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Abstract: Human monocytes/macrophages play a central role in the immune response and defense of
the host from influenza virus infection. They classically act as antigen-presenting cells for lymphocytes
in the context of an immune cell cluster. In that setting, however, monocytes/macrophages exhibit
additional, unexpected, roles. They are required for influenza virus infection of the lymphocytes in
the cluster, and they are responsible for lymphocyte apoptosis via their synthesis and expression of
the viral neuraminidase. Surprisingly, human alveolar macrophages, expected to be among the first
cells to encounter the virus, are not susceptible to direct infection by a human influenza virus but can
be infected when the virus is complexed with an antibody. Such monocyte/macrophage responses to
influenza virus challenge should be considered part of a very complex but quite effective defense,
since the common outcome is recovery of the host with development of immunity to the challenging
strain of virus.
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1. Introduction

Monocytes and macrophages are central to the development as well as expression of the human
immune response and its defense against influenza A virus (IAV) infection. Such cells are resident
in the respiratory tract [1–4], and additional monocytes/macrophages are rapidly and vigorously
recruited to the respiratory tract upon virus challenge [3–5]. Those recruited cells are susceptible
to infection by IAV, as are co-recruited lymphocytes [6,7]. The infection is abortive for both human
leukocyte populations, with synthesis and expression of viral proteins such as the hemagglutinin,
the neuraminidase, and the matrix protein, but without production of progeny virus [6,8–10].

Monocytes/macrophages participate in both the expression of innate immunity and in the
development of the adaptive immune response that is responsible for recovery from IAV infection.
In the former role, they can be formidable producers of interferon [4,11] and other cytokines [10],
for example. In the latter role, they have long been recognized as important accessory cells for antigen
presentation and activation of lymphocytes in response to the challenge [1,12,13]. In this brief review,
unexpected roles of resident and recruited human monocytes/macrophages will be presented along
with their classic role as antigen-presenting cells in response to human IAV infection.
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2. Dichotomy in the Human Monocyte/Macrophage Antigen-Presenting Accessory Cell Function
for Lymphocyte Responses to IAV Challenge

Early studies of human peripheral blood mononuclear cells (PBMC, consisting of
monocytes/macrophages (PBM) and lymphocytes) documented that IAV infection resulted in a
depression [14,15] or actual suppression [16] of standard measures of human cellular response, such as
PBM-supported lymphocyte proliferation in response to stimulation by mitogens. Experiments using
separated and recombined IAV-infected or sham-infected purified PBM and lymphocytes in cross-over
assays indicated that the reduced proliferative response to phytohemagglutinin (PHA) was due to
effects of the virus on the PBM [17]. Notably, however, aliquots of the IAV-exposed cells that responded
poorly to mitogen stimulation were shown in concomitant assays to proliferate vigorously in response
to IAV itself [16]. IAV-infected PBM actively supported IAV-specific lymphocyte activation and
proliferation [16,18,19]. Furthermore, as noted above, the PBM actively responded to the IAV challenge
in other ways, such as by the production of multiple cytokines, including interferon, interleukin (IL)-1,
and tumor necrosis factor (TNF)α [10,11,20]. Thus, the accessory cell and other functions of PBM
appeared to be focused on response to the challenging IAV [21].

It is reasonable to ask why PBM accessory cell function is reduced for responses to non-IAV
stimulation. One possible host defense-related reason may be that proliferating cells show greater
replication of IAV proteins [9], and it would benefit the host to limit such factories for the virus, having
only lymphocytes responding specifically to the virus able to proliferate. Such observations may
nonetheless be aligned with the widely held concept that a viral infection, such as due to IAV, can result
in generally depressed cellular immunity [22].

Notably, the initiation of an immune response to IAV challenge involves the development of
immune cell clusters between PBM and lymphocytes [23,24]. This challenge-induced structure provides
the opportunity for PBM to act as accessory cells for the presentation of viral antigens to lymphocytes.
However, as documented in the following sections, the immune cell cluster also allows certain
unexpected PBM functions to occur during the immune response to IAV.

