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Background: Clinical stroke rehabilitation decision making relies on multi-modal data,

including imaging and other clinical assessments. However, most previously described

methods for predicting long-term stroke outcomes do not make use of the full

multi-modal data available. The aim of this work was to develop and evaluate the benefit

of nested regression models that utilise clinical assessments as well as image-based

biomarkers to model 30-day NIHSS.

Method: 221 subjects were pooled from two prospective trials with follow-up MRI or CT

scans, and NIHSS assessed at baseline, as well as 48-hours and 30 days after symptom

onset. Three prediction models for 30-day NIHSS were developed using a support

vector regression model: one clinical model based on modifiable and non-modifiable

risk factors (MCLINICAL) and two nested regression models that aggregate clinical and

image-based features that differed with respect to the method used for selection of

important brain regions for the modelling task. The first model used the widely accepted

RreliefF (MRELIEF) machine learning method for this purpose, while the second model

employed a lesion-symptom mapping technique (MLSM) often used in neuroscience to

investigate structure-function relationships and identify eloquent regions in the brain.

Results: The two nested models achieved a similar performance while

considerably outperforming the clinical model. However, MRELIEF required fewer

brain regions and achieved a lower mean absolute error than MLSM while being less

computationally expensive.

Conclusion: Aggregating clinical and imaging information leads to considerably

better outcome prediction models. While lesion-symptom mapping is a useful tool to

investigate structure-function relationships of the brain, it does not lead to better outcome

predictions compared to a simple data-driven feature selection approach, which is less

computationally expensive and easier to implement.

Keywords: support vector machine, lesion symptom mapping, NIHSS (National Institue of Health Stroke Scale),

nested regression, ischemic stroke
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INTRODUCTION

The prognosis of clinical and functional outcome in acute
ischemic stroke patients is typically made based on multi-
modal information such as demographic, clinical, laboratory, and
radiological data. Theoretically, machine learning models can
identify patterns in high-dimensional data that can be used to
make data-driven and reproducible stroke outcome predictions
in new patients and support patient management. However,
despite the ability to integrate multimodal information, recent
machine learning models have mostly utilized clinical data or
image-based biomarkers alone (1) to predict stroke outcome. So
far, the benefit of using true multi-modal data for stroke outcome
prediction has not been investigated comprehensively. One of
the few multi-modal predictive models of stroke outcome is
described by Brugnara et al. (2). However, clinical assessments at
various timepoints are used as input features without addressing
the issue of feature collinearity. Furthermore, previous studies
often predict the stroke outcome in a binary classification scheme
(good vs. bad), which ignores the incremental, yet relevant non-
linear differences in stroke severity scores.

Integration of image-based biomarkers for stroke outcome
prediction is more complex than using other clinical assessments
(in most cases), but has the potential to add considerable
predictive power. A key aspect to consider within this context is
the selection of regions-of-interest (ROIs) in the brain that are
critically associated with the clinical deficit of interest since non-
informative and redundant feature can downgrade the prediction
accuracy considerably (3). Lesion-symptom mapping (LSM) (4)
is able to identify brain regions that are important for a clinical
outcome score of interest but has been used rarely for selection
of brain regions for stroke outcome prediction (5). The more
common ROI selection approach is to use classical feature
selection methods during the training process. However, these
two general approaches have never been compared to date with
respect to stroke outcome prediction.

The aim of this work is to compare different setups of nested
machine learning models using clinical information only and a
combination of clinical and radiological features selected using
lesion-symptommapping and classical feature selection methods
to predict the 30-days NIH stroke scale (NIHSS).

METHODS

Data
The datasets used in this study were pooled from the ESCAPE
(6) and iKNOW (7) trials. Patients with remote hemorrhages,
bilateral lesions, and severe white matter hyperintensities were
excluded from this secondary analysis, and only patients with
a follow-up MRI or CT scan (18-hours to one week from
baseline) with complete clinical information (obtained after
stroke and upto 6-hours post randomization) were included,
leading to a final sample of 221 patients. The clinical outcome
of interest in this study is the NIHSS assessed at 30 days
after stroke symptom onset. The patient characteristics are
summarized in Table 1. The measurable clinical and laboratory
features used in the nested regression model include age, sex,

TABLE 1 | Characteristics of patients pooled (N = 221) from the ESCAPE6 and

iKNOW7 datasets.

