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Objective: At present, there is no early prediction model of left ventricular

reverse remodeling (LVRR) for people who are in cardiac arrest with an

ejection fraction (EF) of≤35% at first diagnosis; thus, the purpose of this article

is to provide a supplement to existing research.

Materials and methods: A total of 109 patients suffering from heart attack

with an EF of ≤35% at first diagnosis were involved in this single-center

research study. LVRR was defined as an absolute increase in left ventricular

ejection fraction (LVEF) from ≥10% to a final value of >35%, with analysis

features including demographic characteristics, diseases, biochemical data,

echocardiography, and drug therapy. Extreme gradient boosting (XGBoost),

random forest, and logistic regression algorithm models were used to

distinguish between LVRR and non-LVRR cases and to obtain the most

important features.

Results: There were 47 cases (42%) of LVRR in patients suffering from heart

failure with an EF of ≤35% at first diagnosis after optimal drug therapy. General

statistical analysis and machine learning methods were combined to exclude

a number of significant feature groups. The median duration of disease in the

LVRR group was significantly lower than that in the non-LVRR group (7 vs.

48 months); the mean values of creatine kinase (CK) and MB isoenzyme of

creatine kinase (CK-MB) in the LVRR group were lower than those in the non-

LVRR group (80.11 vs. 94.23 U/L; 2.61 vs. 2.99 ng/ml; 27.19 vs. 28.54 mm).

Moreover, AUC values for our feature combinations ranged from 97 to 94%

and to 87% when using the XGBoost, random forest, and logistic regression

techniques, respectively. The ablation test revealed that beats per minute

(BPM) and disease duration had a greater impact on the model’s ability to

accurately forecast outcomes.
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Conclusion: Shorter disease duration, slightly lower CK and CK-MB levels,

slightly smaller right and left ventricular and left atrial dimensions, and

lower mean heart rates were found to be most strongly predictive of LVRR

development (BPM).

KEYWORDS

left ventricular reverse remodeling, heart failure with reduced ejection fraction,
prediction model, machine learning, heart failure

Introduction

Angiotensin-converting enzyme inhibitors (ACEI),
angiotensin II receptor blockers (ARB), β-blockers, and
mineralocorticoid receptor antagonists (MRA) are considered
the cornerstone for the treatment of patients suffering from
heart failure with reduced ejection fraction (HFrEF), as these
approaches can facilitate left ventricular reverse remodeling
(LVRR), minimize the hospital admission rate of patients
with heart failure (HF), and decrease the overall rates of
mortality and cardiovascular mortality, including those
related to sudden cardiac death (SCD) (1–5). In patients with
HFrEF, a guideline-directed drug therapy has the potential
to improve the left ventricle function and counteract the
frequently observed adverse cardiac remodeling. Therefore,
predicting LVRR is essential for the development of long-term
treatment strategies, which include the use of an implantable
cardioverter defibrillator (ICD), the use of a left ventricular
assist device (LVAD), cardiac resynchronization therapy (CRT),
and heart transplantation (HTx). While evaluation of these
predictive factors is straightforward, using only individual
predictive factors is inadequate and can lead to inaccuracy.
Limited information is available on factors predicting the
improvement in left ventricular ejection fraction (LVEF) by
implementing drug therapy in patients with HFrEF (6, 7),
and LVRR usually occurs within 1–2 years in patients who
experience heart attacks (8). ICD implantation is recommended
as the primary form of prevention in clinical guidelines only
when the LVEF is re-evaluated to be 35% again in patients
after at least 3–6 months of receiving optimal drug therapy
(9). Therefore, if we can identify LVRR in combination
with several common clinical diagnosis methods in patients
with an EF of ≤35% (HFrEF) at first diagnosis, this will
aid in determining whether ICD implantation should be
performed to prevent sudden cardiac death. Compared with
traditional statistical methods, machine learning methods
are more objective and effective in feature selection and the
processing of possible non-linear variables. The representative
algorithms include extreme gradient boosting (XGBoost)
and random forest. XGBoost, a machine learning algorithm
first proposed by Professor Tianqi Chen, improves on the

gradient-boosted decision tree (GDBT) algorithm (10) and has
been widely used in other machine learning competitions, such
as Kaggle (11). This method has also been successfully applied
in disease diagnosis (12, 13) and health risk prediction
(14–17). Therefore, the tree-based integrated learning
method—also known as the extreme gradient boosting
method—was used to investigate and analyze medical data,
establish a prediction model, and validate the effectiveness
of the algorithm.

