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Abstract: A versatile equilibrium method for synthesizing ladder-like polyphenylsilsesquioxanes
(L-PPSQs) with various molecular weights (from 4 to 500 kDa) in liquid ammonia was developed. The
effect of diverse parameters, such as temperature, monomer concentration, reaction time, addition or
removal of water from the reaction medium, on the polycondensation process was determined. The
molecular weight characteristics and structure of the L-PPSQ elements obtained were determined
by GPC, 1H, 29Si NMR, IR spectroscopy, viscometry, and PXRD methods. The physicochemical
properties of L-PPSQs were determined by TGA and mechanical analyses.

Keywords: ladder-like polyphenylsilsesquioxanes; ammonia; condensation

1. Introduction

Polyphenylsilsesquioxanes (PPSQs) are important organosiloxanes with unique physic-
ochemical properties, for instance, high thermal and radiation resistance, high refractive
index, mechanical properties, and solubility in organic solvents such as chloroform, ben-
zene, toluene, dichlorobenzene, xylene, and tetrahydrofuran (THF) [1,2]. Due to these
properties, they are widely used as protective, dielectric, hydrophobic, heat-resistant
coatings, modifiers of organic and organoelement formulations [3–8], and materials for
optoelectronics [9,10].

The regular structure is yet another feature of PPSQs. PPSQs are usually obtained
by polycondensation of phenyltrichloro- or -trialkoxysilanes. The reaction conditions
determine the final structure of the PPSQ molecule [11]. As a result, it is possible to
obtain PPSQs whose molecules have polyhedral, hyperbranched, statistical, or ladder-
like structures.

Ladder-like PPSQs were first described by Brown et al. in 1960 [12], but their synthesis
and study of their properties have continued to attract the attention of scientists for many
decades. Such polymers having a molecular weight in the range of 106 Da can form strong
transparent films, with a high refractive index, and may find application as promising
polymer matrices, membranes, materials for waveguides, etc. [3,6,13–19].

There are several approaches to the synthesis of L-PPSQs. The first approach involves
the high-temperature (250 ◦C) polymerization of phenyltrichlorosilane hydrolysis products
in the presence of a strong base [1]. Soviet scientists also performed studies in this area.

Polymers 2021, 13, 4452. https://doi.org/10.3390/polym13244452 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-7062-5012
https://orcid.org/0000-0002-0345-8725
https://orcid.org/0000-0002-3050-3253
https://doi.org/10.3390/polym13244452
https://doi.org/10.3390/polym13244452
https://doi.org/10.3390/polym13244452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13244452
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13244452?type=check_update&version=3


Polymers 2021, 13, 4452 2 of 16

They identified various factors that affect the molecular weight and structural character-
istics of the resulting polymers [20,21]. An important result was obtained in a study that
demonstrated the reversible nature of the polymerization reaction and the stability of the
most thermodynamically stable form of polyhedral octaphenylsilsesquioxane. The search
for more efficient alternative approaches for synthesizing L-PPSQs continues. For example,
Zhang et.al. [22] suggested a method that involves the condensation of a preorganized
1,1,3,3-tetraphenyldisiloxane-1,3-diol monomer. This method assumes mild synthesis con-
ditions; however, it is a multistage method similar to that described above. It should also
be noted that the L-PPSQ elements obtained had relatively low molecular weights (up
to 2 × 103 Da). This approach was developed further [23,24] using ethylenediamine as a
template for the preorganization of PPSQs. After hydrolysis of this structure, L-PPSQs with
Mw = 5 × 104 Da were formed. Choi [25] suggested the simplest method for synthesizing
L-PPSQs that involved the hydrolysis of phenyltrimethoxysilane in the presence of K2CO3.
The key factor in this reaction is the concentration of the initial monomer. In fact, T10
polyhedral decamer was formed at low monomer concentrations, while L-PPSQs with MW
up to 1.5 × 104 Da were formed at high concentrations. It can be observed from the above
data that a versatile directed method for the synthesis of L-PPSQs with a predetermined
molecular weight (MW) has not been found to date.

