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Abstract: Background and Objectives: Calcium (Ca2+) signaling is critical for the normal functioning of
various cellular activities. However, abnormal changes in cellular Ca2+ can contribute to pathological
conditions, including various types of cancer. The maintenance of intracellular Ca2+ levels is achieved
through tightly regulated processes that help maintain Ca2+ homeostasis. Several types of regulatory
proteins are involved in controlling intracellular Ca2+ levels, including the sarco/endoplasmic
reticulum (SR/ER) Ca2+ ATPase pump (SERCA), which maintains Ca2+ levels released from the
SR/ER. In total, three ATPase SR/ER Ca2+-transporting (ATP2A) 1-3 genes exist, which encode for
several isoforms whose expression profiles are tissue-specific. Recently, it has become clear that
abnormal SERCA expression and activity are associated with various types of cancer, including
breast cancer. Breast carcinomas represent 40% of all cancer types that affect women, with a wide
variety of pathological and clinical conditions. Materials and methods: Using cBioPortal breast cancer
patient data, Kaplan–Meier plots demonstrated that high ATP2A1 and ATP2A3 expression was
associated with reduced patient survival. Results: The present study found significantly different
SERCA specific-type expressions in a series of breast cancer cell lines. Moreover, bioinformatics
analysis indicated that ATP2A1 and ATP2A3 expression was highly altered in patients with breast
cancer. Conclusion: Overall, the present data suggest that SERCA gene-specific expressioncan possibly
be considered as a crucial target for the control of breast cancer development and progression.

Keywords: SERCA pump; SERCA genes; breast cancer; SERCA alterations

1. Introduction

Intracellular calcium ion (Ca2+) signaling [1] pathways are involved in key cellular
processes, including excitation–contraction coupling, stimulus–secretion coupling, gene
expression, control of the cell cycle, cell motility, autophagy, and apoptosis [2–4]. The
cytosolic Ca2+ concentration is tightly maintained (~10−7 mol/L), with small amounts
being released from several organelles (~10−5 mol/L) or through influx from the extracel-
lular reservoir (~10−3 mol/L), that can generate marked signals to activate downstream
signaling cascades [5]. However, prolonged intracellular Ca2+ elevation can be harmful and
induces cell death [6]. Alteration/deregulation of Ca2+ signaling is a feature of numerous
types of diseases, including cancer, heart failure, and neurodegenerative diseases [1]. The
sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) belongs to the P-type
pump family, which includes a large number of evolutionarily related Ca2+ pumps. There
are three SERCA ATPase SR/ER Ca2+-transporting (ATP2A)1-3 eukaryotic genes that exist,
which encode for 14 isoforms with tissue-specific expression profiles [7–10]. All of the iso-
forms have 75% homology and are cell-type-dependent [11]. SERCA1 has two transcripts,
1a and 1b, which are present in adult and fetal skeletal muscle, respectively [12]. SERCA 2
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consists of two transcripts, 2a, which is mostly found in cardiac and adult skeletal muscle,
and 2b, which is abundant in both adult and fetal cardiac and skeletal muscles as well as in
non-muscle cells. SERCA3 can be transcribed to three isoforms, SERCA3a–3c, all expressed
in non-muscle cells [13]. All SERCA isoforms have been reported to be key players in cancer
progression, proliferation, and survival [13,14]. Several studies have reported alterations
in SERCA gene-specific expression in various types of cancer, suggesting that levels of
SERCA may be potential therapeutic targets and biomarkers in cancer [1].

Cancer development and progression towards metastasis are known to be associated
with alterations in post-translational modifications, gene copy numbers, epigenetics, and
metabolic changes [15–18]. These changes are frequently observed as a result of alterations
of the Ca2+ flux across the plasma membrane or across intracellular organelles [1].

