindle checkpoint-dependent anaphase entry delay after HU treatment. G1-arrested PDS1-myc, ask1-3 PDS1-myc, and ask1-3 mad1D PDS1-
myc cells were released into YPD medium containing 200 mM HU for 2 hrs. After HU was washed off, the cells were released into YPD medium and
incubated at 25uC. The cells were collected at the indicated time points for protein preparation and DAPI staining. Pgk1 protein levels are shown as a
loading control. (C) Deletion of tension checkpoint SGO1 partially suppresses the anaphase entry delay in ask1-3 mutants after HU treatment. Cells
with indicated genotypes were treated as described in B. Here shows the percentage of large budded cells with a single Cen4-GFP dot after HU wash
off.
doi:10.1371/journal.pgen.1000262.g004
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presence of HU, all cells exhibited one single Cen4-GFP dot, but

90 min after release from HU arrest, the majority of cells with a

vector had two GFP dots, indicating the onset of anaphase.

However, more than 60% of cells harboring ASE1 or CIN8

plasmid still exhibited a single Cen4-GFP dot (Figure 7A),

indicating a delayed anaphase entry. To test the dependency of

this delay on the spindle checkpoint, we repeated the HU wash-off

experiment with WT and mad1D mutant cells. The nuclear

division was followed after HU treatment by DAPI staining.

Deletion of MAD1 clearly suppressed the anaphase entry delay

induced by the overexpression of ASE1 or CIN8 (Figure 7B). The

Mad1-dependent anaphase entry delay suggests an improper

kinetochore-microtubule interaction in HU-arrested cells overex-

pressing ASE1 or CIN8.

The premature anaphase entry in mad1D mutant cells after Ase1

or Cin8 induction in the presence of HU may result in chromosome

missegregation. To test this possibility, G1-arrested CEN4-GFP and

mad1D CEN4-GFP cells with a vector, PGAL-ASE1, or PGAL-CIN8

plasmid were released into 30uC galactose medium containing

200 mM HU for 3 hrs to induce Ase1 and Cin8 expression. Then

HU was washed off and the cells were released into glucose medium

and incubated at 30uC. After 100 min, cells were stained with DAPI

to examine nuclear division and Cen4-GFP separation. We found

that 5% mad1D cells with PGAL-ASE1 showed chromosome

missegregation, whereas CIN8 overexpression resulted in chromo-

some missegregation in 18% of mad1D mutant cells. No chromo-

some missegregation was observed in the control cells. One

explanation for the difference between Ase1 and Cin8 is that

overexpression of Cin8, but not Ase1, may disrupt kinetochore

function, because Cin8 has been shown to bind to kinetochores

[35,36]. Together, we conclude that premature spindle elongation

in HU-arrested cells induced by overexpression of ASE1 or CIN8

also leads to improper chromosome-microtubule interaction, which

activates the spindle checkpoint to block anaphase entry.

Discussion

The budding yeast exhibit a short spindle structure when DNA

synthesis is blocked with HU [10]. Although previous work

demonstrates that the S-phase checkpoint is essential to keep the

spindle short in HU-arrested cells [37], the biological significance

of the short spindle remains unknown. The characterization of the

Figure 5. Deletion of CIN8 partially suppresses the phenotypes of ask1-3 mutants. (A) Deletion of CIN8 partially suppresses the HU
sensitivity of ask1-3 mutants. Cells with indicated genotypes were grown to saturation and then 10-fold diluted and spotted onto YPD plates with
and without 100 mM HU. The plates were incubated at 25uC for 4 days before being scanned. (B) cin8D mutation suppresses spindle elongation in
HU-treated ask1-3 mutants. Asynchronous cells with indicated genotypes were grown to mid-log phase and HU was then added to the cell cultures
to a final concentration of 200 mM. After 2 hr incubation at 25uC, cells were fixed for fluorescence microscopy. The spindle morphology in some
representative cells is shown in the top panel and the percentage of cells with different spindle length and the average spindle length are shown in
the bottom panel. (C) cin8D mutation partially suppresses the abnormal kinetochore distribution phenotype in HU-treated ask1-3 mutant cells. G1-
arrested WT, ask1-3 and cin8D ask1-3 cells with MTW1-GFP were released into YPD medium containing 200 mM HU and incubated at 25uC for 4 hrs.
Cells were collected and fixed for the examination of Mtw1-GFP signal. Shown here is the percentage of cells with two clear GFP clusters. (D) Deletion
of CIN8 partially suppresses the anaphase entry delay in ask1-3 mutants after HU treatment. G1-arrested WT, cin8D, ask1-3 and cin8D ask1-3 cells were
released into YPD medium containing 200 mM HU for 2 hrs. After HU was washed off, the cells were released into 25uC YPD medium and collected at
the indicated time points for DAPI staining. The percentage of budded cells with undivided nuclei is shown.
doi:10.1371/journal.pgen.1000262.g005
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cell cycle defects resulted from elongated spindles in S-phase-

