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ABSTRACT
Emerging evidence indicates that the gut microbiome can modulate metabolic homeostasis, and 
thus may influence the development of gestational diabetes mellitus (GDM). However, whether and 
how the gut microbiome and its correlated metabolites change in GDM is uncertain. Herein we 
compare the gut microbial compositions, and fecal and urine metabolomes, of 59 patients with 
GDM versus 48 pregnant healthy controls (HCs). We showed that the microbial and metabolic 
signatures of GDM patients were significantly different from those of HCs. Compared to HCs, the 
GDM subjects were characterized by enriched bacterial operational taxonomic units (OTUs) of the 
family Lachnospiraceae, and depleted OTUs of the families Enterobacteriaceae and 
Ruminococcaceae. Some altered gut microbes were significantly correlated with glucose values 
and fetal ultrasonography indexes. Moreover, we identified four fecal and 15 urine metabolites that 
discriminate GDM from HC. These differential metabolites are mainly involved in carbohydrate and 
amino acid metabolism. Significantly, co-occurrence network analysis revealed that 
Lachnospiraceae and Enterobacteriaceae bacterial OTUs formed strong co-occurring relationships 
with metabolites involved in carbohydrate and amino acid metabolism, suggesting that disturbed 
gut microbiome may mediate GDM. Furthermore, we identified a novel combinatorial marker panel 
that could distinguish GDM from HC subjects with high accuracy. Together our findings demon-
strate that altered microbial composition and metabolic function may be relevant to the pathogen-
esis and pathophysiology of GDM.
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Introduction

Gestational diabetes mellitus (GDM), the most 
common complication of pregnancy, is defined 
as glucose intolerance that is first identified dur-
ing pregnancy.1 GDM is closely linked with 
adverse maternal and neonatal outcomes.2 For 
example, GDM greatly increases the risk of pre-
eclampsia and delivery by cesarean section.3,4 In 
addition, GDM also increases the risk of infant 
morbidity such as diabetic fetopathy.4 Several 
risk factors for GDM have been identified, such 
as higher maternal age and obesity.5,6 An imbal-
ance between insulin resistance and insulin 
secretion has been implicated in the develop-
ment of this disorder.7 However, the underlying 

pathological mechanisms of GDM remain largely 
unknown.

The gut microbiome can greatly influence the 
host’s health and diseases.8 Previously, dysbiotic 
gut microbiome has been implicated in the 
development of metabolic diseases such as obe-
sity and type 2 diabetes (T2D).9,10 Pregnancy is 
accompanied by significant changes in metabolic 
status, and some pregnant women are predis-
posed to GDM onset. In addition, gut microbial 
composition and function have been shown to 
be altered during pregnancy.11 Therefore, it is 
important to explore whether GDM is character-
ized by disturbances of gut microbial composi-
tion and function.
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A few previous studies have explored how the 
gut microbial composition changes in GDM, with 
diverse findings.12–15 This heterogeneity may result 
from differences in recruitment criteria, sequencing 
methods, and/or cohort demographics. For exam-
ple, using fecal samples collected mainly at the time 
of delivery, Wang et al.12 reported that GDM 
patients had significant disturbances of gut micro-
biome genera Prevotella and Streptococcus, relative 
to HCs. Interestingly, these disturbances of mater-
nal gut microbiome in GDM individuals could be 
vertically transmitted to the next generation.12 

Ferrocino et al.13 found that GDM individuals had 
enriched Blautia, Butyricicoccus, and Clostridium, 
as well as depleted Bacteroides, Collinsella and 
Rikenellaceae in the second (T2) relative to third 
trimesters (T3) of pregnancy. Crusell et al.16 also 
reported substantial dysregulation of the GDM gut 
microbiome in the T3 and postpartum. They iden-
tified 17 species-level operational taxonomic units 
(OTUs) mostly belonging to the phylum 
Firmicutes, that could discriminate GDM indivi-
duals from healthy controls. In addition, probiotic 
interventions could improve the insulin resistance 
of GDM subjects.17 These studies show that GDM 
is closely linked with disturbances of the gut micro-
biome. Disturbances of fecal and blood metabolic 
signatures were also reported in GDM.18 Given that 
the gut microbiome modulates diverse host meta-
bolic pathways, it is important to simultaneously 
characterize how microbial and metabolic signa-
tures change and interact in GDM.