Variable ESCAPE

(N = 143)

iKNOW

(N = 78)

Dataset

(N = 221)

Median Age (IQR) 68 (19.5) 70.5 (15) 69 (19)

Sex—Females 75 31 106

Treatment—Alteplase 66 46 112

Median Onset to

randomization time (IQR)

160min (149) 126.5min

(118.05)

152min (137)

Median Baseline NIHSS (IQR) 16 (7) 12 (10) 15 (8)

modifiable and non-modifiable risk factors suggested in the
evidence-based review of stroke rehabilitation (8). These include
blood pressure, glucose, hematocrit, hypertension, diabetes,
smoking status, hyperlipidemia, and atrial fibrillation (see
Supplementary Table 1). Additionally, the baseline NIHSS score
(pre-treatment) was also included as part of the clinical data to
model stroke outcome (5, 9).

All lesions were manually delineated by an expert observer
using the ITKSNAP tool. Each image sequence was skull stripped
and non-linearly registered to the common FLAIR-NCCT (10)
atlas of the elderly using the ANTs toolkit. The grey matter (GM)
and white matter (WM) parcellations from the probabilistic BNA
atlas (11) and the JHU atlas (12), respectively, were fused and
transformed to the FLAIR-NCCT atlas. All image-based features
were computed in the FLAIR-NCCT atlas space.

Model Design
Nested regression models were developed to predict the 30-
days NIHSS outcome based on clinical data and image-based
biomarkers. Here, the first model predicts the 48-hours NIHSS
using imaging features alone whereas the result of this model
is then used together with clinical features to predict the 30-
days NIHSS.

NIHSS30−days ∼ (FeaturesClinical

+
(

NIHSS48−hours ∼ FeaturesImaging

)

)

For bothmodels, epsilon-regression was used implemented using
in a radial kernel support vector regression (SVR) framework.
Using follow-up imaging acquired between 18-hours and 5-
days from symptom onset to identify regions-of-interest (ROIs)
that maximally correlate with a long-term assessment might
introduce confounding effects and bias the results. Therefore,
the ROIs included in the predictive models were identified with
respect to the 48-hours NIHSS to ensure that the identified
structure-function relationships are related to the primary
stroke-induced deficits alone. This also ensures that the identified
ROIs are not selected because of post-secondary comorbidities
(not directly related to the primary stroke) developed either in-
hospital or post-discharge. The two approaches for ROI selection
are: (i) the LSM method using Brunner-Munzel test (13) and
(ii) a widely accepted machine learning-based feature selection
method that accounts for collinearity known as RreliefF (14).
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The LSMmethod was implemented using the LESYMAP package
(15) using the default parameters employing a p-value threshold
at 0.05, discarding voxels not injured in at least 10% of the
sample data, and using false discovery rate (FDR, the rate of
Type 1 errors) to correct for multiple comparisons. For ease
of comparison, brain regions that were not affected in at least
10% of the sample data were also removed prior to the RreliefF
feature selection. The RreliefF feature selector was also employed
using default parameters from the Fselector package (16) with the
sample size of 10 and a neighbor count set to five. The result
of the LSM is a statistical map of clusters of significant voxels
that survive the FDR correction with non-zero voxel weights.
Regions in the BNA-JHU parcellation that were assigned non-
zero voxel weights by the LSM analysis were included as ROIs
in the proposed regression analyses.

For each brain region identified by LSM as being important
in the training set, the relative lesion overlap was computed and
used as image-based features. Moreover, in case of WM tracts,
the cross-sectional width of the tract spared after the lesion was
also calculated and used as additional features (17). Therefore,
the final set of image-derived input features used in this study
include GM overlap, WM overlap, and WM tract integrity for all
the selected ROIs.

