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Abstract

The increasing number of scRNA-seq data emphasizes the need for integrative analysis
to interpret similarities and differences between single-cell samples. Although different
batch effect removal methods have been developed, none are suitable for
heterogeneous single-cell samples coming from multiple biological conditions. We
propose a method, scINSIGHT, to learn coordinated gene expression patterns that are
common among, or specific to, different biological conditions, and identify cellular
identities and processes across single-cell samples. We compare scINSIGHT with
state-of-the-art methods using simulated and real data, which demonstrate its
improved performance. Our results show the applicability of scINSIGHT in diverse
biomedical and clinical problems.

Background
Single-cell RNA sequencing (scRNA-seq) technologies enable gene expression measure-
ment at a single-cell resolution and have opened a new frontier to understand animal
development, physiology, and disease-associated molecular mechanisms [1–5]. Rapid
advances of scRNA-seq technologies have resulted in the generation of large-scale single-
cell gene expression datasets from different platforms in different laboratories [6, 7], using
samples that span a broad range of species, tissue types, and experimental conditions [8–
10]. The increasing number of scRNA-seq datasets emphasizes the need for integrative
biological analysis to help assess and interpret similarities and differences between single-
cell samples and to obtain in-depth insights into the underlying biological systems [11–
13]. For example, integrative analysis of human and mouse transcriptomes has identified
conserved cell types and transcription factors in pancreatic cells [14]; integrative analysis
of scRNA-seq data from multiple melanoma tumors has identified a resistance program
in malignant cells that is associated with T cell exclusion and immune evasion [15].
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A fundamental goal in integrative scRNA-seq data analysis is to jointly define cell
clusters, obtain their functional interpretation and annotation, and identify differentially
activated biological pathways in distinct cell types and biological conditions. However,
a key challenge for achieving this goal is the heterogeneity present in single-cell gene
expression data. As expression data from different sources are associated with vari-
ous types of technical effects [16], expression patterns of biological interest need to be
discerned from cell-specific and sample-specific effects in order to compare single-cell
transcriptomes across samples and biological contexts. In addition to technical variability,
genuine cellular heterogeneity is present in different cell types and cell states with distinct
behaviors and functions, and in response to different perturbations [17].
To help remove the batch effects emerging from scRNA-seq data generated by dif-

ferent sequencing platforms or library-preparation protocols, several batch correction
methods, including mnnCorrect [18], BBKNN [19], and BEER [20], have been developed.
However, batch correction methods assume that the differences between the single-cell
samples are purely technical and non-biological, and thus are not appropriate for analyz-
ing biologically different scRNA-seq datasets, such as tissue biopsy data from different
patients [21, 22] or data of the same tissue type from related species [14, 23]. In practice,
there are multiple integration methods that have been used to analyze single-cell gene
expression data from biologically heterogeneous sources [24–29]. For example, Seurat
[24] matches cell states across samples by identifying the so-called anchor cells in a lower-
dimensional space constructed with canonical correlation analysis. Similarly, Scanorama
[25] matches cell clusters by identifying mutual nearest neighbors in a lower-dimensional
space constructed with randomized singular value decomposition. scMerge [26] performs
clustering in each sample, matches clusters across samples, and then uses control genes
to correct for inter-sample variation. In addition, LIGER [27] identifies both shared and
dataset-specific metagene factors to enable integration of multiple single-cell samples.
Even though the above methods have been shown useful in batch-effect removal and

integrative analysis of multiple single-cell samples [30], they do not account for the situ-
ation where heterogeneous samples come from multiple biological groups (e.g., different
tissue types, experimental conditions, or disease phases), and thus may compromise
the results. To address this challenge, we propose a novel method named scINSIGHT
(INterpreting single cell gene expresSIon from bioloGically Heterogeneous daTa) to
jointly model and interpret gene expression patterns in single-cell samples from bio-
logically heterogeneous sources. scINSIGHT uses a new model based on non-negative
matrix factorization (NMF) [31] to learn gene expression patterns of distinct cell types
and biological conditions. Compared with existing tools, scINSIGHT has the following
advantages: (1) it enables integration of single-cell samples while accounting for their bio-
logical conditions; (2) it explicitly models coordinated gene expression patterns that are
common among or unique to biological conditions, enabling the decomposition of com-
mon and condition-specific gene modules from high-dimensional gene expression data;
(3) it achieves precise identification of cell populations across single-cell samples, using
common gene modules that capture cellular identities; (4) it enables efficient comparison
between samples and biological conditions based on cellular compositions and module
expression; (5) it discovers sparse and directly interpretable module expression patterns
to assist functional annotation.We evaluated the performance of scINSIGHT in both sim-
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ulation and real data studies, both of which demonstrated its accuracy and effectiveness
for interpreting single-cell gene expression from biologically heterogeneous data.

Results
scINSIGHT jointly models heterogeneous scRNA-seq datasets throughmatrix factorization

Wepropose a novel matrix factorizationmodel named scINSIGHT to jointly analyzemul-
tiple single-cell gene expression samples that belong to different biological conditions,
such as different disease phases, treatment groups, or developmental stages. To the best
of our knowledge, scINSIGHT is the first integration method for scRNA-seq data which
can directly account for group information. It assumes that each gene module is a sparse
and non-negative linear combination of genes, and each cell is jointly defined by the
expression of common and condition-specific modules. Given multiple gene expression
samples from different biological conditions, scINSIGHT aims to simultaneously iden-
tify common and condition-specific gene modules and quantify their expression levels in
each sample in a lower-dimensional space (Fig. 1A,Methods). To achieve joint matrix fac-
torization, we construct an objective function which aims to minimize the factorization
error, with constraints on the scale of the condition-specific components and the similar-
ity between condition-specific gene modules. We propose an algorithm based on block
coordinate descent [32] to obtain the solutions of the above optimization problem, and we
also provide approaches to select parameters in the scINSIGHT model (Methods). With
the factorized results, the inferred expression levels and memberships of common gene
modules can be used to cluster cells and detect cellular identities (Fig. 1B); the condition-
specific gene modules can help compare functional differences in transcriptomes from

Fig. 1 An overview of the scINSIGHT method. A A toy example demonstrating the factorization model of
scINSIGHT. In this example, we assume six single-cell samples from three biological conditions. Each sample,
represented as a gene expression matrix (X� , � = 1, . . . , 6), is factorized into two components, the expression
of two condition-specific gene modules (W�1 × Hj� ) and the expression of three common gene modules
(W�2 × V) (see Methods for details). B After normalization (Methods), the inferred expression of common
gene modules can be used to cluster cells and annotate cell types or states. C The inferred condition-specific
gene modules can be used to compare the transcriptome functions between conditions