In this study, we used 16S ribosomal RNA 
(rRNA) gene sequencing metagenomics to com-
pare the microbial compositions of GDM subjects 
and pregnant healthy controls (HCs). To capture 
functional readouts of microbial activity, fecal, 
and urine metabolomic analyses were performed. 
This integration of metagenomic and metabolo-
mic methods has proven an effective way to 
uncover gut microbial composition and function 
in various diseases.19 Using this well-established 
strategy, we compared the microbial and meta-
bolic signatures of GDM patients versus HCs, to 
uncover their reciprocal interactions in the gut 
ecosystem of GDM. In addition, we examined 
correlations between the altered gut microbes, 
fecal and urine metabolites, and various clinical 
indexes (e.g. blood glucose values and outcomes 

of fetal ultrasonography). Based on these multi- 
omic data, we identified a novel combinatorial 
marker panel that could distinguish GDM from 
HC with high accuracy.

Results

Clinical characteristics of recruited subjects

In this study, we included a total of 59 patients with 
GDM and 48 HCs. There was no significant differ-
ence in the mean age (HC = 29.2, GDM = 30.6; 
p = .063) or body mass index (BMI) (HC = 20.5, 
GDM = 21.5; p = .070) between the two groups. At 
12 weeks’ gestation, fasting blood glucose (FBG) 
levels were higher in the GDM group than in the 
HC group (GDM, 4.91 ± 0.39; HC, 4.70 ± 0.52, 
p = .021). Moreover, at 24–28 weeks’ gestation, 
fasting glucose, and 1- and 2-h post-oral glucose 
tolerance test (OGTT) glucose levels, were signifi-
cantly elevated in GDM versus HC (all 
p-values<0.001). There were no group differences 
for remaining variables such as newborn weight, 
gestation week of delivery, and sampling. There was 
no difference between the two groups in major 
indexes of fetal ultrasonography such as biparietal 
diameter, head circumference, and abdominal cir-
cumference at 24, 30, and 37 weeks’ gestation. 
Interestingly, fetuses of GDM mothers had slightly 
shorter femur length at 37 weeks’ gestation 
(p = .049), compared to the HC group. The detailed 
clinical characteristics of the recruited individuals 
and the fetal ultrasonography outcomes are shown 
in Table 1.

Maternal microbial diversity and composition are 
altered in GDM

Here, 16S rRNA gene sequencing was used to com-
pare the microbial composition of patients with 
GDM and HCs. In total, we identified 4,880,685 
high-quality reads in 107 fecal samples with an 
average length of 412.39. These reads could be 
classified into 1309 bacterial OTUs. 1057 OTUs 
were shared between the GDM and HC groups, 
while 125 and 127 OTUs were unique to GDM 
and HC, respectively (Figure 1a). We then com-
pared the α-diversity indexes between the two 
groups. We found that patients with GDM had 
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a lower phylogenetic diversity (PD) index relative 
to HCs (p = .043, Figure 1b). In contrast, the shan-
non, chao, and ace indexes showed no differences 
between the two groups (Figure 1c-e).

To explore whether the microbial composition 
of GDM subjects was different from that of HCs, 
β-diversity analysis was performed. To visualize 

the separation between the two groups, principal 
component analysis (PCA) was performed. We 
found that overall microbial composition was 
significantly different between the GDM and 
HC groups, as confirmed by PERMANOVA 
test (p = .005) (Figure 2a). This difference 
arose from the principal component (PC) 2 

Table 1. Detailed clinical characteristics of the recruited subjects.