In recent decades, there has been a growing interest in compressed gas media as new
solvents for chemical reactions, including condensed gases and supercritical fluids [26–29].
The main advantages of these media include the possibility of adjusting their dissolving
capacity and their instant removal from the reaction media. The latter feature is most
important since the product obtained in this way does not require expenses for purification
from the solvent.

Earlier, we developed a new method for the synthesis of phenyl-containing siloxanes
in ammonia media. The advantage of this method is that ammonia plays the role of both a
solvent and a catalyst. At the same time, the reaction products do not require purification,
since ammonia is removed from the reaction medium and can be reused in the future.
We have shown that phenylcyclosiloxanes, disiloxanes, and L-PPSQs with a molecular
weight of MW = 164 kDa can be obtained in an ammonia medium [30,31]. This method is
promising because it employs an active medium—namely, ammonia whose properties can
be altered in a wide range by varying the external conditions: pressure, temperature, and
concentration of initial reagents.

Ammonia is a large-scale product from the chemical industry [32] that can be applied
in various fields: fertilizers, refrigeration, medicine, etc. [33,34]. It should also be noted that
ammonia can be used in organic and inorganic synthesis as a reagent and solvent [35–38].
Therefore, it is actively used in the synthesis of amides and amines [39]. It is worth
noting separately that ammonia is used in the treatment and modification of polymers [37].
In organosilicon chemistry, ammonia is a key reagent in the synthesis of silazanes, an
important class of organosilicon compounds [40].

This article presents the results of our studies on the effect of various factors on the con-
densation of cis-tetraphenylcyclotetrasiloxanetetraol (cis-tetraol) in ammonia. The structure
and molecular weight characteristics of the resulting L-PPSQs, as well as physicomechan-
ical properties of the obtained samples, allow us to state that the process is versatile in
terms of controlling the structure and properties of the reaction products.

2. Results and Discussion
2.1. Synthesis

The condensation of cis-tetraphenylcyclotetrasiloxanetetraol (cis-tetraol) was per-
formed in high-pressure steel reactors (see Figure 1).
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Figure 1. General scheme of L-PPSQ synthesis in ammonia medium.

A certain amount of cis-tetraol was loaded into a high-pressure reactor, which was
then cooled to −50 ◦C, and ammonia was pumped using a flow controller. Then, the reactor
was immersed into a thermostatic bath at a given temperature. After a certain time, the
reactor was cooled to room temperature, ammonia was decompressed, and the polymer
was isolated.

To assess the solubility of the initial monomer and visualize the reaction, we carried
out an experiment in test tubes at room temperature (see Figure 2). As can be seen from
Figure 2a, the monomer dissolves in ammonia to form an ideal solution. The condensation
products begin to precipitate from the solution after 15 min (Figure 2b). The polymer
precipitated as a separate phase can be distinctly observed an hour later (Figure 2c).
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Figure 2. (a) Solubility of the monomer in ammonia, (b) 15 min after dissolution, and (c) 1 h
after dissolution.

The reaction products were analyzed by GPC, NMR, IR spectroscopy, PXRD, and
viscometry in solution.

2.2. Monomer Concentration Effect

The effect of monomer concentration on the condensation process was studied at a
temperature of 30 ◦C using a reaction time of 4 h (Figure 3, Table 1, Experiments 1–4).
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Table 1. Experimental data on the effect of monomer concentration, reaction time, and temperature.