Qian et al. Genome Biology           (2022) 23:82 Page 4 of 23

distinct conditions (Fig. 1C); and the reconstruction residuals are treated as technical
noises.
Our scINSIGHT method has the following features that distinguish it from existing

integration tools developed for gene expression data. First, unlike existing NMF models
such as iNMF [33], scCoGAPS [34], and SC-JNMF [35], scINSIGHT explicitly models
both common and condition-specific gene modules, allowing for the discovery of biologi-
cally meaningful differences among conditions and preventing them from being removed
as technical effects (Methods). Second, unlike integration methods that construct nor-
malized or integrated gene expression matrices in the original high-dimensional space
[24–26], scINSIGHT achieves sparse, interpretable, and biologically meaningful decom-
position of gene modules, which assist clustering and functional annotation. Third, the
expression levels andmemberships of common and condition-specific genemodules con-
veniently facilitate the comparison between samples and/or conditions in terms of cell
cluster compositions and active biological processes.

scINSIGHT reveals cellular identities by integrating simulated data across biological

conditions

To benchmark the performance of scINSIGHT with ground truth information, we sim-
ulated synthetic single-cell gene expression data with known cell type compositions and
condition-specific effects. Using our previously developed simulation tool scDesign [36],
we simulated six single-cell samples from three time points (T1, T2, and T3), with two
samples from each time point (seeMethods for details). We considered six cell types, with
three (C1, C2, and C3) present in all six samples and the other three (C4, C5, and C6) only
present in particular conditions (Table 1). Before integration, the observed data presented
distinct clusters corresponding to different cell types, samples, and conditions, making it
difficult to identify genuine cell types across samples (Fig. 2A).
To obtain cell clusters that could represent real cellular identities, we applied scIN-

SIGHT to the six gene expression samples, treating time point as the condition factor
(Fig. 2B, Methods). scINSIGHT identified six clusters based on the expression levels of
13 common gene modules, and the six clusters had a clear one-to-one correspondence
with the ground truth cell types. For comparison, we also applied six alternative meth-
ods, Seurat [24], LIGER [27], Harmony [28], scMerge [26], scGen [37], and Scanorama
[25] (Fig. 2C, D and Additional file 1: Fig. S1A-D), as they have shown preferable per-
formance in a benchmark study of batch-effect correction methods for scRNA-seq data
[30]. All methods were implemented following their suggested pipelines (Methods). As
ground truth cell type labels were known, we calculated the adjusted Rand index (ARI)

Table 1 Cell type compositions in the six simulated single-cell samples

Condition Sample Cell type

C1 C2 C3 C4 C5 C6

T1 S1 100 100 100 0 100 100
S2 100 100 100 0 100 100

T2 S3 100 100 100 100 0 100
S4 100 100 100 100 0 100

T3 S5 100 100 100 100 100 0
S6 100 100 100 100 100 0



Qian et al. Genome Biology           (2022) 23:82 Page 5 of 23

Fig. 2 Comparison of observed and integrated data in the simulation study. A–D tSNE plots of simulated
cells based on the observed (unintegrated) data (A) and integrated data by scINSIGHT (B), Seurat (C), and
LIGER (D). For each method, three tSNE plots colored by cell type, time point, or sample index are displayed.
E Adjusted Rand index calculated using clusters identified from the observed or integrated data. F
Integration scores of the observed and integrated data

between inferred clusters and true labels, and scINSIGHT and Scanorama had the highest
accuracy (0.99) in cluster detection (Fig. 2E). To quantitatively compare the integration
performance in terms of removing sample-specific technical effects, we defined an inte-
gration score to compare the frequency of cells from a sample in a local neighborhood
with their frequency in the whole population (Methods). The integration score is between
0 and 1, and a score of 1 indicates full integration. The seven integration methods all
demonstrated the ability to remove technical effects compared with the observed data
(Fig. 2F), and most methods had a score above 0.8. In addition, as the time-point effects
on the gene expression mean were known in the simulation process, we compared the
cosine similarity between the true time-point effects with the membership vectors of the
inferred time-specific gene modules (Additional file 1: Fig. S1E), which confirmed that
scINSIGHT is able to capture condition-specific gene modules.
To further evaluate the performance of scINSIGHT in different scenarios, we also con-

sidered three variants of the simulation study. In variant 1, only one cell type (C1) was
shared by all samples (C2 and C3 were removed). In variant 2, there existed a rare com-
mon cell type (the cell number of cell type C2 was reduced to 20 in each sample). In
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variant 3, there existed a rare condition-specific cell type (the cell number of cell type
C4 was reduced to 20). Our results show that scINSIGHT and Scanorama achieved the
highest ARI in all simulation variants (Additional file 1: Figs. S2-S4).

scINSIGHT identifies T cell states associated with response to immunotherapy in melanoma

To assess the performance of scINSIGHT on real data, we first applied scINSIGHT to
study immune cells in tumors of patients treated with checkpoint inhibitors such as anti-
PD-1 and anti-CTLA4 [38]. In summary, we obtained single-cell gene expression data of
6350 CD8+ T cells isolated from 48 tumor biopsies taken from 32 melanoma patients
treated with the checkpoint therapy. Based on radiologic assessments, the 48 tumor
samples were classified into 31 non-responders (NR) and 17 responders (R) [38]. The
observed (unintegrated) data presented ten clusters (Methods), some of which were dom-
inated by cells from a few donors (Fig. 3A). For example, the cluster enclosed in the oval
line mostly contained cells from a single donor, suggesting that the clustering analysis was
affected by technical or donor-specific variability in the expression data.
To identify clusters corresponding to distinct T cell states and understand the biolog-