Variables
Gestational diabetes 

mellitus Healthy controls p-value

Sample 59 48 -
Age 30.56 ± 4.24 29.19 ± 3.04 0.063
BMI 21.45 ± 2.92 20.46 ± 2.61 0.070
Family history of diabetes 16.95% 12.50% -
Fetal birth weight (kg) 3.31 ± 0.39 3.21 ± 0.45 0.213
Fasting blood glucose at 12 weeks’ gestation 4.91 ± 0.39 4.70 ± 0.52 0.021
Fasting OGTT at 24–28 weeks’ gestation 5.01 ± 0.46 4.54 ± 0.30 <0.001
OGTT-1 h at 24–28 weeks’ gestation 9.66 ± 1.47 7.62 ± 1.38 <0.001
OGTT-2 h at 24–28 weeks’ gestation 8.39 ± 1.4 7.62 ± 1.05 <0.001
Nuchal Translucency (NT) 1.50 ± 0.39 1.45 ± 0.21 0.481
Biparietal diameter_24 weeks’ gestation 58.76 ± 3.87 57.64 ± 2.38 0.081
Head circumference_24 weeks’ gestation 214.32 ± 28.05 214.65 ± 7.59 0.938
Abdominal circumference_24 weeks’ gestation 191.39 ± 13.27 187.69 ± 8.61 0.099
Femur length_24 weeks’ gestation 41.74 ± 2.83 41.98 ± 2.19 0.621
Biparietal diameter_30 weeks’ gestation 80.74 ± 2.53 80.18 ± 4.09 0.394
Head circumference_30 weeks’ gestation 292.68 ± 8.34 291.91 ± 12.91 0.711
Abdominal circumference_30 weeks’ gestation 274.73 ± 31.41 274.13 ± 22.26 0.912
Femur length_30 weeks’ gestation 60.25 ± 3.44 60.23 ± 3.28 0.983
Biparietal diameter_37 weeks’ gestation 92.33 ± 2.57 92.21 ± 2.63 0.823
Head circumference_37 weeks’ gestation 327.81 ± 17.1 330.4 ± 7.26 0.33
Abdominal circumference_37 weeks’ gestation 327.92 ± 42.88 334.47 ± 14.08 0.313
Femur length_37 weeks’ gestation 71.29 ± 2.46 72.21 ± 2.26 0.049

Figure 1. Lower phylogenetic diversity (PD) index in the GDM relative to HCs. (a) Venn diagram displaying that 1057 of 1309 OTUs 
were detected in the two groups, while 125 and 127 OTUs were unique to GDM subjects and HCs, respectively (n = 48, HC; n = 59, 
GDM). (b) α-phylogenetic diversity analysis showing that GDM group was characterized by lower phylogenetic diversity (PD) index 
relative to control group. (c-e) There was no difference of other three indexes (shannon, chao, and ace) between the two groups. 
Abbreviations: gestational diabetes mellitus, GDM; healthy controls, HCs; operational taxonomic units, OTUs.
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(p = .037), rather than PC1 (p = .374), of the 
PCA analysis (Figure 2a).

The microbial signatures responsible for 
distinguishing GDM from HC

Next, Linear Discriminant Analysis Effect Size 
(LEfSe) was used to identify the key gut microbes 
responsible for distinguishing the GDM patients 

from HCs. In total, 18 differential OTUs were iden-
tified (Figure 2b, and Table S1). Compared to HCs, 
patients with GDM were characterized by nine 
enriched OTUs mainly belonging to the 
Lachnospiraceae family (4 OTUs: OTU 247, 645, 
672, and 1089), and 9 depleted OTUs mainly of the 
Enterobacteriaceae (3 OTUs: OTU 123, 725, and 
1136) and Ruminococcaceae (3 OTUs: OTU93, 
229, and 1016) families. These 18 differential 

Figure 2. Gut microbial and metabolic characteristics of GDM relative to HCs. (a) At the OTU level, Principal Component analysis 
(PCA) showing a discriminative trend of microbial composition between patients with GDM and HCs (PERMANOVA, p = .005). In the 
PC2 not but PC1 of PCA, the GDM group was significantly different from the HC group. (b) Using linear discriminant analysis (LEfSe, 
LDA>2.0), 18 differential OTUs responsible for the discrimination between two groups were identified. These enriched OTUs in GDM 
group were primarily belonged to family Lachnospiraceae (OTU 247, 645, 672 and 1089); and these depleted OTUs were mainly 
assigned to family Enterobacteriaceae (OTU 123, 725 and 1136) and Ruminococcaceae (OTU 93, 229 and 1016). (c-d) The Partial least- 
squares discriminant analysis (PLS-DA) scores plot showing that the stool and urine metabolic signatures of GDM group were 
substantially different from that in HCs. (HC, n = 48; GDM, n = 59). Abbreviations: PC, Principal Component.
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OTUs belonged primarily to the phyla Firmicutes 
(13/18, 72.2%) and Proteobacteria (3/18, 16.7%).

Maternal stool and urine metabolic signatures are 
altered in GDM

Since gut microbiota modulate their host’s metabolic 
pathways, we used GC-MS based metabolomics to 
compare the metabolic signatures of GDM subjects 
and HCs. The stool and urine metabolic signatures of 
GDM subjects were significantly different from that 
of HCs (Figure 2c-d). In total, four fecal metabolites 
were responsible for discriminating between the two 
groups. Relative to HCs, GDM patients were enriched 
in two metabolites and depleted in two metabolites, 
all of which were mainly involved in amino acid 
metabolism (Figure 3a, and Table S2). In the urine 
samples, 15 metabolites differed between the GDM 
and HC groups. Compared with HCs, GDM patients 
were characterized by three up-regulated and 12 
down-regulated metabolites (Figure 3b, and Table 
S3). Functional clustering analysis showed that these 
urine metabolites were linked with amino acid and 
carbohydrate metabolism. Together, the stool and 
urine metabolomic analyses showed that GDM was 
characterized by disturbances of the host’s amino acid 
and carbohydrate metabolism.