arrested cells enables us to clarify this issue. We found that ask1-3

mutant cells exhibited partially elongated spindles when incubated

at the permissive temperature in the presence of HU. Previous

data indicate that overexpression of ASE1 or CIN8 induces spindle

elongation in HU-arrested cells as well. With these approaches, we

demonstrate, on the basis of the following observations, that

premature spindle elongation in HU-arrested yeast cells results in

improper chromosome-microtubule interaction. First, elongated

spindles during S-phase led to pronounced anaphase entry delay.

Moreover, the delay was abolished by the inactivation of the

spindle checkpoint that monitors defects in kinetochore-microtu-

bule interaction. Finally, suppression of the premature spindle

elongation by cin8D deletion alleviated the anaphase entry delay in

ask1-3 mutant cells after HU treatment.

The Relative Timing of Centromere Duplication and
Kinetochore–Microtubule Interaction in Budding Yeast

Budding yeast cells form spindles and establish the kinetochore-

microtubule interaction during late S-phase [9], therefore,

chromosome biorientation and spindle pole separation normally

occur at about the same time. The duplication of centromeric

DNA during early S-phase disrupts kinetochore structure,

resulting in detached chromosomes. The recapture of these

chromosomes occurs immediately after the replication of centro-

meric DNA, when two spindle poles have not clearly separated yet

[38]. In HU-arrested cells, two spindle poles separate as a

consequence of spindle formation, but DNA synthesis is blocked.

Our ChIP analysis demonstrates decreased association of

kinetochore protein Nnf1 and Ask1 with centromeric DNA,

suggesting that the duplication of some centromeric DNA is not

finished yet in HU-treated cells, even though centromeres are close

to early replication origins. As a consequence, bipolar attachment

cannot form on these unduplicated centromeres in HU-arrested

cells. After HU is washed away, duplicated sister kinetochores

allow the establishment of bipolar attachment, when spindle poles

have separated already. Therefore, it is likely that HU treatment

uncouples chromosome biorientation and spindle pole separation.

The Length Control of S-Phase Spindle in Budding Yeast
Although the two spindle poles have separated in HU-arrested

yeast cells, they are relatively close and S-phase spindle is shorter than

that in metaphase cells. Recent work from the Bachant lab suggests

that bipolar chromosome attachments provide a force to prevent

Figure 6. Overexpression of ASE1 or CIN8 results in spindle elongation and abnormal kinetochore distribution in the presence of HU.
(A) Overexpression of ASE1 or CIN8 leads to spindle elongation in HU-arrested cells. G1-arrested TUB1-GFP cells with a vector, PGAL-ASE1 or PGAL-CIN8
plasmid were released into galactose medium containing 200 mM HU and incubated at 30uC for 2.5 hrs. The cells were then collected and fixed for
fluorescence microscopy. The spindle morphology in some representative cells is shown. (B) The percentage of cells with different spindle lengths
(,1.5 mM; 1.5–2.5 mM; .2.5 mM). The spindle length of more than 100 cells was measured for each sample. (C) Overexpression of ASE1 and CIN8 results
in scattered kinetochore distribution along the spindle in HU-arrested cells. NUF2-mCherry CEN4-GFP cells with a vector, PGAL-ASE1, or PGAL-CIN8 plasmid
were grown to mid-log phase in raffinose medium. Cells were synchronized in G1 phase with a factor and then released into galactose medium
containing 200 HU and incubated at 30uC. Cells were collected after 4 hr incubation for the examination of fluorescence signals. (D) Overexpression of
ASE1 or CIN8 induces abnormal kinetochore distribution in HU- but not in cdc13-1-arrested cells. G1-arrested cdc13-1 NUF2-mCherry cells with a vector or
PGAL-ASE1, PGAL-CIN8 plasmid were released into galactose medium and incubated at 34uC. Nuf2 distribution was examined after 4 hr incubation. Shown
here is the percentage of budded cells with scattered Nuf2 signals in HU-arrested cells (experiment C) and in cdc13-1-arrested cells.
doi:10.1371/journal.pgen.1000262.g006
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spindle extension during HU arrest, as ask1-3 and other kinetochore

mutant cells exhibit elongated spindles when incubated in 37uC
medium containing HU. We found that ask1-3 cells exhibited

partially elongated spindles in HU-arrested cells even when incubated

at room temperature. The examination of spindle elongation kinetics

reveals no noticeable difference in WT and ask1-3 mutants in

undisturbed cell cycle at 25uC. Then why do these mutants exhibit

abnormal spindle elongation in the presence of HU?