ical difference between non-responder and responder samples, we applied scINSIGHT
to the 48 single-cell samples (using expression of CD8+ gene signatures), treating NR/R
as the condition factor (Methods). scINSIGHT identified six clusters (denoted as C1-C6)
based on the activities of nine common gene modules (Fig. 3B). Unlike the clusters in
the unintegrated data, these six clusters do not represent any obvious batch effect. We
also applied Seurat, LIGER, Harmony, scGen, and Scanorama to the 48 samples using
the same gene signatures (Methods; scMerge was not included since it encountered an
error). These five methods identified 12, 19, 12, 11, and 11 clusters, respectively (Fig. 3C-
D and Additional file 1: Fig. S5). To quantitatively assess the integration performance in
terms of removing sample-specific technical effects, we calculated the integration score
of each method. The six integration methods all demonstrated the ability to adjust for
technical effects compared with the observed data (Fig. 3E), and scINSIGHT (0.94) and
LIGER (0.95) had the highest scores. To compare the consistency within the identified cell
clusters, we calculated the Silhouette scores [39] (Fig. 3F), which suggested the highest
consistency in clusters identified by scINSIGHT. In addition to using CD8+ gene sig-
natures, we also repeated the above analysis using highly variable genes identified from
the data (Methods). Compared with alternative methods, scINSIGHT still achieved the
highest integration score and Silhouette scores (Additional file 1: Fig. S6).
Next, we investigated whether or not the computationally inferred clusters captured

cell states associated with response to immunotherapy. For each cluster, we used a logis-
tic regression model to evaluate if there was a significant association between the cluster
proportion and the NR/R condition, while treating the donor information as covariates.
Our analysis showed that four (66.7%) clusters identified by scINSIGHT were associated
with response to immunotherapy (using a P-value threshold of 0.01), with two clusters (C1
and C4) enriched in responder samples and two (C2 and C5) enriched in non-responder
samples (Fig. 4A). The median percentage of C1 and C4 were 7.4% and 24.1% higher in
responders, while the median percentage of C2 and C5 were 10.0% and 9.7% lower in
responders, respectively. Among the 12 clusters identified by Harmony and 11 clusters
by scGen, 41.7% and 45.5% clusters also had significantly different proportions between
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Fig. 3 Comparison of observed and integrated data of CD8+ T cells frommelanoma patients. A–D tSNE plots
of CD8+ T cells based on the observed (unintegrated) data (A) and integrated data by scINSIGHT (B), Seurat
(C), and LIGER (D). For each method, three tSNE plots colored by inferred cell cluster, NR/R condition, or
donor index are displayed. E Integration scores of the observed and integrated data. F Silhouette scores of
the observed and integrated data

NR/R samples, respectively (Additional file 1: Figs. S7-S8). In contrast, the clusters iden-
tified from the integrated data by other methods either did not present association with
response or had small difference between the NR/R samples (Additional file 1: Figs. S9-
S11). For example, the differences in median percentage of the most significant cluster
identified by Seurat, LIGER, and Scanorama were 1.7%, 5.6%, and 4.1%, respectively. This
comparison suggests that scINSIGHT has improved sensitivity in detecting cell states
enriched in specific biological conditions.
We checked the nine common modules identified by scINSIGHT and found five mod-

ules highly expressed in the R-associated or NR-associated clusters. Modules 2 and 6
were highly expressed in C1 and C4 (enriched in responder samples) (Fig. 4B). The ten



Qian et al. Genome Biology           (2022) 23:82 Page 8 of 23

Fig. 4 scINSIGHT identifies T cell states associated with immunotherapy response. A Percentage of the six
clusters identified by scINSIGHT in the 48 samples. P-values indicate significance of association between
cluster proportion and immunotherapy response, and were calculated based on the logistic regression
model. B, C tSNE plots based on the integrated data by scINSIGHT. Color indicates scaled expression of the
common gene modules

genes with largest coefficients in these two modules contain seven and nine markers of
natural killer T cells in the CellMarker database [40], respectively. In contrast, modules
3 and 5 were highly expressed in C2, and module 4 was highly expressed in C2, C3, and
C5 (enriched in non-responder samples) (Fig. 4C). In particular, the top ten genes in
module 4 contain five markers of exhausted CD8+ T cells. We compared the scINSIGHT-
inferred cell clusters with the cell states annotated in the original publication [38] and
found that C3 and C5 corresponded to exhausted CD8+ T cells and C2 corresponded to
exhausted lymphocytes (Additional file 1: Fig. S12). In contrast, C1 and C4 corresponded
to lymphocytes and memory T cells. These findings are consistent with existing stud-
ies showing a correlation between T cell exhaustion and immune dysfunction in cancer
[41]. We also compared the cell clusters identified by the other methods with the cell
type annotations, but they presented much lower consistency (Additional file 1: Figs.
S12-S13). For the condition-specific gene modules, we compared the KEGG pathways
[42] enriched in the top 100 genes with the largest coefficients in the R-specific or NR-
specific gene modules identified by scINSIGHT. We found that PD-L1 expression and
PD-1 checkpoint pathway in cancer and NF-kappa B signaling pathway were enriched in
the R-specific module but not in the NR-specific module. In addition to the above results,
we performed a co-expression analysis and confirmed that the identified gene modules
presented stronger within-module co-expression than between-module co-expression
(Additional file 1: Fig. S14).

scINSIGHT identifies B cell types associated with disease phase of COVID-19 patients

To further evaluate the performance of scINSIGHT on complex data, we applied it to
study B cells from peripheral blood samples of COVID-19 patients at different clinical
phases [43]. We downloaded single-cell gene expression data of 9741 B cells from 14
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blood samples of 13 donors. The 14 samples were divided into three phases: 5 healthy,
4 complicated (disease phase with severe signs of a systemic inflammatory response),
and 5 recovery/pre-discharge (disease phase with no supplemental oxygen and absent
inflammation markers) [43].
To investigate how B cell compositions and genemodules differ among the three phases,

we applied scINSIGHT to the gene expression data of the 14 samples, treating dis-
ease phase as the condition factor (Methods). scINSIGHT identified 13 common gene
modules and six phase-specific gene modules, which also demonstrated stronger within-
module co-expression than between-module co-expression (Additional file 1: Fig. S15).
Based on the common gene modules, scINSIGHT discovered ten B cell clusters across
the three phases (Fig. 5A). To annotate the B cell clusters with major B cell types, we
used the SingleR [44] method to classify the cells by comparing their transcriptomes
with bulk data references. We found a clear correspondence between scINSIGHT’s clus-
ter assignments and reference-based annotations, with C3 matched with naive B cells, C5
and C10 matched with plasma B cells, and the other clusters matched with memory B
cells (Fig. 5A). For comparison, we also performed the analysis using the observed data