Alterations in the structure of the ATP2A2 gene have been reported in colon and
lung cancer. Specifically, 13 different novel alterations of the ATP2A2 gene have been
reported in 27 of 416 alleles in patients, including intronic deletions, single-nucleotide
alterations, missense mutations, and intronic insertions. Conversely, reduced ATP2A2
expression levels due to alterations in gene-promoter activity have been found in patient
tissue biopsies and may be an early event in tumorigenesis [7]. Additionally, ATP2A2
expression levels are significantly correlated with tumor grade and survival rates, where
high ATP2A2 expression has been detected in patients with glioblastoma [9]. In a separate
study, ATP2A3 gene downregulation has been reported in gastric and colon cancer types.
In contrast, ATP2A3 overexpression reduces cell viability by promoting apoptosis in breast
cancer cell lines [19].

A known SERCA inhibitor originally extracted from the plant Thapsia garganica is
thapsigargin, which is known to induce cell death in human hepatoma cells [19–22]. Thap-
sigargin has also been reported to reduce cell proliferation and induce apoptosis through
a caspase-dependent pathway [23]. Moreover, a modified version of thapsigargin, mip-
sagarin, is undergoing clinical trials and is considered to be a strong candidate for the
treatment of hepatocellular carcinoma [24]. Another study in breast cancer indicated the
involvement of SERCA3 in early stage lobular dysplasia, with low expression levels at
more advanced stages of lobular tumorigenesis [25]. In invasive breast carcinoma, SERCA3
expression levels are significantly decreased compared with that in normal patients, indi-
cating that SERCA3 expression is inversely associated with tumor differentiation and the
degree of aggressiveness/malignancy of ductal carcinoma [18,24–28].

There is a continued need to identify novel targeted therapies for the treatment of
breast cancer, in combination with low toxicity chemotherapy, especially for chemoresistant
triple-negative breast cancer (TNBC). This paper investigates the role and significance of
different calcium-dependent SERCA ATPase proteins in breast cancer development.

2. Materials and Methods
2.1. Cell Culture and Reagents

MCF10A (Michigan Cancer Foundation-10 human breast epithelial cells), MCF7
(Michigan Cancer Foundation-7), MDA231 (M.D. Anderson Metastasis Breast Cancer,
Houston, TX, USA”), T47D (mammary gland; derived from metastatic site: pleural effu-
sion) cells were provided by Barbara Ann Karmanos Cancer Institute (Detroit, MI, USA)
and cultured in Dulbecco’s medium supplemented with 10% fetal bovine serum and
1% penicillin/streptomycin (Gibco, Invitrogen, Waltham, MA, USA). Cells were grown
in a humidified atmosphere at 37 ◦C containing 5% CO2 and were routinely tested for
mycoplasma contamination.

2.2. Western Blotting

Total protein was isolated from cultured MCF10A, MCF7, MDA-MB-231, and T47D
cells with lysis buffer RIPA plus protease inhibitor cocktail. The homogenates were cen-
trifuged at 17.000× g for 15 min at 4 ◦C. The supernatants were collected, and protein
concentration was measured with Bradford protein assay (Bio-Rad protein assay, Hercules,
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CA, USA). A total of 30 µg of protein samples was loaded each time into SDS-PAGE gels
and transferred to nitrocellulose membranes (Whatman, Maidstone, UK) using the semi-
dry transfer system (Bio-Rad). The membranes were blocked with 5% dry milk dissolved
in Tris-buffered saline (1×) containing 0.1% Tween-20 for 1 h at room temperature (RT).
The membranes were incubated with primary antibodies at 4 ◦C overnight, followed by
secondary antibodies for 1.30 h at RT. The primary antibodies in the Western blot were
mouse anti-Serca 1 (Abcam, Cambridge, UK, ab-2819), mouse anti-Serca 2 (Abcam, ab-2861),
rabbit anti-Serca 3 (alomone labs, ACP-014), and mouse anti-beta actin (Sigma, Kawasaki,
Kanagawa, A5441). The secondary antibodies were rabbit anti-mouse IgG (Sigma, A9044)
(1:20.000 dilution) and goat anti-rabbit IgG (Sigma, A6154) (1:10.000 dilution). The protein
bands were detected using the Western Luminescent Detection Kit. Western blot images
were analyzed using ChemiDoc XRS system (BioRad) with actin used as the protein control,
as previously described.