3. Human Monocytes/Macrophages are Directly Responsible for Lymphocyte Infection by IAV

Exposure of human PBMC to IAV resulted in the expression of viral antigens by both
monocytes/macrophages and lymphocytes [7], resulting from new synthesis of the proteins by the
cells [6]. If the cells were exposed to IAV as purified subpopulations of PBMC, monocytes/macrophages
again synthesized and expressed viral antigens, but highly purified lymphocytes did not show any
evidence of IAV synthesis or expression [6]. If the lymphocytes were exposed to IAV in co-culture
with monocytes/macrophages and subsequently highly purified, both the monocytes/macrophages
and lymphocytes synthesized and expressed viral antigens [6]. It was further shown that the
presence of the monocytes/macrophages in co-culture was required, since cell-free supernatant
fluids of either sham-infected or IAV-infected monocytes/macrophages did not facilitate lymphocyte
infection. The requirement of monocytes/macrophages for lymphocyte infection was evident for
strains from all three subtypes of human IAV (H1N1, H2N2, and H3N2) [6]. These data indicated that
monocytes/macrophages are directly responsible and required for IAV infection of lymphocytes in the
setting of the developing antiviral response.

Further studies demonstrated that the immune cell cluster plays an important role in IAV
infection of human lymphocytes, even as that structure also serves to support development of the
adaptive immune response [24]. Lymphocyte infection was decreased in a dose-dependent manner
when anti-intercellular adhesion molecule-1 (ICAM-1) antibody was added to PBMC cultures to
prevent clustering between monocytes/macrophages and lymphocytes. The studies also demonstrated
that both peripheral blood lymphocytes and human alveolar lymphocytes required the presence of
monocytes/macrophages for infection to occur [24]. Both CD4+ and CD8+ lymphocytes, and both
resting and proliferating lymphocytes, became infected only when exposed to IAV in the presence of
monocytes/macrophages.
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4. Human Monocytes/Macrophages are Directly Responsible for Lymphocyte Apoptosis in the
Setting of IAV Infection

After exposure to IAV in the presence of monocytes/macrophages, both infected and uninfected
lymphocytes in the culture developed apoptosis [25]. Fas-FasL signaling played a major role in
inducing apoptosis of the CD3+, CD4+, CD8+, and CD19+ subpopulations of lymphocytes after
exposure to the virus. Since a large percentage of lymphocytes became apoptotic, but only a small
percentage were infected, it was clear that direct effects from lymphocyte infection could not fully
account for the findings. Furthermore, removal of monocytes/macrophages from the culture after
exposure to IAV reduced the percentage of lymphocytes that underwent apoptosis [25].

Both depletion of monocytes/macrophages and depletion of cells expressing the IAV neuraminidase
reduced the extent of lymphocyte apoptosis in the cultures [26]. Apoptosis was also reduced by the
addition of anti-neuraminidase antibodies to the culture but not by the addition of anti-hemagglutinin
antibodies. The extent of lymphocyte apoptosis varied with exposure to different strains of IAV,
and the extent correlated directly with the production and expression of neuraminidase by infected
monocytes/macrophages [26]. Thus, monocytes/macrophages appear to have a critical role in the
development of lymphocyte apoptosis, even as they initiate an adaptive immune response and facilitate
IAV infection of lymphocytes.

5. Unexpected Findings Regarding Interactions of Human Alveolar Macrophages (AM) with IAV

Monocytes/macrophages can serve as required accessory cells for antigen-stimulated and
mitogen-stimulated proliferative responses, and they also play a central role in the regulation of
immune responses [1]. Alveolar macrophages (AM) have been considered to be important cells for
initiation and regulation of responses in the lung. AM may also regulate the growth and function of
other non-leukocyte cells of the lung, such as fibroblasts [27]. Thus, it was expected that they would
provide accessory cell support for lymphocyte responses to challenges such as streptococci or IAV.
An extensive series of experiments using autologous monocytes, monocyte-derived macrophages,
and AM from healthy human donors, co-cultured with lymphocytes, have raised questions about the
regulatory role of alveolar macrophages for initiation of immune responses.

AM and PBM differed in their ability to enhance mitogen- and antigen-stimulated proliferative
responses of purified autologous lymphocytes [1]. PBM supported, but AM did not support, lymphocyte
proliferative responses to either streptococcal or (inactivated) IAV antigens. Such differences in accessory
cell functions of the different monocytes/macrophages were not due to different kinetics of response,
nor were they due to differences in the proportion of monocytes/macrophages required to support
the lymphocyte responses [1]. Accessory cell support for lymphocyte proliferative responses to the
antigen streptokinase-streptodornase (SK-SD) was even enhanced as peripheral blood monocytes
matured to macrophages, but was absent when AM were added to the lymphocytes [28]. These data
indicated that human AM have functional characteristics different from autologous PBM and raised
the possibility that such differences may be important in both pulmonary immune homeostasis and in
the pathogenesis of pulmonary disease, including that due to IAV challenge.