Maternal glucose values and fetal physical 
characteristics correlate with altered maternal gut 
bacteria in GDM

To further explore potential correlations of key 
clinical indexes with altered gut microbiome in 
GDM, correlation analysis was performed. 
Overall, four blood glucose values including fasting 
blood glucose (FBG) value at 12 weeks’ gestation, as 
well as fasting and 1- and 2-h post-OGTT blood 
glucose values at 24–28 weeks’ gestation, all showed 
substantial correlations with a panel of bacterial 
OTUs (Figure 4). For example, two bacterial 
OTUs (Enterobacteriaceae_OTU 123 and 
Ruminococcaceae_OTU 93) were negatively 
correlated, and one bacterial OTU 
(Ruminococcaceae_OTU 229) was positively corre-
lated, with FBG level at 12 weeks’ gestation. This 
finding suggests the potential predictive value of 
this microbial panel for GDM. Moreover, at 
24–28 weeks’ gestation, two OTUs (229,992) were 

positively and two OTUs (253,511) were negatively 
correlated with fasting OGTT blood glucose values; 
three OTUs (247,672 and 992) were positively and 
one OTU (253) negatively correlated with 1-h post- 
OGTT glucose values; and three OTUs (93,253 and 
593) were negatively correlated with 2-h post- 
OGTT glucose values (Figure 4). Significantly, we 
found that Lachnospiraceae_OTU 645 was posi-
tively correlated with four indexes of fetal ultraso-
nography taken at 30 weeks’ gestation, including 
abdominal circumference, femur length, biparietal 
diameter, and head circumference. Importantly, 
these findings suggest gut microbiome disturbances 
are highly correlated with maternal blood glucose 
values and fetal physical characteristics as mea-
sured by fetal ultrasonography.

Co-occurrence network analysis of altered maternal 
gut bacteria, fecal and urine metabolites, and blood 
glucose levels

To explore potential reciprocal interactions between 
altered gut bacteria, fecal and urine metabolites, and 
glucose values, a co-occurrence network was con-
structed based on Spearman correlation analysis. 
We found that bacterial OTUs from the 
Enterobacteriaceae and Lachnospiraceae families 
formed strong co-occurring relationships with fecal 
and urine metabolites involved with carbohydrate 
and amino acid metabolism (Figure 5). The meta-
bolites involved with carbohydrate metabolism were 
also strongly correlated with those related to amino 
acid metabolism. For example, Trehalose, which was 
broadly correlated with carbohydrate and amino 
acid metabolites, was a vital node between the two 
metabolic pathways within this co-expression net-
work. Other metabolites, and bacterial 
Lachnospiraceae_OTU247, were correlated with 
FBG at 12 weeks’ gestation or OGTT blood glucose 
at 24–28 weeks’ gestation. These findings suggest 
that altered gut microbes and host metabolites 
formed a synergistic and nodal co-occurrence net-
work in GDM (Figure 5).

Microbial and metabolic markers can discriminate 
GDM from HC with high accuracy

Random forest analysis was used to explore whether 
microbial and metabolic markers can be used to 
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discriminate subjects with GDM from HCs. We 
found that individual marker panels of key bacterial 
OTUs, urine metabolites, or fecal metabolites 
could distinguish GDM from HC with area 
under the curve (AUC) values ranging from 0.843 
to 0.907 (bacteria: Enterobacteriaceae_OTU123 and 

Enterococcaceae_OTU253, AUC = 0.858; urine 
metabolites: Trehalose and 3-dehydroshikimic 
acid, AUC = 0.907; fecal metabolites: 
5-Hydroxyindoleacetic acid and valine, 
AUC = 0.843) (Figure 6a). Moreover, we found 
that a combinatorial marker panel comprised of 