Fig. 5 Comparison of observed and integrated data of B cells from COVID-19 patients. A tSNE plots of B cells
based on integrated data by scINSIGHT. Cells are colored by disease phase, inferred cluster membership, or
classified cell type (by SingleR). B tSNE plots of B cells based on the observed (unintegrated) data. Cells are
colored by classified cell type (by SingleR). C Adjusted Rand index of inferred clusters compared with the
SingleR classification. D Integration scores of the observed and integrated data. E Percentage of five clusters
identified by scINSIGHT in the 14 samples. F Expression levels of five common modules that were specifically
highly expressed in the five clusters in E. G Expression of the top three genes with the largest coefficients in
modules 4, 10, 3, 2, and 8. Expression levels were averaged within each cluster and then scaled across clusters
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or integrated data by the six alternative methods (Fig. 5B and Additional file 1: Fig. S16).
We calculated the ARI between the cluster assignments of each method and the reference
annotations, and scINSIGHT led to the best consistency (Fig. 5C). As the clusters iden-
tified from single-cell data might correspond to B cell subtypes not available in the bulk
reference, it was expected that the overall ARI was not very high. We also compared the
integration score of the seven methods (Fig. 5D), and all showed better performance than
directly using the observed data.
Next, we compared the proportion of the ten scINSIGHT-inferred clusters among the

three phases. For each cluster, we used a logistic regression model to evaluate if there
was a significant association between the cluster proportion and the clinical phase, after
accounting for the donor factor. We found two clusters, C3 (naive B) and C6 (memory
B), enriched in healthy samples, and three clusters, C5 (plasma B), C7 (memory B), and
C10 (plasma B), enriched in complicated samples (Fig. 5E). This is consistent with recent
studies showing that protective immunity induced by COVID-19 infection may rely on
the production of both memory B cells and plasma cells [45, 46]. In addition, we observed
that the median proportion of these B cell clusters in recovery/pre-discharge samples was
always between their median proportions in healthy and complicated samples, suggesting
that gene expression profiles during recovery from COVID-19 carry characteristics of
both healthy and complicated clinical phases.
To understand the transcriptome difference between the above five B cell clusters, we

identified representative gene modules for each cluster based on the expression of the 13
common modules detected by scINSIGHT (Fig. 5F). The results confirmed that C6 and
C7 were characterized by distinct modules and genes (Fig. 5G). Module 10 was specif-
ically highly expressed in C6, and had enriched GO terms associated with activating
signal transduction and T cell activation; module 2 was specifically highly expressed in
C7, and had enriched GO terms associated with regulation of inflammatory response and
neutrophil chemotaxis (Additional file 1: Fig. S17). As both GNLY and NKG7 had rela-
tively high expression in C6, we hypothesize that C6 represented a natural-Killer-like B
cell population [47], or it was annotated as B cell by mistake. In addition, C5 and C10
were two subtypes of plasma cells expressing modules with distinct functions. C5 was
characterized by module 3, which was associated with endoplasmic reticulum to cytosol
transport, while C10 was characterized by module 8, which was related to ATP synthesis
and oxidative phosphorylation (Additional file 1: Fig. S17).
We also compared the expression of phase-specific modules identified by scIN-

SIGHT and confirmed that genes with large coefficients in a condition-specific module
indeed had higher expression levels in samples belonging to that condition (Fig. 6A).
To compare the biological functions of the healthy-specific, complicated-specific, and
recovery-specific modules, we performed pathway enrichment analysis using the 100
genes with the largest coefficients in each module. We found that the healthy-specific
and complicated-specific modules had distinct sets of enriched terms, and the recovery-
specific module had overlapping terms with the former two in addition to its unique terms
(Fig. 6B). In particular, the complicated-specific module was enriched with genes involved
in interferon signaling, antigen presentation, and ATF6 activation, which play key roles in
innate immune response; the recovery-specific module was enriched with genes involved
in ER-to-Golgi transport and cell cycle, which is consistent with the observations in an
independent COVID-19 study [50]. The above results demonstrate scINSIGHT’s ability
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Fig. 6 Comparison of disease-phase-specific modules identified by scINSIGHT. A Relative expression levels of
condition-specific modules identified by scINSIGHT. For each module, we calculated the expression of the
100 genes with the largest coefficients based on Ŵ�1Ĥ� (� = 1, . . . , 14), and averaged the expression across
single cells in each sample. B Top 10 enriched REACTOME pathways [48, 49] in the condition-specific
modules identified by scINSIGHT

to help compare active biological processes between biological conditions, which cannot
be achieved by analyzing individual samples or by existing integration methods.

scINSIGHT detects dermal cell populations during murine skin wound healing

Lastly, we assessed the performance of scINSIGHT in a special case where only a sin-
gle sample is available from each condition. In this application, the condition-specific
components might capture both biological and technical differences in single-cell tran-
scriptomes, so we focused on the common gene modules identified by scINSIGHT when
investigating the results. The gene expression dataset we used was sequenced from der-
mal cells of wound dermis from mice in control or Hedgehog (Hh) activation conditions
[51]. The activation of the Hh pathway has been shown to induce hair follicle regeneration
during murine skin wound healing [51].
We applied scINSIGHT to the gene expression data of the two samples, treating con-

trol/treatment as the condition factor (Methods). scINSIGHT identified 11 common
gene modules and four condition-specific gene modules. As in the previous applications,
we observed stronger within-module co-expression than between-module co-expression
(Additional file 1: Fig. S18). Based on the 11 common gene modules, scINSIGHT dis-
covered 13 cell clusters across the two conditions. Using the average expression levels
of lineage-specific gene signatures [51], we annotated the cell clusters as six cell types
(Fig. 7A): Hh-activated fibrolasts (Ptch1, Lox, Dpt), Hh-inactive fibrolasts (Lox, Dpt),
muscle cells (Myh11, Rgs5, Notch3), endothelial cells (Pecam1, Cdh5, Vwf ), Schwann
cells (Plp1, Mbp, Sox10), and immune cells (Cd68, H2-Aa). We also performed the anal-
ysis on the observed data and integrated data by Seurat, LIGER, Harmony, scMerge,
scGen, and Scanorama (Additional file 1: Fig. S19). scINSIGHT achieved the highest Sil-
houette scores and integration score among all the methods (Fig. 7B, C). We compared
the inferred expression of the 11 common gene modules and found that module 1 was
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Fig. 7 Comparison of observed and integrated data of dermal cells. A tSNE plots of dermal cells based on
integrated data by scINSIGHT. Cells are colored by cell type or activation condition. B Integration scores of
observed and integrated data. C Silhouette scores of observed and integrated data. D Expression levels of
three common modules that were specifically highly expressed in fibroblasts. E Top enriched GO terms in
modules 1, 5, and 11