Experiment Monomer
Concentration, wt%

Temperature,
◦C

Reaction
Time, h Mn, kDa Mw, kDa Mp, kDa Mw/Mn

1 2 30 4 4.6 9.1 6.1 1.9
2 10 30 4 5.1 11.1 6.8 2.2
3 20 30 4 4.2 8.1 5.1 1.9
4 60 30 4 3.8 7.1 4.0 1.9
5 20 30 4 4.2 8.1 5.1 1.9
6 20 30 8 5.1 10.4 6.3 2.0
7 20 30 13 5.8 12.7 7.8 2.2
8 20 30 24 6.4 14.5 8.5 2.3
9 20 30 168 6.3 14.9 8.7 2.4
10 20 30 4 4.0 7.6 5.1 1.9
11 - 30 4 8.2 18.2 10.6 2.2
12 - 30 4 9.4 22.1 12.0 2.4
13 20 30 4 7.8 15.5 9.4 1.9
14 20 50 4 14.4 34.1 14.7 2.4
15 20 100 4 60.1 144.1 95.3 2.4
16 20 150 4 189.9 477.9 461.7 2.5
17 20 200 4 145.5 461.6 361.6 3.2
18 20 300 4 13.0 95.2 56.4 7.3

It can be observed from the data presented in Table 1 (Experiments 1–4) that the
monomer concentration does not significantly affect the molecular weight characteristics
of the polymers obtained. It can be concluded from the above data that 10 wt% is the
optimal concentration of the monomer to produce a polymer with a higher molecular
weight under these reaction conditions. It should also be noted that a decrease in the
monomer concentration below 20 wt% results in low molecular weight products, as it can
be observed from the bimodal nature of the curves obtained in experiments 1 and 2. It can
be assumed that polyhedral compounds containing few hydroxy groups are formed in
this case. The effect of monomer concentration on the structure of the products was also
previously [24].

2.3. Reaction Time Effect

The effect of reaction time on the condensation process was studied at 30 ◦C and a
monomer concentration of 20 wt% (see Figure 4, Table 1, Experiments 5–9). The reaction
was performed for 4 to 168 h.
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Figure 4. GPC curves obtained in Experiments 5–9.

It can be observed from GPC data that the molecular weight of condensation products
ceases to increase after 24 h. Probably, the polycondensation reaction reaches dynamic equi-
librium due to the release of water in the condensation of cis-tetraol in the first stage. After
the release of water, MW growth occurs by the polymerization–condensation mechanism.
The growth of MW stops upon reaching an equilibrium. To confirm this assumption, we
carried out experiments using the “condensation–decompression–condensation” conse-
quent cycle. In this case, water resulting from the reaction is removed along with ammonia
from the reactor. It can be observed from Figure 5 that after the second condensation
(Experiment 12), the molecular weight ceases to increase significantly in comparison with
Experiment 11 (Table 1, Experiments 10–12), i.e., the condensation processes naturally slow
down as the concentrations of reacting groups decrease.
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The reaction time does not significantly affect the molecular weight characteristics of
L-PPSQs, as it can be observed from the data obtained.

2.4. Temperature Effect

The condensation of cis-tetraol was performed at temperatures from 30 to 300 ◦C for
4 h at 20% monomer concentration (Figure 6, Table 1, Experiments 13–18).
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The temperature of cis-tetraol condensation in ammonia has a significant effect on this
process as can be seen from the data obtained. As the temperature rises from 30 to 150 ◦C,
the MW of the product increases. The largest MW of the polymer was obtained at 150 ◦C
(16). A further increase in temperature results in a decrease in the MW of the reaction
products. This is due to the fact that the equilibrium is shifted towards the formation of
low-molecular-weight products at temperatures of 200 and 300 ◦C, which agrees with the
data published earlier [41,42].

Thus, we showed for the first time that it is possible to obtain ladder polyphenyl-
silsesquioxane with a certain molecular weight in the range of 8–500 kDa. To this end,
it is sufficient to vary the reaction temperature within 30–150 ◦C. A further increase in
temperature activates depolymerization processes, and hence, the MW decreases.

2.5. Water Effect

It appears that the presence of water in the system is an important factor affecting
the condensation of cis-tetraol in ammonia. Water is formed upon homofunctional con-
densation of silanol groups and limits the growth of L-PPSQ molecular weight, as shown
above. Its removal leads to a shift of equilibrium and an increase in the MW of the resulting
polymer. We found that an additional amount of water in the system also affects the
polycondensation process. Experiments with the addition of 3 × 10−2, 15 × 10−2, and
30 × 10−2 mmol% water (Experiments 19–21) into the reaction system were performed. An
increase in the water amount results in the formation of polymers with a lower molecular
weight, as can be observed from the data shown in Figure 7 and Table 2.
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Table 2. Data of experiments on the water effect.