2.3. Cancer OMICS Data Analysis

UALCAN is a web-based resource platform using pancancer gene expression analysis
from TCGA OMICS data. Tumor Subgroup Gene Expression and Survival Analyses were
downloaded from UALCAN [29]. The expression of ATP2A1, ATP2A2, and ATP2A3 was
analyzed in order to explore their expressions in breast cancer.

2.4. Data Analysis from Patients with Breast Cancer from cBioPortal

For TCGA pancancer atlas, expression data n = 1084 samples (publicly available cases)
of breast cancer downloaded from the cBioPortal website https://www.cbioportal.org,
accessed on 7 May 2021 in the form of z-score-transformed data were used.

2.5. Statistical Analysis

Statistical analysis was performed using ANOVA followed by a Dunnett’s post hoc
test. p < 0.05 considered statistically significant.

3. Results

To determine the expression levels of SERCA-A1, A2, and A3 in breast cancer cells,
the present study examined the protein expression profiles in MCF-7, MDA 231, and T47D
cells and compared them to a non-transformed mammary breast cell line, MCF-10A. As
Figure 1 demonstrates, SERCA-A1 expression was significantly higher in the MCF10A
cells vs. the MDA 231 and T47D cell lines. SERCA-A2 was also significantly higher in the
MCF-7, T47D, and MDA231 cells vs. the MCF10A cells. In contrast, SERCA-A3 expression
levels were reduced in the MCF-7 and T47D cells. These findings suggested a differential
expression profile of SERCA-A1-3 in various subtypes of breast cancer cell lines.

Subsequently, for the present study, we performed bioinformatics analysis using
the cBioPortal database of clinical samples. As indicated in Figure 2A,B SERCA-A1-3
expression levels were elevated and altered in patients with breast cancer, where further
analysis (Figure 3A–C) showed that SERCA-A1, A2, and A3 had a differential expression
profile in breast cancer subclasses, including luminal, HER2-positive, and TNBC. As such,
ATP2A1 was found to be expressed at slightly higher levels in luminal, HER2-positive,
and TNBC types vs. normal samples. ATP2A2 expression levels were not altered in any
of the subclasses of breast cancer vs. normal samples. Interestingly, ATP2A3 expression
levels exhibited a trend of increased levels in the luminal and HER2-positive samples vs.
the normal controls and marginally increased in TNBC vs. normal samples (Figure 3A–C).
Moreover, SERCA-A1, A2, and A3 differential expressions were observed in individual
patients with colorectal adenocarcinoma, liver hepatocellular carcinoma, and prostate
adenocarcinoma (Figure 4).

https://www.cbioportal.org
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(B) ATP2A2 expression in breast cancer subclasses. (C) ATP2A3 expression in breast cancer subclasses.
Normal n = 114, luminal n = 566, HER-positive n = 37, and triple-negative n = 116. Data collected
from: http://ualcan.path.uab.edu/.
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Figure 4. Expressions heatmap of SERCA isoforms in colorectal adenocarcinoma, liver hepatocellular
carcinoma, and prostate adenocarcinoma. All data (TCGA PanCancer Atlas) collected from https:
//www.cbioportal.org/.

Finally, a strong association between the specific expression profiles of the various
SERCA genes and the survival rates of patients with different breast cancer subclasses
was observed, as shown by Kaplan–Meier plots (Figure 2A). These data indicated that the
reduced survival rates were associated with differential expression of the SERCA pump
subunits. The high expression level of ATP2A3 was associated with a significant reduction
in the monthly survival rates. Similarly, the ATP1A1 lever was elevated and affected breast
cancer patients’ survival, whereas ATP2A2 seemed to be neutral in respect to survival.

Potentially, the present results could be considered as indicative of a crucial role of
SERCA in breast cancer and thus a possible target for a new generation of treatments.