Our ChIP analysis indicates decreased association of kineto-

chore proteins with centromeric DNA, suggesting that only a few

chromosomes have assembled sister kinetochores that are

competent for bipolar attachment. Consistently, the examination

of Cen4-GFP and Tub1-mCherry signals in HU-arrested cells

indicates the presence of many monopolar attached chromosomes.

Therefore, HU treatment imposes an increased requirement for

kinetochores due to a reduction in inward forces resulting from

fewer bipolar kinetochore-microtubule interactions. The kineto-

chore defect in ask1-3 mutants might result in the failure to restrain

spindle elongation in the presence of HU, although the spindle is

normal in undisturbed cell cycle. In support of this speculation,

dam1-DDD and spc24-9 mutants also exhibit elongated spindles in

the presence of HU [39].

The Spindle Length and Kinetochore–Microtubule
Interaction during S-Phase

One interesting observation is that ask1-3 mutants show

elongated spindles in HU-treated cells and these cells exhibit

spindle checkpoint-dependent anaphase entry delay after HU is

washed away. There are two possible ways to explain the

observation. As Ask1 is a kinetochore protein, one possibility is

that the kinetochore defects in ask1-3 cause spindle elongation,

which in turn inhibits additional kinetochore-microtubule inter-

action. Alternately, the defective kinetochore-microtubule interac-

tion in HU-arrested ask1-3 mutants contributes directly to an

increase of spindle length. We favor the first model on the basis of

the following observations. First, deletion of CIN8 suppresses the

premature spindle elongation in HU-treated ask1-3 mutants as

well as the anaphase entry delay after HU exposure. Since it is

unlikely that cin8D suppresses the kinetochore defects in ask1-3

mutants, a reasonable explanation is that the suppression of

spindle elongation in HU-treated ask1-3 cin8D mutant cells

alleviates the anaphase entry delay after HU exposure. Moreover,

Ase1-induced spindle elongation in HU-arrested cells also leads to

spindle checkpoint-dependent anaphase entry delay. The kineto-

chores should be normal in cells overexpressing ASE1, as no direct

kinetochore function of Ase1 has been reported in budding yeast.

Therefore, we believe that the short spindle structure in HU-

arrested cells is crucial for the establishment of proper kinetochore-

microtubule interaction in budding yeast.

What defects contribute to the anaphase entry delay in ask1-3

mutants after HU treatment? As the delay depends on the spindle

checkpoint, one possibility is the failure of chromosome attach-

ment. If that is the case, inactivation of the spindle checkpoint in

ask1-3 mutants would result in dramatic chromosome missegrega-

tion after HU treatment. Unexpectedly, only a small portion of

these cells (4%) showed missegregated chromosome IV. Our

Figure 7. Overexpression of ASE1 or CIN8 in HU-arrested cells causes anaphase entry delay. (A) Overexpression of ASE1 or CIN8 in HU-
arrested cells causes delayed anaphase entry after HU is washed off. G1-arrested CEN4-GFP cells with a vector, PGAL-ASE1 or PGAL-CIN8 plasmid were
released into galactose medium containing 200 mM HU for 3 hrs at 30uC. HU was washed off and the cells were released into glucose medium and
incubated at 30uC. a-factor was added to block the second round of cell cycle. Cells were collected at the indicated times and fixed for fluorescence
microscopy. The top panel shows cells collected at 2.5 hr after HU release. The percentage of budded cells with a single Cen4-GFP is shown in the
bottom panel. (B) Overexpression of ASE1 and CIN8 leads to spindle checkpoint-dependent anaphase entry delay. G1-synchronized WT and mad1D
cells with a vector, PGAL-ASE1 or PGAL-CIN8 plasmid, were released into galactose medium containing 200 mM HU for 3 hrs at 30uC. The cells were
released into 30uC glucose medium containing a-factor. Cells were collected at the indicated times for DAPI staining. The percentage of budded cells
with undivided nuclei is shown.
doi:10.1371/journal.pgen.1000262.g007
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explanation is that chromosomes are bipolar attached, but the

kinetochore-microtubule interaction is not strong enough to

generate tension, which prevents anaphase entry by activating

the tension checkpoint. Indeed, we found that deletion of the

tension checkpoint gene SGO1 partially suppressed the anaphase

entry delay in ask1-3 mutant cells after HU exposure. Together,

these results support the conclusion that the presence of both

unattached kinetochores and tension defects prevent anaphase

entry in HU-treated ask1-3 mutant cells.