Mixing experiments were performed in which variable numbers of the two macrophages, PBM and
AM, were co-cultured and assayed for support of SK-SD-stimulated proliferation of purified autologous
lymphocytes [28]. Again, AM did not support the antigen-stimulated lymphocyte response, and even
small numbers of AM suppressed SK-SD-stimulated lymphocyte proliferation supported by PBM in
co-culture. The data thus indicated that diminished support exhibited by AM for antigen-stimulated
lymphocyte responses was due at least in part to active suppression by the cells. Normal human AM
clearly did not support antigen-stimulated proliferation [1,28]. Such regulation may relate to what is
considered an important AM function in vivo, namely limiting inflammation in the lung [3,4].

IAV infection in vitro depresses accessory cell function of human PBM for lymphocyte
proliferative responses, as described in Section 2, above. The effects of IAV infection of AM and
autologous PBM were also compared by measuring the accessory support provided by these cells for
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phytohemagglutinin-induced proliferation of purified autologous lymphocytes [29]. Both PBM and
AM can provide accessory cell support for lymphocyte responses to such a broad mitogenic stimulus.
However, the cells again differ in this function and in the effect of IAV infection on the response.
Accessory cell function of sham-infected AM was less effective for support of mitogen-stimulated
lymphocytes proliferation than was that of sham-infected PBM. However, PBM support was significantly
depressed by IAV infection. In contrast, this support function was not altered for the autologous
IAV-exposed AM [29].

Differences between human autologous PBM and AM in the response to IAV, described above,
warranted further studies regarding the susceptibility of the AM to IAV infection. PBM, as expected,
bound and internalized IAV and synthesized viral RNA and proteins. In contrast, AM showed no
evidence of IAV infection despite equivalent exposure [2]. The AM did become infected and synthesize
IAV proteins if the cells were exposed to the virus in the presence of a sialidase inhibitor or an anti-IAV
antibody or, in the case of exposure to a fluorescein isothiocyanate-labeled IAV, in the presence of
anti–fluorescein isothiocyanate antibody. Thus, human AM are not susceptible to direct infection by
IAV but can be infected when exposed to the virus complexed with an antibody [2].

6. Different Human Monocyte/Macrophage Responses to Pandemic and Avian IAV

All of the studies discussed above examined human monocyte/macrophage (including alveolar
macrophages) interactions with seasonal human strains of IAV. The studies are consistent with the
concept that alveolar macrophages are immunosuppressive in contrast to the more pro-inflammatory
nature of monocytes/macrophages recruited to the lung in response to an infectious challenge [3].
In this section, we discuss studies of different human monocytes/macrophages exposed to pandemic or
highly pathogenic avian IAV.

Although a human seasonal H1N1 virus caused an abortive infection in human alveolar
macrophages, a highly pathogenic H5N1 virus from the 1997 Hong Kong outbreak replicated
productively in the alveolar macrophages [30] and hyperinduced proinflammatory cytokines in
human monocyte-derived macrophages [31]. Other studies examined differences between autologous
human monocyte-derived macrophages and alveolar macrophages and found that the former cells
produced virus and showed an excessive pro-inflammatory response when exposed to H5N1 virus.
The H5N1-exposed alveolar macrophages showed lower virus production and lower pro-inflammatory
mediator production [32]. Both H5N1/2004 and H5N1/1997 viruses were reported to replicate in
human monocyte-derived macrophages, with multicycle infection [33]. In contrast, others have
reported that human blood-derived macrophages were non-permissive for highly pathogenic H7N7
and H5N1 viruses [34]. There is also controversy in regard to the level of cytokine production by human
monocytes/macrophages in response to pandemic H1N1 IAV infection. There are reports of greater
cytokine production after exposure of human macrophages to avian H5N1 IAV compared to seasonal
IAV exposure, with a pandemic H1N1 IAV inducing higher levels of several cytokines compared with
seasonal IAV and with some, but not all, H5N1 strains of various clades [35]. The cytokine production
profiles with exposure to the various IAV did not correlate with the viral replication levels in human
macrophages. Another report indicated that human macrophages exposed to a pandemic H1N1 2009
strain of IAV induced a weak innate immune response [36]. The apparent differences in interactions of
alveolar macrophages and peripheral blood-derived monocytes/macrophages with avian, pandemic,
and seasonal IAV have been discussed previously, along with the identification of features of the
studies that might result in discordant observations [37].