4. Discussion

The present study investigated the association between altered SERCA-specific gene
expression levels in various breast cancer subtypes.

Analyzing TCGA and RNA sequencing data of patients with breast cancer showed
that SERCA-A1 and SERCA-A3 levels were increased in tumor samples vs. normal samples.
Additionally, this SERCA-specific gene expression was correlated with the malignancy
and prognosis of the breast cancer cell lines. These results supported the potential role of
SERCA in the development of breast cancer. However, in order to reveal the soundness of
these data, those should be validated in vitro on cell lines originated from each subtype
and also in large cohorts of patients.

Several previous studies support the findings of the present study, including the link
between ATP2B2 and ATP2A3 in cancer, as well as the hypothesis that ATP2B3 might serve
as a possible cancer biomarker [7,18,29,30].

Intracellular Ca2+ signaling plays a key role in mediating pathways such as cell prolif-
eration, differentiation, and survival. Ca2+-dependent release of Ca2+ from the ER that is
mediated by secondary messengers, such as inositol-1,4,5-tris-phosphate, depends entirely
on SERCA activity [31–34]. Therefore, SERCA-dependent Ca2+ transport and SERCA activ-
ity constitute a major negative feedback mechanism in the mobilization of Ca2+ within the
cell. As such, SERCA-regulated Ca2+-concentration-dependent pathways are a key com-
ponent to cellular Ca2+-related signal transduction pathways, that if altered, can lead to a
cascade of events that can affect various cellular processes, including cellular proliferation.

A number of experimental studies have shown that changes in Ca2+ levels play an im-
portant role in breast cancer prevention and breast cancer cell proliferation [35]. Moreover,
SERCA activity and Ca2+ uptake are critical for the development of the differentiated breast
acinar phenotype, and defects in Ca2+ accumulation in the ER are associated with altered
SERCA expression. These alterations may be involved in the early steps of breast cancer
tumorigenesis [36]. Furthermore, the finding that altered SERCA3 expression is associated
with several histological and molecular markers of ductal carcinogenesis indicates that
altered Ca2+ levels are associated with remodeling during tumorigenesis in the breast
epithelium [37].

https://www.cbioportal.org/
https://www.cbioportal.org/
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TNBCs are the most malignant form of breast cancer, and numerous pharmacological
trials on patients with TNBC have failed to yield beneficial results. Moreover, the molecular
changes underlying the switch between the different breast cancer subtypes towards TNBC
and their metastasis need to be further characterized. An improved understanding could
possibly lead to novel combinatorial therapies that could reduce the high and sometimes
fatal toxicity of chemotherapeutic drugs.

Altered SERCA isoform expression and SERCA-specific gene mutations have been
documented in various types of cancer, including lung, colon, and leukemia [7,38–42].
Progress in SERCA-specific isoform activities and their role in Ca2+ signaling will enhance
the understanding of how dysregulation in SERCA activity plays a role in tumorigenesis.
The present findings reinforce this knowledge in relation to the involvement of altered
SERCA-specific gene expression in breast cancer and highlight the need to identify specific
and selective pharmacological SERCA isoform inhibitors. SERCA isoforms are differen-
tially expressed in cancer vs. normal samples. ATP2A1 expression negatively affected
patient survival rates, especially in luminal, HER2-positive cancer and TNBC vs. normal
controls, whereas ATP2A2 levels remained unaltered. ATP2A3 expression was significantly
increased in luminal and HER2-positive vs. normal samples. Overall, high expression
levels were associated with a reduction in the survival rate. However, further clinical
studies on a larger sample of cancer patients are required to evaluate the present results.
The type of human sample used as well as the sample size are considered as the limitations
of the present study.

5. Conclusions

Concluding, our findings suggested that SERCA pump and altered Ca2+ signaling, as
well as dysregulation of Ca2+ homeostasis, had an effective relation, contributing to breast
cancer development and progression. A potential future challenge will involve the devel-
opment of novel therapeutic approaches targeting specific SERCA-related malfunctions
with the aim of limiting cancer development and progression.
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