For RreliefF feature selection, the lesion overlap (GM and
WM) and tract integrity (only WM) was calculated for each
atlas region and used for feature selection based on the
training set.

Model Evaluation
For the sake of being able to compare brain regions selected
for stroke outcome prediction qualitatively between the two
models, the data was randomly split into completely independent
training and test sets. This resulted in only one set of
features selected for each method, which greatly enhances
the interpretability and comparison of the models. Therefore,
the entire dataset was partitioned into two mutually exclusive
subsets for model training (80%) and testing (20%) using
a stratified split that preserves the representation of stroke
severity across both groups. Three models were evaluated in
this framework: (i) un-nested SVR model with clinical features
alone (MCLINICAL) selected using RreliefF; (ii) nested model
using clinical and imaging data with RreliefF as feature selector
(MRELIEF); and (iii) nested model using clinical and image data
with LSM as feature selector (MLSM). The resulting models
were compared for predictive performance with respect to
the model’s mean absolute error (MAE) and coefficient of
determination (R2).

RESULTS

The overlap of all individual patient lesions in the atlas space
shows that maximum incidence of stroke in this dataset occurs
in the brain regions supplied by the middle cerebral artery
(see Supplementary Figure 1). The median recovery profile of
patients in this database is shown in Supplementary Figure 2.

The model using clinical features only resulted in a rather
poor predictive performance (R2 = 0.13). The optimal

TABLE 2 | Model performances for each setup.

Model MAE RMSE R2 p-value

MCLINICAL 4.33 5.53 0.13 0.0184

MRELIEF 3.55 4.34 0.43 1.89e-06

MLSM 3.50 4.54 0.40 6.22e-06

MAE, mean absolute error; RMSE, Root mean squared error; R2, coefficient of

determination; MCLINICAL, model with clinical features alone; MRELIEF , ROIs selected by

RreliefF and nested with clinical features; MLSM, ROIs selected using lesion-symptom

mapping and nested with clinical features.

FIGURE 1 | Selected regions of interest (ROIs) for the RreliefF-based (red) and

LSM-based (blue) feature selection. The LSM-based ROIs are hemispherically

asymmetrical and include regions outside of the subcortical nuclei.

prediction results were achieved using age, baseline NIHSS,
blood glucose and hematocrit levels, sex, presence of atrial
fibrillation, hypertension, and hyperlipidemia, treatment
decision (endovascular thrombectomy or tissue plasminogen
activator), symptom onset to admission time, and blood pressure
as features. However, the iterative feature selection procedure
using RreliefF did not select presence of diabetes and smoking
status, which are usually considered important predictors. Only
the clinical features selected in this model were included in the
two nested models to enable a direct comparison.

Compared to the simple predictive model using clinical
features only, the two nested (MRELIEF and MLSM) models
performed better and resulted in comparable R2 and MAEs
(see Table 2). No statistically significant MAE differences (p
> 0.05) were found comparing the two nested models.
However, MRELIEF used only 44 ROIs in comparison to the
106 ROIs selected in MLSM (see Figure 1). The plots of the
predicted and ground truth scores for both models are shown
in Supplementary Figure 3.
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DISCUSSION

This study demonstrates that conventional machine learning
feature selectionmethods (MRELIEF) can identify important brain
regions for stroke outcome prediction as well as the conventional
lesion-symptom mapping methods (MLSM).

The advantage of theMRELIEF model over theMLSM model are
two-fold. First, the MRELIEF model is simpler since it uses <50%
of features compared to the MLSM model and results in similar
predictive performance. Second, the MRELIEF setup does not
require extensive LSM computations to derive structure-function
relationships and identify eloquent brain regions. Specifically,
despite using a fewer number of regions, the ROIs chosen by
the MRELIEF model are largely in the left hemisphere and include
regions that correspond to the dominance of left-hemispheric
functions assessed by NIHSS.