Short S-phase spindle ensures that kinetochores are close to the

two spindle poles, which may facilitate chromosome capture. In S-

phase cells with elongated spindles, however, kinetochores are

close to one of the spindle poles but far away from the other,

making it more difficult to achieve bipolar attachment. On the

other hand, even after the achievement of bipolar attachment, the

unequal distance between sister kinetochores and the two spindle

poles may hinder tension generation on sister kinetochores.

Therefore, it becomes more difficult to achieve bipolar attachment

and tension establishment when spindles are elongated prema-

turely in yeast cells arrested in S-phase.

Materials and Methods

Yeast Strains, Growth, and Media
The relevant genotypes of the yeast strains are listed in Table S1

(supporting information). All the strains listed are isogenic to Y300,

a W303 derivative. They were constructed by means of standard

genetic crosses. cin8D and ase1D mutants were constructed

according to a PCR-based protocol [40]. To arrest yeast cells in

G1-phase, 5 mg/ml a-factor was added into cell cultures (YPD

pH 3.9) in mid-log phase (OD600 = 0.4) for 2–3 hr. For CIN8 and

ASE1 overexpression, galactose was added into the medium to the

final concentration of 2%.

Protein Techniques
The preparation of protein samples was carried out as described

previously [41]. Briefly, 1.5 ml of cell culture was collected and

50 ml of 20% TCA and glass beads were added to the tubes. After

cells were broken with a bead beater, proteins were precipitated by

centrifugation at 3000 rpm for 1 min. Equal volumes (50 ml) of

1 M Tris base and protein loading buffer were added. Protein

samples were resolved by SDS-PAGE. Primary antibodies (anti-

myc) were purchased from Covance (Madison, WI), and anti-Pgk1

antibody was from Molecular Probes (Eugene, OR). HRP-

conjugated secondary antibody was purchased from Jackson

ImmunoResearch (West Grove, PA).

Fluorescence Microcopy
Cell cultures were collected and fixed with formaldehyde at a

final concentration of 3.7% for 5 min at room temperature. The

cells were then collected by centrifugation. After being washed

once with PBS (pH 7.2), cells were resuspended in PBS for the

microscopic examination (Zeiss Axioplan 2).

DAPI Staining
Cells were collected and fixed with 70% ethanol at 4uC

overnight. After being washed once with PBS, cells were stained

with DAPI at a final concentration of 20 mg/ml for 5 min at room

temperature. The cells were washed once with PBS and

resuspended in PBS for fluorescence microscopy.

Chromatin Immunoprecipitation Assay (ChIP)
Cell cultures were collected and fixed with formaldehyde at a final

concentration of 3.7% for 15 min at room temperature. Glycine was

added to a final concentration of 200 mM to stop crosslink reactions.

After 5 min, the cells were washed twice with ice-cold TBS buffer

(20 mM Tris-HCl, pH 7.4 and 150 mM NaCl). After being

suspended in FA-lysis buffer (50 mM Hepes-KOH, pH 7.5,

140 mM NaCl, 1 mM EDTA, 1% TritonX-100 and 0.1% sodium

deoxycholate) with protease inhibitors, the cells were homogenized

with a bead beater. The resulting cell lysates were subjected to

sonication, which fragments chromatins to 500–1000 bp pieces. After

centrifugation, the supernatant of the cell lysates was treated with

anti-myc antibody overnight at 4uC. The supernatants were further

incubated with protein-A conjugated agarose beads (Santa Cruz

Biotechnology), which is preincubated with BSA and ssDNA for

30 min on ice. The beads were collected and washed sequentially

with FA-lysis, FA-500 (50 mM Hepes-KOH, pH 7.5, 500 mM

NaCl, 1 mM EDTA, 1% TritonX-100 and 0.1% sodium deoxy-

cholate), LiCl wash solution (10 mM Tris-HCl, pH 7.5, 250 mM

LiCl, 0.5% NP-40, 1 mM EDTA, 0.5% sodium deoxycholate), and

TES (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 100 mM NaCl)

buffers. The precipitates were eluted with elution buffer (100 mM

Tris-HCl, pH 7.8, 10 mM EDTA, 1% SDS and 400 mM NaCl) at

37uC and then treated with protease K at 65uC overnight to remove

proteins. DNA fragments were extracted with phenol/chloroform/

isoamylalcohol and finally resuspended in TE buffer. PCR was

performed according to a standard protocol. Cell lysates were diluted

and used as input for PCR. Primers for CEN1, CEN3, and ACT1 are

the same as described [12]. The amount of template was adjusted to

ensure that PCR was in the linear range.

Supporting Information

Table S1 The relevant genotypes of the strains used in this

study.

Found at: doi:10.1371/journal.pgen.1000262.s001 (0.06 MB

DOC)
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