highly expressed in Hh-inactive fibroblasts and modules 5 and 11 were highly expressed
in Hh-active fibroblasts (Fig. 7D). The comparison also indicated the existence of two
sub-populations in Hh-active fibroblasts, with differential expression of modules 5 and
11. GO enrichment analysis showed that module 1 was relevant to extracellular matrix
organization and collagen-related biological processes, which are fundamental to fibrob-
last proliferation (Fig. 7E). In contrast, module 5, highly expressed in one sub-population
of Hh-active fibroblasts, was associated with epithelial cell proliferation and cellular
responses to metal ions, which promote wound healing. Module 11 was highly expressed
in the other sub-population of Hh-active fibroblasts, and it demonstrated overlapping
biological functions with both modules 1 and 5. The results of scINSIGHT together
revealed transition of cell fate in fibroblasts induced by Hh-activation, by integrating data
across the two conditions and identifying common gene modules. In addition, we found
that the clusters inferred by scINSIGHT demonstrated more specific expression of the
fibroblast signatures Lox and Dpt and the Hh-active fibroblast signature Ptch1 (Addi-
tional file 1: Fig. S20), suggesting that scINSIGHT had a high accuracy in detecting cell
populations across biological conditions.

Computational time andmemory usage

We recorded the running time and memory usage of scINSIGHT and the other six meth-
ods (Seurat, LIGER, Harmony, scMerge, scGen and Scanorama) in Table S1 (Additional
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file 1). In addition to datasets discussed in previous applications, we also considered a
mouse retina dataset with two samples [52, 53], 12 cell types, and 71,638 cells (Addi-
tional file 1: Fig. S21; Methods). Among the seven methods, scINSIGHT’s memory usage
is on the medium level. Regarding the running time, admittedly, scINSIGHT is slower
than the other methods, and we summarize the major reasons below. First, it requires
a more complex model to distinguish between technical signals, common biological sig-
nals, and condition-specific signals. Compared with LIGER which is also an NMF-based
method, scINSIGHT’s optimization is naturally more complex and takes more time. Sec-
ond, scINSIGHT includes internal steps to identify optimal parameters, so its running
time is expectedly larger than methods using user-specified parameters. For example,
LIGER has a function to select the dimensionality of factorizedmatrices, but this function
encountered errors for multiple datasets, and we had to directly input the parameters in
our analysis (Methods). scMerge also requires users to input the cluster number in each
single-cell sample. Even though scINSIGHT takes relatively more time than the other
methods, its performance is still acceptable to server users. Its overall running time for
datasets with 3,000 cells (6 samples), 4,680 cells (2 samples), 6,350 cells (48 samples),
9,741 cells (13 samples), and 71,638 cells (2 samples) are 4.5 h, 0.9 h, 2.8 h, 2.9 h, 36.4 h,
respectively.
To further reduce the computational time of scINSIGHT given large-scale data, we

have two suggestions for users. First, users can assign single cells to major cell types with
well-known marker genes, and then apply scINSIGHT to single-cell samples of the same
major cell type to reveal finer distinctions between cellular identities that cannot be deter-
mined using existing marker genes. Second, users can consider applying the Metacell
[54] method separately to each single-cell sample to group statistically equivalent cells
into metacells, thus reducing cell number in each sample, and then apply scINSIGHT to
samples of metacells.

Discussion
In summary, we benchmarked the performance of scINSIGHT in both simulation and
real data studies, in comparison with analysis without integration or with six alternative
integration methods. Using the ground truth information in simulation as a reference,
we confirmed scINSIGHT’s ability to accurately discover common and condition-specific
gene modules, and to precisely identify cellular identities based on the inferred expres-
sion of common gene modules. In the three real data applications, scINSIGHT repeatedly
demonstrated its effectiveness to analyze, compare, and interpret single-cell gene expres-
sion data across samples and biological conditions. Based on its identified cell clusters
and decomposed gene modules, scINSIGHT is able to discover T cell states associated
with response to immunotherapy in melanoma patients, B cell types associated with dis-
ease phase of COVID-19 patients, and dermal cell populations for murine skin wound
healing. The above analyses together show that scINSIGHT has higher accuracy and
interpretability than the other methods in both simulation and real data studies (Fig. 8).
Based on the applications to both simulated and real data, we summarize the advan-

tages of scINSIGHT as follows. First, it jointly defines cellular identities across multiple
single-cell samples, accompanied by characteristic gene modules which enable straight-
forward and transparent interpretation of each cell cluster’s function. Second, as cellular
identities are inferred based on common gene modules and not biased by sample-specific
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Fig. 8 Relative performance of scINSIGHT and the other integration methods. To evaluate the performance
on clustering (A), for each dataset, the relative performance of a method was calculated as its ARI or median
Silhouette score divided by the highest score on that dataset. To evaluate the performance on integration
(B), for each dataset, the relative performance of a method was calculated as its integration score divided by
the highest integration score on that dataset. In both cases, the method with a relative performance of 1 is
the best method on a dataset. In each heatmap, the methods are ordered by the average relative
performance across all datasets

or condition-specific effects, scINSIGHT allows accurate comparison of cell composi-
tion across samples and biological conditions. Third, the condition-specific gene modules
provide biological insights towards gene expression mechanisms in distinct but related
conditions, after adjusting for the difference in cell composition. The above information
is challenging to obtain if the single-cell samples are analyzed individually. A future direc-
tion to further improve the flexibility of scINSIGHT is to adjust its regularization term in
model (2) to account for more complex relationships among the biological conditions. For
example, when single-cell samples are frommultiple clinical phenotypes with a hierarchi-
cal structure of an ontology, such information can be incorporated into the regularization
term to more accurately identify condition-associated gene modules.
We would like to point out that scINSIGHT is not intended to replace existing batch-

effect removal tools. If it is known that the single-cell samples are from the same tissue
types, biopsies, or cell lines, and the main difference lies in the sequencing platform or
library preparation protocol, then it would suffice to use existing batch-effect removal
or integration methods to remove unwanted technical variation from the gene expres-
sion data. Additionally, if there are known biological differences which are not of interest,
existing methods might also achieve desirable results to align single-cell samples. Yet, in
this case, scINSIGHT is expected to identify cell populations with higher accuracy, as
clustering is performed after condition-specific effects are identified and removed.
In addition to single-cell gene expression data, several integration methods have been

used to integrate multi-omics single-cell data, including those of DNAmethylation, chro-
matin accessibility, in situ gene expression, and protein expression [24, 27, 55]. A potential
extension of the scINSIGHT model is to use common and modality-specific factors to
respectively account for highly correlated and uncorrelated expression patterns in data
samples from different assays. With this extension, we might use scINSIGHT to define
cellular identities with multi-omics data and to understand regulatory mechanisms of
gene expression and/or protein synthesis.