Importantly, using LSM for ROI selection has additional
limitations that the RreliefF feature selection overcomes. First,
LSM analyses suffer from low statistical power due to the
corrections for multiple comparisons and do not account for
violating assumptions of normality in the outcome score. Second,
the LSM analysis results in individual voxel weights, which are
not really needed to compute region-level inferences of critical
brain regions that are associated with a deficit. While LSM is
a powerful tool to investigate the neural correlates of stroke
induced clinical deficit, its usefulness to select ROIs for stroke
outcome prediction tasks seems rather limited. For these reasons,
and by applying the Occam’s razor principle in model selection,
traditional feature selection methods seem to be better suited for
future research in stroke outcome prediction.

The proposed framework has a design advantage in
comparison to the existing prognostic models of stroke outcome.
A recent review on predictive models of stroke outcome (18)
reports that: (i) the target outcome of the predictive model
is usually a categorized version of functional outcome1; (ii)
the variables used to model this score include prognostic
parameters2, stroke risk factors, and baseline stroke severity
measured by the NIHSS scale. An obvious limitation is that
classification models predicting binarized functional outcome
likely ignore the gradation of stroke severity, which is relevant
information for stroke prognostication. Furthermore, the
functional outcomes, prognostic parameters, and the baseline
severity measures may be strongly correlated resulting in inflated
classification accuracies. In the proposed work, both of these
limitations (loss of relevant information and collinearity) are
addressed by employing the nested regression model. For
instance, since the 48-hours NIHSS is highly correlated with the
30-day NIHSS, it might bias the regression model. Therefore,
having a nested model that utilizes the short-term outcome to
derive image-based ROIs that in turn predict the long-term
outcomes seems to be a promising way to reduce the affects
of collinearity. Furthermore, it is important to note that the
results of different studies describing predictive models are

1Examples include: the modified Ranking Scale (mRS), NIHSS, Barthel Index, etc.
2Examples include: Preadmission Comorbidities, Level of Consciousness, Age,
and Neurological Deficit (PLAN); Stroke Prognostication Using Age and National
Institutes of Health Stroke Scale (SPAN); Totaled Health Risks in Vascular Events
(THRIVE), etc.

not comparable because of different sample sizes, different
evaluation methods, different assessment time points, and
different imaging time points. For this reason, the predictive
model using clinical data only was included in this study as a
means of baseline comparison.

One of the limitations of the proposed work is that the
findings are population-specific and are likely to change with
the stroke cohort used (type of stroke and sample size), choice
of parcellation atlas, LSM technique, and/or training scheme
employed. This study is also exploratory in the sense that,
subject to availability, the clinical descriptors included are
a subset of all potential stroke risk factors reported in the
literature. The power calculations for using LSM in predictive
analysis has not been explored in this study. Additionally, the
burden of preprocessing each patient scan for registration, lesion
segmentation, and feature computation is extensive. State-of-the-
art deep learning methods have the potential to use 3D MRI
or CT scans (without lesion definitions) and do not demand
handcrafted image-based features and might not even need
manual lesion segmentations. Furthermore, the results of this
study can be considered a relevant first step toward building
a computer-aided prognosis support tool using explainable
machine learning methods. However, the predictive accuracy of
the models generated in this study need to be further improved
using additional datasets and should be evaluated prospectively
using a completely independent dataset.

An important recommendation for future work is to model
stroke outcomes using ordinal regression models, which can
account for the relative ordering between two values in
the NIHSS scale. However, ordinal regression models are
more complex and typically require the definition of interval
thresholds, which can either be derived from the training data
or based on domain knowledge. That said, the results described
in this paper will generally hold true for ordinal regression
models as well. Confirmatory research in this direction may
also benefit from investigating the utility of convolutional neural
networks without requiring lesion segmentation to predict long-
term stroke outcome as an ordinal regression problem.

CONCLUSIONS

In summary, this study shows that combining clinical and
imaging data leads to better stroke outcome predictions
compared to using clinical data alone. While lesion-symptom
mapping is a powerful neuroscience tool to investigate structure-
function relationships in stroke patients, these methods do not
appear to have an additional benefit for selecting brain regions
important for stroke outcome prediction compared to rather
simple and data-driven feature selection methods.
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