Figure 3. Altered metabolites in fecal and urine samples of GDM. (a) Relative abundances of 4 fecal metabolites responsible for 
differentiation between the two groups. Compared to HCs, patients with GDM were characterized by 2 up-regulated metabolites (red) 
and 2 down-regulated metabolites (black). These metabolites were mainly involved in amino acid metabolism. (b) Similarly, GDM 
individuals were characterized by 3 up-regulated (red) and 12 down-regulated (black) urine metabolites relative to HCs (VIP>1, p < .05). 
These altered urine metabolites were mainly belonged to carbohydrate and amino acid metabolism.
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these six biomarkers could even more effectively 
differentiate GDM from HC (AUC = 0.957) (Figure 
6b), than could any individual panel alone. We also 
calculated the positive and negative predictive values 
of this combined marker, since these diagnostic sen-
sitivity and specificity measures are commonly used 
in clinical practice. We found that this combinatorial 
marker panel could discriminate GDM subjects 
from HCs with positive a predictive value of 82.6%, 
and a negative predictive value of 94.7%. The diag-
nostic performance of these marker panels was also 
validated by 10-fold cross-validation (Figure 6a-b), 
confirming their generalizability to GDM diagnosis.

Discussion

In this study, we examined gut microbiome com-
position, and fecal and urine metabonomics, in 
GDM and HC expectant mothers. We further 

analyzed correlations between gut microbes and 
metabolites, and clinical indexes. We found that 
patients with GDM were characterized by 
enriched Lachnospiraceae, and depleted 
Enterobacteriaceae and Ruminococcaceae, as well 
as disturbances of fecal and urine amino acid and 
carbohydrate metabolism. Moreover, bacterial 
OTUs from the Enterobacteriaceae and 
Lachnospiraceae families formed strong co- 
occurring relationships with several metabolites 
involved with host carbohydrate metabolism. In 
addition, we identified a novel combinatorial 
marker panel that could distinguish the GDM 
individuals from HCs with high accuracy. Our 
findings suggest that gut microbiota disturbances 
could potentially contribute to GDM pathogenesis 
by modulating the host’s amino acid and carbo-
hydrate metabolism, which provides a new ave-
nue by which to understand the basis of GDM.

Figure 4. Associations among glucose values, fetal ultrasonography indexes and altered gut bacteria. Heat map of the 
Spearman’s rank correlation coefficient of 20 clinical indexes and 18 gut bacterial OTUs adjusted with age and BMI. Different 
kinds of blood glucose values at 12 weeks’ (FBG level) and 24–28 weeks’ (OGTT) gestation showed substantial correlations with 
a panel of bacterial OTUs such as two OTUs belonged to Lachnospiraceae (OTU 93, 123). In addition, some of bacterial OTUs 
(eg. Lachnospiraceae OTU 645) were also correlated with the indexes of fetal ultrasonography such as abdominal circumference 
and femur length at 30 weeks’ gestation. Brown squares and blue squares indicate positive and negative associations, 
respectively. The statistical significance was denoted on the squares (*P < .05; +P < .01; $P < .001). Abbreviation: OGTT, 
Oral glucose tolerance test; FBG, Fasting blood glucose; BPD, Biparietal diameter; HC, Head circumference; AC, Abdominal 
circumference; FL, Femur length.
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We identified 18 differential bacterial OTUs 
responsible for this discrimination, which were pri-
marily from the phyla Firmicutes (72.2%). 
Interestingly, a previous study found that major dys-
regulations of 17 bacterial OTUs in third trimester 
GDM subjects were also assigned to Firmicutes 
(88.2%).16 Together, this study and ours demonstrate 

that alterations of Firmicutes are a hallmark of GDM. 
Further studies are needed to identify the specific 
Firmicutes bacterial strains involved, and uncover 
their roles in GDM. For example, exploration of 
whether fecal microbial transplants of candidate bac-
teria into germ-free mice can modulate blood glucose 
levels may be useful.