Conclusions
In this article, we propose a new method named scINSIGHT to address the problem
of integrating heterogeneous single-cell data from multiple biological conditions (i.e,
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groups). Based on a novel matrix factorization model developed for analyzing multi-
ple single-cell samples, scINSIGHT learns coordinated gene expression patterns that are
common among or specific to different biological conditions, offering a unique chance
to jointly identify heterogeneous biological processes and diverse cell types. In addition,
its identified gene expression patterns provide a convenient way to compare single-cell
samples across conditions such as different experimental groups, time points, or clinical
conditions. Our results show the applicability of scINSIGHT in diverse biomedical and
clinical problems.

Methods
The scINSIGHTmodel

We propose a matrix factorization model named scINSIGHT to jointly analyze mul-
tiple single-cell gene expression samples belonging to different biological conditions
(i.e., groups). The comparison between these conditions should be of biological interest,
and these biological conditions can be assigned based on phenotypes or experimental
conditions, such as different developmental stages, disease phases, or treatment groups.
scINSIGHT aims to simultaneously identify common and condition-specific genemod-

ules and quantify their expression levels in each sample in a lower-dimensional space.
Each gene module is represented as a non-negative linear combination of a subset of
coordinated genes. The common gene modules are universally expressed across condi-
tions, while the condition-specific gene modules are only highly expressed in specific
conditions.
We first introduce the scINSIGHT model and algorithm, then provide more details of

data processing and parameter selection in the subsequent sections. Suppose there are
L single-cell gene expression samples obtained from biologically heterogeneous sources.
Each sample is represented by a gene expression matrix, after read mapping and proper
normalization.We assume that these L samples can be divided into J biological conditions
(J ≤ L). For example, the biological conditions may correspond to experimental groups
(e.g., case and control), time points, or donor categories. We use index j� ∈ 1, 2, . . . , J to
denote the condition which sample � belongs to. Without loss of generality, we assume
the columns in these matrices represent genes and the rows represent individual cells.
We further assume that the Lmatrices share the same set of genes which are listed in the
same order. Then, our scINSIGHT model specifies that, for sample � (� = 1, 2, . . . , L),

X� = W�1Hj� + W�2V + E� , (1)

where [X�]m�×n is the gene expression matrix with m� cells and n genes for sample �;
[W�1]m�×Kj�

is the expression matrix of Kj� condition-specific gene modules for sample �;
[Hj� ]Kj�×n is the membership matrix of Kj� condition-specific gene modules for condition
j�, and it’s shared by all samples belonging to condition j� (in each row, genes with posi-
tive coefficients are considered as one condition-specific gene module); [W�2]m�×K is the
expression matrix of K common gene modules for sample �; [V ]K×n is the membership
matrix of K common gene modules, and it is shared by all L samples (in each row, genes
with positive coefficients are considered as one common gene module); E� is the residual
matrix for sample �. In addition, we require all the matrices to be non-negative. The above
model allows scINSIGHT to detect common gene modules by borrowing information
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across samples and condition-specific gene modules by borrowing information among
samples of the same condition.
In order to solve the scINSIGHT model and identify the common and condition-

specific modules, we formulate a minimization problem with an objective function in the
following form

L({W�1,W�2}L�=1, {Hj}Jj=1,V ) =
L∑

�=1

1
m�

∥∥X� − W�1Hj� − W�2V
∥∥2
F

+ λ1

L∑

�=1

1
m�

∥∥W�1Hj�
∥∥2
F + λ2

J−1∑

j=1

J∑

j′=j+1

∥∥∥HjHT
j′

∥∥∥
1
;

subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V ≥ 0, Hj ≥ 0, W�1 ≥ 0, W�2 ≥ 0 ,
‖V (k, ·)‖2 = 1 ,
∥∥Hj(kj, ·)

∥∥
2 = 1 ,

j = 1, . . . , J , � = 1, . . . , L, k = 1, . . . ,K , kj = 1, . . . ,Kj ,
(2)

where A(k, ) denotes the kth row of matrix A, ‖·‖F represents the Frobenius norm, ‖·‖1
represents the sum of all elements of a matrix, and ‖·‖2 represents the L2 norm of a vec-
tor. The first term in the objection function aims to minimize the differences between
observed and reconstructed gene expression matrices; the second term serves as a reg-
ularization term to control the scale of condition-specific components; the third term
controls the similarity between condition-specific gene modules of different conditions.
In the first and second terms, the Frobenius norms are scaled by cell numbers in each
sample to prevent the results from being dominated by large samples.
To obtain the optimal solutions for problem (2), we have developed the following algo-

rithm based on the block coordinate descent framework [32]. We present the major
update steps below, and the detailed algorithm and derivation are introduced in the
Supplementary Methods (Additional file 2).

V (k, ·) ←
⎡

⎣V (k, ·) +
∑L

�=1
1
m�

(
X� − W�1Hj� − W�2V

)T W�2(·, k)
∑L

�=1
1
m�

‖W�2(·, k)‖22

⎤

⎦

+
,

W�2(·, k) ←
[
W�2(·, k) +

(
X� − W�1Hj� − W�2V

)
VT

‖V (k, ·)‖22

]

+
,

W�1(·, k) ←
[
W�1(·, k) +

(
X� − (1 + λ1)W�1Hj� − W�2V

)
Hj� (k, ·)

(1 + λ)
∥∥Hj� (k, ·)

∥∥2
2

]

+
,

Hj(k, ·) ←
⎡

⎣Hj(k, ·) +
∑

j�=j
1
m�

(
X� − (1 + λ1)W�1Hj − W�2V

)T W�1(·, k) − λ2
4

∑J
j′ �=j

∑Kj′
k′=1 Hj′ (k′, ·)

∑
j�=j

1+λ1
m�

‖W�1(·, k)‖22

⎤

⎦

+
.