Materials and methods

Study population

This study was a one-center retrospective research study.
Clinical data were collected from 265 consecutive inpatients
who were first diagnosed with an EF of ≤35% (HFrEF)
in the Affiliated Zhongshan Hospital of Dalian University
from March 2018 to March 2020, with multiple follow-up
records collected for each patient. Patients suffering from
cardiomyopathy with possible spontaneous LVRR, such as
patients suffering from tachycardia-induced cardiomyopathy,
perinatal cardiomyopathy, myocarditis, and alcoholic dilated
cardiomyopathy, were excluded (5). Patients suffering from
atrial fibrillation (AF) with a resting heart rate > 100 BPM were
excluded because they may have developed tachycardia-induced
cardiomyopathy (18). Patients with ventricular remodeling that
was improved or worsened by medical or surgical interventions
(apart from optimal drug therapy for HF) were also excluded;
these patients had undergone coronary revascularization or
CRT within the prior 2 months. Moreover, patients were
excluded if they were found to have an ICD or severe organic
heart valvular disorder, were currently on a targeted dose or
a maximum tolerated dose of drug therapy for HF, or had
experienced a myocardial infarction within the prior 2 months.
The research was officiated by the institutional evaluation board
of the Affiliated Zhongshan Hospital of Dalian University
and carried out according to the ethical standards set out
in the Declaration of Helsinki (1964) and its subsequent
protocol alterations. Well-versed consent was not required
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because participation in our research was anonymous. All
patients were treated with standard drugs outlined in the
current guidelines.

Data collection

Patient baseline assessment included blood samples for
laboratory examination, ECG, physical examination, and
detailed clinical history. The period of heart attack was defined
as the time in months from the signs of heart failure onset
(or left ventricular systolic dysfunction, and in the absence
of symptoms) to enrollment in the study, while the onset of
symptoms of heart failure was defined as the change of NYHA
classification in patients’ daily lives. The final echocardiogram
taken prior to study commencement was considered the
patient’s basic echocardiography.

The drug therapy for HF was optimized in the ward based
on clinical guidelines following baseline assessment (2). The
treatment protocol typically consisted of drugs beneficial to
left ventricular remodeling and disease-modifying agents (β-
blockers, ACEI/ARBs, MRAs) that were administered until the
target dose or maximum tolerated dose could be achieved.
The follow-up assessment, including clinical history, physical
examination, ECG, and echocardiography, was performed
12 months later.

Echocardiography

A technician attached to the cardiovascular ultrasound
department performed all echocardiography according to
international guidelines. The left ventricular end-diastolic width
was fitted in the para long-axis M-mode guided by the 2D echo.
In the sinus rhythm, the left ventricular volume was measured
at apex four and two ventricles using the Simpson method. In
the non-sinus rhythm, the left ventricular mass was measured in
five cycles and then averaged. The left ventricular end-diastolic
diameter and the capacity were indexed by body surface area.
LVEF was obtained with reference to the changes in the left
ventricular volume.

Return visit

Follow-up appointments for patients were made as required.
The visits ended in February 2021, upon heart transplantation,
or on the date of death. Transthoracic echocardiography was
performed during all visits. LVRR was defined as an absolute
raise in LVEF from≥10% to a final value of >35%, lasting up to
the final visit. Non-LVRR was well-defined as a total upsurge in
the left ventricular ejection portion of <10% or with a final value
of <35%, or a reduction in the left ventricular end-diastolic

diameter of <10% for all visits except for those less than 1 year.
Patients who failed to meet the criteria of LVRR and had the final
visit within 1 year were excluded.

Statistical study

The data were presented as the mean normal deviation
for generally distributed variable quantities and median SD
for those with a non-normal distribution (numerical range).
Heterogeneity in the variance was discovered by means of a
left rotation test, which had an alpha value of <0.05. Different
groups were classified using the Mann–Whitney U test and the
chi-square test, which are autonomous t-tests.