Figure 5. A co-occurrence network constructed from the relative abundances of differential bacterial OTUs, fecal and urine 
metabolites as well as blood glucose values in GDM subjects versus HCs. The spearman correlation analysis was used to explore 
the co-occurrence network. The relevant networks with Spearman’s correlation (r) > 0.25 or < −0.25 were shown. Overall, bacterial 
OTUs belonged to families Enterobacteriaceae and Lachnospiraceae formed strong co-occurring relationships with metabolites assigned 
to carbohydrate and amino acid metabolism. In addition, within this co-expression network, some of metabolites and bacterial OTU 
(Lachnospiraceae_OTU 247) also showed significant correlations with glucose values of FBG at 12 weeks’ gestation or OGTT at 
24–28 weeks’ gestation. These characteristic co-expression network formed synergistic relationships in GDM. Size of the nodes 
represents the fold changes (GDM relative to HC) of these variables. Red and blue dots indicate the increased and decreased relative 
abundances of variables in GDM subjects relative to HCs, respectively. Edges between nodes indicate Spearman’s negative (light blue) 
or positive (light red) correlation, edges thickness indicate range of p value (p < .01). Abbreviations: fasting blood glucose, FBG; oral 
glucose tolerance test, OGTT.
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In addition, we found that compared to HCs, 
GDM subjects had enriched Lachnospiraceae 
family OTUs, and depleted Enterobacteriaceae and 
Ruminococcaceae family OTUs. Consistent with 
these findings, a previous animal study reported 
that Lachnospiraceae OTUs were positively asso-
ciated with serum glucose levels.20 Significantly, 
Qin et al.10 reported that gut Lachnospiraceae bac-
teria showed a positive correlation with type 2 
diabetes mellitus (T2D). Here, we also found that 
two Lachnospiraceae OTUs (247 and 672) were 
positively correlated with 1-h post-OGTT glucose 
values at 24–28 weeks’ gestation. In contrast, we 
found lower Enterobacteriaceae abundance in 
GDM individuals relative to HCs. 
Enterobacteriaceae are facultative aerobes that 
anaerobically degrade sugars. These findings sug-
gest that enriched Lachnospiraceae and depleted 
Enterobacteriaceae may synergistically contribute 
to higher glucose levels in GDM.

Previously, using untargeted metabolic profiling, 
Zhao et al.21 found that the overall fecal metabolo-
mic signature of GDM was distinct from that of 
HC. They also found that fecal amino acid levels 

(e.g. leucine and alanine) were disrupted in patients 
with GDM. In line with these findings, disturbances 
of serum branched chain amino acids (e.g. alanine, 
glutamate, and serine) were also observed in 
GDM.22,23 In addition, Jiang et al.24 showed that 
changes in amino acids levels (isoleucine, tyrosine, 
and alanine) could predict subsequent incidence of 
GDM. These findings suggest potential critical roles 
for peripheral amino acid metabolism in the devel-
opment of GDM, although the outcomes were rela-
tively diverse. Here, we observed that GDM was 
characterized by disturbances of gut microbiota, 
and fecal and urine metabolomics. Furthermore, 
co-expression network analysis showed that altera-
tions of bacterial OTUs were substantially corre-
lated with glucose levels, as well as fecal and urine 
metabolites related to amino acid and carbohydrate 
metabolism. Prior evidence has consistently linked 
gut microbiome disturbances with T2D onset, via 
modulation of the host’s amino acid and carbohy-
drate metabolism.25,26 These findings suggest that 
disturbances of the gut microbiome may affect the 
occurrence of GDM and T2D through shared meta-
bolic pathways. Further metabolomic studies are 

Figure 6. Microbial and metabolic markers for discriminating GDM subjects from HCs. (a) Random forest analysis was used to 
quantify diagnostic performance of biomarker panels. Individual marker panels could distinguish patients with GDM and HC subjects 
with an area under the curve (AUC) ranging from 0.843 to 0.907, and the correct rate is 0.738 to 0.813 (bacteria: 
Enterobacteriaceae_OTU123, Enterococcaceae_OTU253, AUC = 0.858; urine metabolites: Trehalose and 3-dehydroshikimic acid, 
AUC = 0.907; fecal metabolites: 5-Hydroxyindoleacetic acid and valine, AUC = 0.843). (b) This combinatorial marker panel including 
these 6 markers yielded more robust diagnostic performance over that of separate microbial or metabolic markers (AUC = 0.957; 
correct rate: 0.869). The correct rates in brackets were calculated from the 10-fold cross-validation; the error values reflect the standard 
deviation of the correct rates.
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needed to identify the specific microbial metabo-
lites and pathways involved in diabetic onset and 
pathology.

Within this co-expression network, we found 
that the Enterobacteriaceae and Lachnospiraceae 
families formed strong co-occurring relationships 
with fecal and urine metabolites assigned to carbo-
hydrate and amino acid metabolism. In addition, 
we found that Lachnospiraceae_OTU247 was posi-
tively correlated with 1-h post-OGTT glucose 
blood levels at 24–28 weeks’ gestation. These find-
ings imply synergistic relationships between altered 
gut microbes and the host’s metabolism in GDM. 
Based on these findings, animal experiments to 
further identify the key gut microbial strains that 
regulate blood glucose would be of great value, and 
may lead to new therapeutic strategies for GDM.