To highlight the difference between scINSIGHT and the iNMF model [33], we also
briefly summarize the mathematical formulation of iNMF below. It assumes the following
relationship for sample � (� = 1, 2, . . . , L),

X� = W�(H� + V ) + E� , (3)

where [W�]m�×K is the expression matrix for gene modules in sample �; [H�]K×n is the
membership matrix for dataset-specific gene modules in sample �; [V ]K×n is the mem-
bership matrix for shared gene modules. To solve the model, the objective function is
formulated as:
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L({W�,H�}L�=1,V ) =
L∑

�=1
‖X� − W�(H� + V )‖2F + λ

L∑

�=1
‖W�H�‖2F . (4)

Unlike the scINSIGHTmodel, the above formulation has the following limitations: (1) it
cannot account for the assignment of biological conditions, (2) it assumes that there exists
the same number of shared gene modules and dataset-specific gene modules, and (3) it
cannot decompose the original gene expression data into the expression of shared and
dataset-specific gene modules. These limitations are resolved by scINSIGHT to better
jointly analyze single-cell samples from different biological conditions.

Processing of read count matrices

Given the L read or UMI count matrices, we use the following three steps to obtain the
L processed gene expression matrices. First, the count matrices are normalized by cell
library sizes. We scale the counts such that each cell has a total of 105 reads or UMIs.
Second, we perform log-transformation on the scaled values. Third, we remove genes
that exhibit low variation among individual cells to increase the signal-to-noise ratio in
gene expression data. The highly variable genes are selected using the same approach as
described in Seurat [56]. If users prefer a different normalization or gene selection pro-
cedure [57], the scINSIGHT software also allows users to supply normalized and filtered
gene expression matrices.

Cell clustering based on common genemodules

As the NMF framework has an inherent clustering property, we can use the expression of
common genemodules to cluster single cells from different samples, and use themember-
ship of common gene modules to interpret cellular identities. However, since minimizing
the objective function in problem (2) does not directly ensure an optimal clustering per-
formance, we propose a cell clustering method based on {Ŵ�2}L�=1. The method was
inspired by previous batch correction methods [18, 27], and it performs alignment using
mutual nearest neighbors in the space of {Ŵ�2}L�=1. It has the following key steps.

1. The row vectors in {Ŵ�2}L�=1 are normalized such that their L2 norms all equal 1.
With a slight abuse of notation, we still use {Ŵ�2}L�=1 to denote the expression of
common gene modules after normalization.

2. Given every pair of samples � and �′ (�, �′ ∈ {1, . . . , L}), from sample �′ we find the
nc nearest neighbors for each cell in sample �. When searching for nearest
neighbors, the cell-cell distance is calculated using the Euclidean distance between
normalized module expression in Ŵ�2 and Ŵ�′2. By default, nc = 20 .

3. A mutual nearest neighbor graph is constructed using cells in all L samples as the
nodes. Cell i in sample � and cell i′ in sample �′ are connected in the graph if and
only if they are mutual nearest neighbors.

4. The Louvain method [58] is used to perform clustering on the mutual nearest
neighbor graph. The clustering result is then used to label cells across samples.

5. To produce visualization that better reflects the clustering result, we align the
module expression within each cell cluster using quantile normalization. We
denote the quantile normalized module expression as {W̃�2}L�=1, and they are used
for downstream visualization.
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Selection of model parameters

We propose a heuristic method to first select K, the number of common gene modules,
and then select λ1 and λ2, the two regularization parameters in the scINSIGHT model
(2). The numbers of condition-specific gene modules, {Kj}Jj=1, are expected to be small
compared with K. We set Kj = 2 (j = 1, . . . , J) in our analysis to facilitate interpretation
of factorization results. To select K among a set of candidate values, we define a stability
score inspired by consensus clustering [59]. For every candidate value of K, we run our
algorithm B (defaults to 5) times with different initializations and λ1 = λ2 = 0.01. We
denote the clustering result from each run as a binary matrix C(b)

M×M (M = ∑L
�=1m�, b =

1, . . . ,B), with C(b)
ij = 1 indicating that cells i and j belong to the same cluster. We then

calculate a consensus matrix C = 1/B
∑B

b=1 C(b), whose entries range between 0 and 1
and reflect the probability that two cells belong to the same cluster. The stability score
is defined as the Pearson correlation between corresponding entries in two matrices,
IM×M − C and the cophenetic distance matrix (for hierarchical clustering on C) [60]. A
large (close to 1) stability score indicates that the assignment of cells to clusters varies
little with different initializations, suggesting a strong clustering pattern with the corre-
sponding K value. To identify the optimal value of K for accurate and robust results, we
first find the three candidate values that lead to the largest stability scores, and then select
the middle value among the three candidates.
Next, we select the regularization parameters λ1 and λ2, fixing K to the selected value.

In our simulation study, we found that λ1 has a much greater effect on scINSIGHT’s
results than λ2, so we set λ1 = λ2 to simplify the computation. We consider five can-
didate values, {0.001, 0.01, 0.1, 1, 10}, and select the optimal value based on a specificity
score. The specificity score indicates how well the condition-specific gene modules cap-
ture specific gene expression patterns in each condition. For the kth gene module in
Ĥj, we find the 100 genes that have the largest coefficients on the module and use
Ajk� (j = 1, . . . , J , k = 1, . . . ,Kj, � = 1, . . . , L) to denote the average of their expression
across all cells in each sample. The specificity score is then defined as

1
J

J∑

j=1

∑kj
k=1

∑
{�:j�=j} Ajk�

∑kj
k=1

∑
{�:j� �=j} Ajk�

.

We select the regularization value that leads to the largest specificity score.

Calculation of evaluation metrics

The integration score aims to quantify how well the (unintegrated or integrated) data
removes sample-specific technical effects. We consider cells from all samples and use �i
to denote the sample index of cell i (i = 1, . . . ,M = ∑L

�=1m�). In addition, Ni represents
the k-nearest neighbor set of cell i. For observed (unintegrated) data, Ni is defined based
on cell-cell distance calculated using the first 20 PCs. For scINSIGHT, Ni is based on
cellular distances calculated using {W̃�2}L�=1. For other integration methods, Ni is also
determined based on the gene expression data after integration. For each set of Ni’s, the
corresponding integration score is defined as

1
M

M∑

i=1

⎛

⎝1 −
∣∣∣∣∣∣
1
k

∑

i′∈Ni

1{�i′ = �i} − 1
M

M∑

i′=1
1{�i′ = �i}

∣∣∣∣∣∣

⎞

⎠ .
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The integration score is between 0 and 1, and it compares the frequency of cells from
a sample in a local neighborhood with their frequency in the whole population. An
integration score of 1 indicates full integration.
The Silhouette score was calculated using the R package cluster and the adjusted

Rand index was calculated using the R package mclust.