Experiment Monomer
Concentration, wt%

H2O Concentration,
mmol%

Temperature,
◦C

Reaction
Time, h

HMWF [a]

Mw/Mn
LMWF [b]

Mw/MnMn,
kDa

Mw,
kDa

Mn,
kDa

Mw,
kDa

19 20 3 × 10−2 150 4 51.4 134.1 2.6 0.8 2.0 2.6
20 20 15 × 10−2 150 4 72.3 120.7 1.7 2.2 8.6 3.8
21 20 30 × 10−2 150 4 95.5 150.0 1.6 1.2 2.9 2.5

[a] HMWF—high molecular weight fraction; [b] LMWF—low molecular weight fraction.

It is likely that this effect may be associated with the reaction mechanism. We assume
that the mechanism of L-PPSQ formation in the system in question is largely similar to
the mechanism of high-temperature polymerization first suggested by Brown and subse-
quently studied in detail by Soviet scientists [41]. It involves the anionic polymerization of
phenyltrichlorosilane hydrolysis products, where potassium hydroxide acts as the initiating
agent. Accordingly, an increase in its amount should lead to a decrease in the product’s
MW and an increase in the fraction of side processes (depolymerization, chain transfer). In
our case, the addition of more water results in the formation of a larger amount of NH4OH
in the system. This compound may have an effect similar to potassium hydroxide under
liquid ammonia conditions. On the other hand, water is also released in the homocon-
densation of silanol groups. In this case, its additional amount displaces the equilibrium
towards the formation of low-molecular products. This assumption was proved by the
following experiment. At first, the residual silanol groups in the L-PPSQ sample were
blocked with trimethylchlorosilane, then its reaction with water was carried out. It can be
observed from Figure 8 that in this case, the siloxane bond is broken and a product with a
smaller molecular weight is formed.
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Figure 8. GPC curves obtained in Experiments 22—L-PPSQ with silanol groups blocked by
trimethylchlorosilane; 23—condensation product of sample 22 with addition of water.

It can be observed from Table 3 that the molecular weight of the L-PPSQ sample
decreases twofold.

Table 3. Data from experiments 21–24 with water.

Experiment Monomer
Concentration, wt%

H2O Concentration,
mmol%

Temperature,
◦C

Reaction
Time, h Mn, kDa Mw, kDa Mp, kDa Mw/Mn

22 20 - 150 4 102.7 283.2 276.5 2.8
23 - 30 × 10−2 150 4 54.4 136.1 110.2 2.5

21 20 30 × 10−2 150 4 1.2 2.9 1.5 2.45
24 - - 150 4 16.9 61.7 46.8 3.6

It should be noted that if the low-molecular-weight product obtained in Experiment 21
is subjected to the polymerization reaction again without water addition, a high-molecular
L-PPSQ can be obtained (see Figure 9, Table 3). In other words, the reaction is completely
reversible and this fact emphasizes its versatility. By adjusting the process parameters, it is
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possible to synthesize products with certain molecular parameters and also to convert the
polymer into the starting compounds for reuse.
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2.6. Isolation and Study of L-PPSQ Structure

To determine the structure and properties of the L-PPSQ samples obtained, we blocked
the residual silanol groups with trimethylchlorosilane in the presence of pyridine. After
that, the products were reprecipitated in the ethanol/THF system (Scheme 1) and analyzed.
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Table 4. Molecular weight characteristics of polymers 25–27.