Currently, machine learning such as random 
forest analysis is increasingly used in the medical 
diagnostics field.27,28 Using this strategy, here we 
found that separate microbial or metabolic markers 
could effectively discriminate the GDM individuals 
from HCs. Moreover, a combinatorial marker 
panel could distinguish GDM individuals from 
HCs with a positive predictive value of 82.6%, and 
a negative predictive value of 94.7%. These findings 
suggest that, similar to OGTT, both individual and 
combinatorial biomarker panels have noninvasive 
diagnostic potential for GDM. As all individuals 
were recruited from the same site for this study, 
another clinical study using larger multicenter sam-
ples should be performed to validate this diagnostic 
performance before further clinical advancement. 
The OGTT has been recommended to diagnose 
patients with GDM at 24–28th gestational weeks; 
however, OGTT is a relatively time consuming and 
invasive diagnostic method. As such, the novel 
potential diagnostic method based on our identified 
biomarkers for GDM, as described herein, may be 
a promising alternative.

Interestingly, we also found that bacterial OTUs 
(e.g. Enterobacteriaceae_OTU 123 and 
Ruminococcaceae_OTU 93) were correlated with 
FBG level at 12 weeks’ gestation. Currently, GDM 
is always diagnosed at 24–28th gestational weeks. 
Thus, our findings suggest that gut microbes may 
be able to predict GDM onset even earlier, which 
would allow for earlier identification and treatment 
of these high-risk individuals during the first 

trimester of pregnancy, and better treatment 
outcomes.

Our study is not without limitations. First, our 
findings cannot conclusively determine whether 
there is a causal relationship between gut micro-
biome dysbiosis and GDM, which should be further 
confirmed by fecal transplantation experiments. In 
addition, further animal studies should be carried 
out to explore how the interactions of bacterial spe-
cies and metabolites may affect the occurrence or 
onset of GDM. Due to the relatively limited resolu-
tion of the 16S rRNA sequencing method, further 
study using a high-resolution shotgun metagenomic 
sequencing method should be performed to identify 
the specific microbial species for GDM. It would also 
be interesting to perform dynamic metagenomic and 
metabolomic analyses, to uncover how the gut 
microbiome and its modulated metabolic pathways 
dynamically change in GDM.

Taken together, using multi-omics data, we out-
lined the landscapes and interaction networks of 
altered bacteria, and fecal and urine metabolites, in 
GDM. We found that disturbances of the gut 
microbiome may participate in the development 
of GDM through modulating the host’s carbohy-
drate and amino acid metabolism. Moreover, we 
identified a novel combinatorial marker panel that 
can discriminate GDM from HC with high accu-
racy. Our findings provide new directions to under-
stand the occurrence of GDM, and the potential to 
develop a new diagnostic method by which to non-
invasively screen for GDM in expectant mothers.

Materials and methods

Subject recruitment and sample collection

The study protocol was approved by the Ethics 
Committee of The First Affiliated Hospital of 
Chongqing Medical University. All participants 
signed a written informed consent before any pro-
cedure was performed. The diagnosis of GDM was 
performed based on the 75 g oral glucose tolerance 
test (OGTT) at 24–28th gestational weeks with 
following criterion:29 (i) without a history of dia-
betes; (ii) meeting one of the criteria: fasting blood 
glucose (FBG) ≥5.1 mmol/L or 1 h OGTT glucose 
values ≥10.0 mmol/L or 2 h OGTT glucose values 
≥8.5 mmol/L. Correspondingly, the pregnant 
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women who have normal glucose levels in OGTT 
were designated as healthy controls (HCs). All par-
ticipants have no other complications of pregnancy, 
diarrhea, and other gastrointestinal symptoms 
when the samples were collected. And the gestation 
fetuses have no chromosomal and structural 
abnormalities. All participants did not take any 
antibiotics, probiotics, or prebiotics within 1 
month prior to sampling. The indexes of fetal ultra-
sonography were acquired using the GE Voluson 
E8. Fetal Nuchal Translucency (NT) is measured 
from 11 weeks to 13 weeks and six days by trans-
abdominally to assess the risks of Down’s syndrome 
and other chromosomal abnormalities. A mid 
sagittal section image of the fetus is required, and 
the magnification of fetal head and upper thorax 
image should occupy the whole screen. The two 
hyperechoic bands on the back of the fetus should 
be measured at the widest part of the NT. 
Generally, fresh stool samples were collected from 
participants at 7:00–12:00 AM in our hospital, and 
frozen at −80 C until further analysis.