Simulation and analysis of synthetic data

To better benchmark the performance of scINSIGHT, we used the scDesign method [36]
to simulate high-quality synthetic single-cell gene expression datasets that capture the
distribution characteristics of real data. In summary, we simulated six single-cell samples
from three time points (T1, T2, and T3 corresponding to three biological conditions),
with two samples from each time point. To reflect different cell type compositions among
the time points, we assumed that three cell types (C1, C2, and C3) were present in all
three time points, while samples in T1 did not have cell type C4, T2 didn’t have C5, and
T3 did not have C6.
As scDesign learns gene expression parameters from real data to simulate new syn-

thetic cells, we used the following approach to incorporate biological heterogeneity into
the simulated data. First, the expression parameters corresponding to the cell type effect
were learned from six immune cell types in a dataset of peripheral blood mononuclear
cells [61]. Second, the expression parameters corresponding to the time point effect were
learned from a time-course scRNA-seq dataset [62]. Third, for each synthetic cell, its
mean gene expression was calculated as a weighted average of the corresponding cell type
mean effect (weight of 0.9) and the time point mean effect (weight of 0.1) estimated by
scDesign. Fourth, we used scDesign to generate simulated gene expression matrices for
the six samples based on the expression mean and other learned expression parameters.
For analysis based on the observed (unintegrated) data, we calculated the first 20 prin-

cipal components (PCs) after library size normalization and log-transformation, and
used the cells’ scores on the PCs to calculate tSNE coordinates and perform Louvain
clustering [58]. scINSIGHT was applied to the six samples treating time point as the
condition factor. We set Kj = 2 for all datasets. The selected K was 11 for variant 2
and 13 for the original simulation and variants 1 and 3 (selected from {5, 7, 9, 11, 13, 15}).
The regularization values were selected as λ1 = λ2 = 0.001 for variant 1 and λ1 =
λ2 = 0.01 for the other datasets. LIGER was applied with nrep = 5 and k = 11; the
other parameters were set as the default values. Seurat, Harmony, and Scanorama were
applied with default parameters. scMerge was applied with kmeansK=rep(3,6) in variant
1 and kmeansK=rep(5,6) in all other cases. We let scMerge identify its own highly vari-
able genes, and the other parameters were set as the default values. Follow its tutorial,
scGen was applied with max_epochs=100 and batch_size=32, early_stopping=True, and
early_stopping_patience=25, and the other parameters were set as the default values. For
clustering, scINSIGHT, Seurat, and LIGER have their own clustering methods, Harmony
used Seurat’s clustering in its tutorial, and Scanorama used the Leiden algorithm [63] in
its tutorial. For these methods, we used their default methods or methods demonstrated
in their tutorials to perform clustering. For scMerge and scGen, we applied the Louvain
algorithm [58] to perform clustering on their integrated data.
The scINSIGHT, LIGER, Seurat, Harmony, scMerge, scGen, and Scanorama meth-

ods were applied using R package scINSIGHT (v0.1.3), R package rliger (v0.5.0), R
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package Seurat (v3.2.3), R package harmony (v0.1.0), R package scMerge (v1.6.0),
Python package scgen (v2.0.0), and Python package Scanorama (v1.7.1), respectively.

Analysis of real data

For the melanoma dataset [38], we processed the data as described above, treating each
biopsy as one sample. For analysis with CD8+ gene signatures, the gene features were
obtained from Sade-Feldman et al [38]. The normalized expression data with selected
gene features were used for data integration with all methods. For analysis based on the
observed (unintegrated) data, we calculated the first 20 PCs and used the cells’ scores on
the PCs to calculate tSNE coordinates and perform Louvain clustering. For scINSIGHT
analysis, scINSIGHT was applied to the 48 samples treating response as the condition
factor. We set Kj = 2 and the best K was 9 (selected from {5, 7, 9, 11, 13, 15}). The reg-
ularization values were selected as λ1 = λ2 = 1. LIGER was applied with nrep=5 and
k=5 as larger values would lead to errors, and the other parameters were set as the
default values. Seurat, Harmony, and Scanorama were applied with default parameters.
scGen was applied with the same parameters as described for the simulated data. For
analysis with highly variable genes, 2000 genes were selected using Seurat. The methods
were applied in the same way as described above. scMerge encountered errors in both
analyses.
For the COVID-19 dataset [43], we processed the data as described above. The gene fea-

tures were selected as the 2000most variable genes using Seurat. For analysis based on the
observed data, the approach was the same as used on themelanoma data. For scINSIGHT
analysis, scINSIGHTwas applied to the 14 samples treating disease phase as the condition
factor. We set Kj = 2 and the best K was 13 (selected from {5, 7, 9, 11, 13, 15}). The regu-
larization values were selected as λ1 = λ2 = 1. LIGER was applied with nrep=5 and k=13,
and the other parameters were set as the default values. Seurat, Harmony, and Scanorama
were applied with default parameters. scGen was applied with the same parameters as
described for the simulated data. scMerge was applied with kmeansK=rep(3,13) and inter-
nally identified highly variable genes, as it encountered an error when selected gene
features were provided. The other parameters were set as the default values.
For the wound dermis dataset [51], we processed the data using the same approach as

applied to the COVID-19 dataset. For scINSIGHT analysis, scINSIGHT was applied to
the samples treating treatment/control as the condition factor. We set Kj = 2 and the
best K was 11 (selected from {5, 7, 9, 11, 13, 15}). The regularization values were selected
as λ1 = λ2 = 0.1. LIGER was applied with nrep = 5 and k = 11. The other parameters
were set as the default values. Seurat, Harmony, and Scanorama were applied with default
parameters. scGen was applied with the same parameters as described for the simulated
data. scMerge was applied with kmeansK=c(6,6) and internally identified highly variable
genes. The other parameters were set as the default values.
For the mouse retina dataset [30], we processed the data using the same approach as

applied to the COVID-19 dataset. For scINSIGHT analysis, scINSIGHT was applied to
the two samples treating batches as the condition factor. We set Kj = 2 and the best K
was 26 (selected from {11, 16, 21, 26, 31}). The regularization values were selected as λ1 =
λ2 = 1. LIGER was applied with nrep = 3 and k = 20. The other parameters were set as the
default values. Seurat, Harmony, and Scanorama were applied with default parameters.
scGen was applied with the same parameters as described for the simulated data, except
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for batch_size=128. scMerge was applied with kmeansK=c(5,12), svd_k=20, and internally
identified highly variable genes. The other parameters were set as the default values.
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