Overall, current evidence indicates that highly pathogenic strains of IAV, such as the
avian H5N1 and the 1918 pandemic virus (which was an avian virus), can replicate in human
monocytes/macrophages, including alveolar macrophages, but most other IAV infections of
monocytes/macrophages are abortive, or nonproductive, and do not result in the release of infectious
progeny virions. It is not evident that any published studies of pandemic or avian IAV infections have
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examined the interactions of human monocytes/macrophages and lymphocytes that are described in
Sections 2–5 above.

7. Animal Model Studies of Monocytes/Macrophages and IAV

Substantial insight regarding IAV infection pathogenesis has been derived from animal models of
the infection. Animal models have allowed depletion of monocytes/macrophages, including alveolar
macrophages, in order to demonstrate the importance of the cells during IAV infection of the host
mouse [38,39] or ferret [40], the most commonly used animals. They have been especially useful in
delineating the effects of infection with highly pathogenic avian IAV isolated from humans, including
H5N1 viruses [41], as well as the avian virus that caused the 1918 human IAV pandemic [41]. They have
been used to show that the depletion of alveolar macrophages was associated with a decrease in the
expression of cytokines and chemokines that were otherwise observed to be increased with highly
pathogenic IAV [41]. Murine studies have also delineated the adverse effects of monocyte/macrophage
responses to IAV infection, such as the high numbers of macrophages accumulating in the lungs along
with pro-inflammatory cytokines in response to highly pathogenic H5N1 IAV and the 1918 human
pandemic virus (actually an avian virus) [42].

Mouse models have facilitated the examination of the effects of pregnancy on IAV-challenged
alveolar macrophages [43] and on the monocytes/macrophages of juvenile mice versus adults,
with persistent recruitment of monocytes to the lungs in the juvenile IAV infection [44], and allowed
for an investigation of the role of specific host factors in the infection, such as protection from severe
IAV infection by IL-36
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demonstrated using knockout mice and reconstitution with wild-type alveolar
macrophages [45]. Recently, murine models with expanded tropism for human pathogens have
been described [46], such as with implantation of human lung tissue into immunodeficient mice and
challenge with another respiratory virus, namely respiratory syncytial virus.

Several caveats apply to murine studies as reflective of human infections. First, murine infections
with human seasonal IAV strains, but not highly pathogenic avian strains such as H5N1 viruses
or the 1918 human pandemic strain (an avian virus) or the H1N1 2009 human pandemic strain,
require prior adaption to the species that are not naturally susceptible [47,48]. Second, mouse genetic
strains can differ with regard to the effects of IAV infection on monocytes/macrophages such as
alveolar macrophages [49]. Third, there are documented differences between mouse and human
immunology [50].

8. Conclusions

Human monocytes/macrophages exhibit several unexpected characteristics relating to IAV
infection, as described above: (a) an immunofocusing of monocyte/macrophage function, whereby
non-IAV-directed immune responses are depressed or suppressed concomitant with the development
of active IAV-specific responses; (b) responsibility of the monocytes/macrophages, in the setting of the
immune cell cluster of the developing antiviral response, not only for lymphocyte activation, but also
for lymphocyte infection by IAV, as well as lymphocyte apoptosis arising from monocyte/macrophage
expression of IAV neuraminidase; and (c) a surprising resistance of AM to direct infection by a
human IAV.

A recent report of sequential experimental H1N1pdm09 infection of volunteers indicated the
possibility of re-infection with the same strain of IAV [51]. In general, however, it is important
to recognize that, in the great majority of individuals challenged by a human IAV, the result of
combined monocyte/macrophage and lymphocyte responses is recovery and the establishment of
an important degree of immune defense against severe disease with re-exposure to the challenging
strain of virus. Thus, the unexpected characteristics described above should not be considered clearly
adverse aspects of monocyte/macrophage responses to IAV challenge but as part of a very complex but
quite effective defense.
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