Experiment Monomer
Concentration, wt%

Temperature,
◦C

Reaction
Time, h Mp, kDa Mw,

kDa Mn, kDa Mw/Mn Wt OH,
%w

WnmrOH,
%w Wt/W nmr

25 20 30 4 14.2 22.4 12.3 1.8 0.550 0.62 1.1
26 20 100 4 116.6 161.9 67.2 2.4 0.100 0.14 1.4
27 20 150 4 558.4 549.2 196.8 2.4 0.035 0.07 1.9
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It is known that L-PPSQ samples obtained by the classic high-temperature method
have a defective structure [43,44], i.e., the content of SiOH groups in the polymers exceeds
the theoretical value. The ratio of the measured and calculated values of the content
of hydroxy groups can provide information about the defectiveness of the polymers
obtained. It can be seen from the data in Table 4 that the defectiveness of the structure of
the synthesized polymers increases in proportion to the molecular weight. At the same time,
this value of sample 25 obtained under the mildest conditions is close to the theoretical one.
The content of SiOH groups regularly decreases with an increase in the MW of samples,
which indicates its predominantly linear-ladder structure. The results obtained from the
analysis of functional groups allow us to use L-PPSQ samples as accessible blocks for
synthesizing block copolymers as an alternative to linear/ladder-like polysiloxane block
copolymers used previously [7,45,46].

The three polymer samples isolated by this method were used to obtain films from 1%
solutions in toluene by casting onto cellophane support. PPSQ samples obtained at 100 ◦C
(26) and 150 ◦C (27) form hard transparent films, whereas the polymer sample with a lower
molecular weight obtained at 30 ◦C (25) is unable to form continuous films (see Figure 11).
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The ladder structure of polymers was confirmed by a set of physicochemical methods—
namely, NMR, IR spectroscopy, and PXRD.

2.7. NMR and IR Spectroscopy

The L-PPSQ samples synthesized (25–27) were studied by NMR and IR spectroscopy.
1H NMR spectra contain two main peaks at 6.2–7.8 ppm and −0.67–0.08 ppm belong-

ing to the PhSiO1.5 and terminal Me3SiO0.5 groups, respectively. Their 29Si NMR spectra
exhibit two peaks corresponding to PhSiO1.5 groups (−80 ppm) and Me3SiO0.5 terminal
groups (10 ppm).

The IR spectra of the L-PPSQ samples obtained show absorption bands typical of
phenyl groups (691, 727 cm−1), Si-O-Si bonds (1020–1120 cm−1), and Me3SiO0.5 groups
1254 cm−1). There are no stretching bands typical of –SiOH groups in the region of
3100–3500 cm−1. This fact confirms that silanol groups are completely blocked with
trimethylchlorosilane (see Figure 12).
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The NMR and IR spectroscopy data obtained agree with the results previously pub-
lished for L-PPSQ samples [47].

2.8. Powder X-ray Diffraction Analysis (PXRD)

Powder X-ray phase analysis (XRD) for samples 25–27 shows two distinct diffraction
halos, in good agreement with previous works. The first halo at 7.2–7.3◦ (d1), indicating the
intramolecular chain-to-chain distance (i.e., the width of each double chain) in the double-
chained, ladder-like molecule is narrow and sharp. It is indicated that L-PPSQs have a
sufficiently rigid skeleton in which there is limited movement around the longitudinal axis,
and the conformation is practically invariable. The second diffuse halo indicates that the
average thickness of the ladder-like polymer chain is 19.7–19.8◦ (d2) (see Figure 13, Table 5).
These values agree with the results described in the literature for L-PPSQs [48].
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Table 5. Values of PXRD parameters for polymer samples 25–27.

Experiment d1, nm d2, nm

25 12.2 4.5
26 12.3 4.4
27 12.2 4.5

2.9. Viscosity Measurements

Figure 14 and Table 6 show the values of the intrinsic viscosity of solutions of the
polymers in toluene at 37 ◦C and their molecular weights Mn calculated by the formula
[η] = 1.77 × 10−5 × M0.895. The formula was derived from a study of 18 molecular weights
(0.26–4.88) × 105 Mn of polymer fractions1 and is applicable in a wide range of molecu-
lar weights.
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Table 6. Molecular weight characteristics of polymers 25–27.