Data input

A total of 53 samples were collected for examination; details
are presented in Table 1. In addition, there were seven features
with missing data, representing a missing data rate lower than
10%. The missing variables were filled by median data, and all
data were subject to min-max normalization according to the
following formula (where x stands for the current variable, xmax

for the extreme value of a variable, and xmin for the smallest
value of a variable):

x∗ =
x− xmax

xmax − xmin

Model research

In order to conduct a model research, we used XGBoost,
random forest, and logistic regression (19). XGBoost and
random forest are both integrated algorithms that can achieve
better learning performance than single-learner algorithms. The
data were arbitrarily separated into 10 subsets via 10-fold cross-
authentication. Nine of these subsets were used for training,
while one was used for testing; this process was carried out a
total of 10 times to guarantee that each subset was tested. Finally,
all results were averaged to measure the model performance.
The specific experimental process is illustrated in Figure 1. The
feature combinations that could reach the highest area under
the curve (AUC) value were selected, and the model training
was conducted on this basis; this was followed by individual
tests on each model and the plotting of receiver operating
characteristics (ROC) curves. The significance of each individual
feature was then measured via an ablation analysis, which is
the process of setting up a control group by removing a factor
and then measuring the importance of that factor based on the
subsequent degree of decline in the experimental results.
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TABLE 1 Characteristics of patients grouped by left ventricular reverse remodeling.

Characteristics LVRR (n = 47) Non-LVRR (n = 62) P-value
Duration of disease (months), M (min-max) 7 (0.1–60) 48 (1–168) <0.001

Female, n (%) 17 (36.17) 23 (37.10) 0.844

Age (years), M (min-max) 65 (29–91) 72 (25–86) 0.013

Smoke, n (%) 16 (34.04) 13 (20.97) 0.004

Alcoholism, n (%) 13 (27.66) 15 (24.20) 0.422

PCI, n (%) 12 (25.53) 15 (24.20) 0.752

Coronary heart disease, n (%) 25 (53.19) 26 (41.93) 0.379

Myocardial infarction, n (%) 5 (10.64) (Missing 1) 6 (9.68) 0.689

Mitral regurgitation, n (%) 11 (23.40) 24 (38.71) 0.002

Hypertension, n (%) 36 (76.60) 38 (61.29) 0.001

Systolic pressure (mmHg), M± SD 131.3± 25.91 (Missing 3) 128.52± 26.19 0.986

Diastolic pressure (mmHg), M± SD 80.07± 14.21 (Missing 3) 79.05± 14.78 0.911

NYHA, M (min-max) 3 (1–4) 4 (3–4) (Missing 1) 0.003

ACEI/ARB/ARNI, n (%) 34 (72.34) (Missing 1) 43 (69.35) (Missing 7) <0.001

β-blocker, n (%) 39 (82.98) 36 (58.10) <0.001

Diuretic, n (%) 37 (78.72) 42 (67.74) 0.100

NT-proBNP (pg/ml), M (min-max) 2464 (31.5–22702) (Missing 2) 5840 (420–35000) 0.000

cTnI (ng/ml), M (min-max) 0.054 (0.002–0.8) (Missing 1) 0.043 (0.012–3.63) 0.013

CK (U/L), M± SD 80.11± 59.08 94.23± 56.56 0.865

CK-MB (ng/ml), M± SD 3.61± 5.17 2.99± 4.49 0.124

D-Dimer (ug/ml), M± SD 1.02± 1.32 1.27± 1.77 0.194

PT%, M± SD 84.23± 18.88 66.58± 25.08 0.151

PT (s), M± SD 14.29± 7.13 19.99± 15.43 0.045

APTT (s), M± SD 30.06± 7.34 32.36± 7.66 0.846

Creatinine (umol/L), M± SD 102.20± 49.10 111.80± 79.45 0.369

Urea (mmol/L), M± SD 12.17± 13.41 11.52± 7.63 0.322

ALT (IU/L), M± SD 95.90± 510.19 70.71± 252.47 0.367

AST (IU/L), M± SD 118.45± 618.67 79.89± 256.99 0.304

Triglyceride (mmol/L), M± SD 1.88± 1.64 4.56± 25.76 0.149

Total cholesterol (mmol/L), M (min-max) 3.9 (1.21–7.3) 4 (0.33–5.42) 0.001

High density lipoprotein (mmol/L), M± SD 1.03± 0.41 1.00± 0.31 0.092

Low density lipoprotein (mmol/L), M (min-max) 2.1 (0.89–5.03) 2.18 (0.81–3.5) 0.003