DNA extraction, PCR amplification, and Illumina 
MiSeq sequencing

The Illumina MiSeq sequencing protocol was per-
formed as we previously described.30,31 Briefly, 
microbial DNA was extracted from frozen stool 
samples using the OMEGA-soil DNA Kit (Omega 
Bio-Tek, USA) following manufacturer’s protocols. 
The V3-V4 regions of the bacterial 16S rRNA gene 
were amplified by PCR using primers 338 F (5ʹ- 
ACTCCTACGGGAGGCAGCA-3ʹ) and 806 R (5ʹ- 
GGACTACHVGGGTWTCTAAT-3ʹ). PCR reac-
tions were performed in triplicate 20 μl mixtures. 
Primers included an eight-base sequence unique to 
each sample. Amplicons were extracted from 2% 
agarose gels and purified using the AxyPrep DNA 
Gel Extraction Kit (Axygen Biosciences, Union 
City, CA). Purified amplicons were quantified 
using QuantiFluor™-ST (Promega, US) and paired- 
end sequenced (2 × 250) on an Illumina MiSeq 
platform according to the standard protocols.

16S rRNA gene sequence analysis

Raw fastq files were demultiplexed, and quality- 
filtered using QIIME (version 1.17, http://qiime. 

org/). The 250 bp reads were truncated at any site 
of more than three sequential bases receiving an 
average quality score <20. Reads shorter than 50 bp 
containing ambiguous base calls or barcode/primer 
errors were discarded. Chimeric sequences were 
checked by UCHIME and removed from subse-
quent analyses. The remaining high-quality 
sequences were clustered into operational taxo-
nomic units (OTUs) at 97% similarity. α-diversity 
was assessed using the species richness indexes 
(Ace and Chao) and species diversity indexes 
(Shannon, Phylogenetic diversity). Principal com-
ponent analysis (PCA) was used to visually evaluate 
the overall difference and similarity of bacterial 
communities between GDM and HC groups. To 
test statistical significance, the Kruskal–Wallis test 
was used for the two Principal Components (PC) 
derived from the PCA model. In addition, the per-
mutational multivariate analysis of variance 
(PERMANOVA) was used to test group 
differences.31 The key bacterial taxa responsible 
for discrimination between the two groups were 
identified using linear discriminant analysis 
(LEfSe) with linear discriminant analysis (LDA) 
>2.0.32

Fecal and urine metabolome analysis

Gas chromatography-mass spectrometry (GC/MS; 
Agilent 7890A/5975 C) was used to characterize 
the fecal and urine metabolic signatures as our 
previously published studies.33,34 Briefly, an HP- 
5 MS fused-silica capillary column was used to 
separate the derivatives. Helium was used as the 
carrier gas at a constant flow rate of 1.0 mL/min 
through the column. The injector temperature was 
maintained at 280°C. The obtained MS data were 
further analyzed by ChromaTOF software. The 
metabolites were identified by the Fiehn database. 
The GC/MS three-dimensional matrices com-
prised of peak indexes (RT-m/z pairs), sample 
names (observations), and normalized peak area 
percentages were imported into SIMCA-P + 14.0 
(Umetrics, Umeå, Sweden). Projection to latent 
structure discriminant analysis (PLS-DA) was 
used to distinguish the GDM subjects from 
HCs.35 By analysis of PLS-DA loadings, the differ-
ential metabolites attributing to the discrimination 
between the two groups were identified (variable 
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importance plot (VIP) >1.0, and p-values <0.05). 
Pathway analyses were carried out based on Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
Pathway Database.

Statistical analysis

Statistical analyses were carried out using SPSS version 
18 (SPSS, Chicago, IL, US). The continuous variables 
such as bacterial relative abundance and age were 
presented as mean ± standard error (SD) unless other-
wise indicated and compared between groups using 
Student’s t-test. Categorical data (eg.sex) were ana-
lyzed by Chi-square test. Statistical significance level 
was set at P < .05. The co-occurrence network was 
constructed based on the relative abundance of bac-
terial OTUs, fecal and urine metabolites related to 
GDM, as well as the clinical indexes using the 
Spearman’s correlation coefficient (r > 0.25 or < 
−0.25; p < .05). The generated co-occurrence network 
was visualized in Cytoscape. Random forest classifier 
(Python’s scikit-learn package) was performed to pre-
dict the discrimination between GDM and HCs.27 In 
each case, 500 trees were considered (other scikit- 
learn defaults were left unchanged) The receiver oper-
ating characteristic (ROC) curve was obtained (SPSS 
V.19.0) for the display of the constructed models, then 
the area under the ROC curve (AUC) was used to 
designate the ROC effect. Internal validation was per-
formed by 10-fold cross-validation.
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