Experiment Mw, kDa Mn, kDa Mη, kDa [η], dL/g

25 22.4 12.3 15.6 0.1
26 161.9 67.2 73.3 0.4
27 549.2 196.8 442.5 2.2

It is worth noting that the reduced viscosity of polymer 25 nearly does not depend
on the concentration of the solutions studied. This dependence of the viscosity of L-PPSQ
solutions on MW coincides with literature data [49,50].

3. Exploration of L-PPSQ Properties
3.1. Thermal Characteristics

L-PPSQ samples were studied by the TGA method in air and in argon. The results
obtained are shown in Figure 15a,b and Table 7. The decomposition onset temperature
of the samples synthesized and the amount of solid residue after the end of thermal
transformations are in good agreement with literature data [51,52]. The onset temperature
of polymer samples grows with an increase in their molecular weight, both in air and
in argon. While the percentage of solid residue in the air atmosphere for all L-PPSQ
samples differs insignificantly (Figure 15a, Table 7), the percentage of solid residue in the
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argon atmosphere changes appreciably (Figure 15b, Table 7) symbatically with an increase
in the molecular weight. This effect may be due to the specifics of the elimination and
decomposition of phenyl groups that are responsible for the carbonization of the solid
residue of L-PPSQ with different molecular weights.
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Figure 15. TGA curves of polymers 25–27 obtained at a heating rate of 10 degrees/min: (a) in air; (b) in argon.

Table 7. Thermal data of polymers 25–27.

Experiment Td
5%,◦C
Air

Mres, wt%
Air

Td
5%, ◦C

Argon
Mres, wt%

Argon

25 527 52 464 75
26 536 54 557 85
27 537 56 587 87

It should be noted that the thermal characteristics obtained for polymer 27 are superior
to the results published previously [53].

3.2. Physical and Mechanical Measurements

The mechanical properties of polymers obtained at 100 and 150 ◦C (26 and 27) were
studied by the uniaxial extension method.

A film obtained from the polymer synthesized at 150 ◦C that had the largest molecular
weight (27) (see Figure 16, Table 8) showed the best mechanical characteristics. The values
of ultimate tensile stress (σ) and elongation at break (ε) found for polymer 27 match the
best characteristics of L-PPSQs reported in the recent literature [53].
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Table 8. Mechanical characteristics of polymers 26–27.

Experiment E, MPa σ p, MPa εp, %

26 1300 21 2
27 1700 44 6

Curve 26 is almost linear and corresponds to Hooke’s deformation. This suggests that
there is nearly no segmental mobility or mobility of macromolecules as a whole, which
are responsible for elasticity and plasticity, respectively, in this polymer. At the same time,
sample 27 behaves somewhat differently as it can be observed from the deviation of the
tensile curve from Hooke’s plot. It can be ascribed to the greater defectivity of sample 27
(Table 4). Defects can disrupt the structure of the double-stranded chain. So-called hinges,
i.e., places where rotation around the siloxane bond is possible, appear in it. It is likely that
segmental mobility appears in a molecule with a sufficient number of such hinges. As a
result, the ultimate deformation of sample 27 increases to 6%, which is three times larger
than that of sample 26.

4. Conclusions

A versatile method for the synthesis of L-PPSQs with controlled molecular weight
characteristics was developed for the first time. The effect of various parameters (tempera-
ture, monomer concentration, reaction time, addition, and removal of water to/from the
reaction medium) on the polycondensation process was studied. It was found that the
reaction temperature and amount of water in the system are the main parameters determin-
ing the molecular weight characteristics of L-PPSQs. The molecular weight characteristics
and structures of the polymers were confirmed by GPC, 1H, 29Si NMR, IR spectroscopy,
viscosity measurements, and PXRD. The high-molecular-weight L-PPSQs obtained are
capable of forming flexible transparent films with high mechanical and thermal characteris-
tics. The important factors of the new process include the possibility to produce functional
blocks with various molecular weights and high-strength samples with a very promising
set of properties for critical practical applications. These processing characteristics, along
with the previously shown [29] possibility of complete recycling of the reaction medium,
i.e., ammonia, indicate their full compliance with the modern requirements for polymer
materials and processes of their production within the framework of the sustainable devel-
opment concept.
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