White blood cell (*109/L), M± SD 8.46± 5.93 6.82± 3.10 0.356

Hemoglobin (g/L), M± SD 132.45± 26.58 131.45± 24.02 0.444

Platelet (*109/L), M± SD 195.85± 71.87 171.03± 68.62 0.660

T3 (pmol/L), M± SD 3.86± 0.88 3.59± 0.76 0.255

T4 (pmol/L), M± SD 15.30± 2.94 15.48± 3.60 0.200

Thyroid stimulating hormone (uIU/ml), M± SD 3.00± 3.22 2.11± 1.64 0.044

Right ventricular diameter (mm), M± SD 27.19± 5.70 28.54± 8.00 (Missing 1) 0.191

LvEd (mm), M± SD 58.28± 8.97 65.03± 7.77 0.305

LvSd (mm), M (min-max) 10 (7–53) 10 (8–16) 0.008

Lvpwd (mm), M± SD 10.49± 1.80 9.11± 1.44 0.291

La diameter (mm), M (min-max) 45 (10–60) 51 (32–70) <0.001

bpm, M± SD 69.94± 22.42 88.19± 20.32 0.576

PR (ms), M (min-max) 130 (100–256) 160 (140–240) 0.004

QRS (ms), M (min-max) 120 (76–200) 110 (90–194) 0.039

QTc (ms), M± SD 447.81± 45.22 479.31± 76.62 0.495

End left, n (%) 1 (2.13) 7 (11.29) 0.000

End right, n (%) 2 (4.26) 3 (4.84) 0.775

Ventricular tachycardia, n (%) 8 (17.02) 7 (11.29) 0.090

Atrial fibrillation, n (%) 12 (25.53) 24 (38.71) 0.004

Atrial flutter, n (%) 2 (4.26) 0 (0.00) 0.001

Dilated cardiomyopathy, n (%) 7 (14.89) 11 (17.74) 0.430

M ± SD, mean ± standard deviation; M (min-max), median (numerical range); PCI, Percutaneous Coronary Intervention; NYHA, New York Heart Association; T3 , Triiodothyronine;
T4 , Thyroxine; ACEI/ARB/ARNI, Angiotensin converting enzyme inhibitors/angiotensin II receptor blockers/Angiotensin Receptor Neprilysin Inhibitor. *Means multiply (×).
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FIGURE 1

Major results of the research and overall flowchart. EF, left ventricular ejection fraction; LVRR, left ventricular reverse remodeling; XGBOOST,
extreme gradient boosting; LR, logistic regression; RF, random forest.

Feature selection

Feature assortment was performed to find the optimal
feature grouping in the forecast model. The distribution of
all 53 features is shown in Table 1. In order to obtain the
sets of important characteristics, the tree-based model feature

selection method was used in this research, while a greedy
algorithm was used for subsequent filtering on the basis of this
feature set according to the AUC value (a greedy algorithm is
one that always makes the current best choice when solving a
problem; i.e., instead of considering the overall optimum, the
local optimum solution is always considered).

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.864312
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-864312 August 11, 2022 Time: 15:51 # 6

Liu et al. 10.3389/fcvm.2022.864312

The selected features were all greater than zero in terms
of importance. The greedy search started with an empty set of
important features. The selection was performed according to
the following iterative process: first, the feature with the highest
AUC values to the set of important features was added; then, the
next feature that causes the AUC to reach the highest value in the
set of the remaining features to the set of important features was
found; this process was repeated until there are no remaining
features or there is no increase in the AUC value of the set of
important features, thus establishing the final prediction model.

Baseline features

A total of 378 clinical data points were collected from
109 inpatients. The LVRR was identified in 47 (45.2%) of
the 109 examined patients (Figure 1). The distribution and
characteristics of these patients are presented in Table 1. Patients
with LVRR were prone to elevated systolic pressure, elevated
platelet count, decreased serum D-dimer levels, elevated high-
density lipoprotein cholesterol (HDL-C), decreased left atrial
diameter, decreased right ventricular end-diastolic diameter,
and a lower possibility of severe mitral regurgitation (MR).
Blockers and ACEIs/ARBs/ARNIs did not differ significantly
between the two clusters in terms of their use or doses.

Statistical tools and machine learning

The scikit-learn 0.24.2 software package was used to
perform machine learning in the Python 3.9.1 tool environment.
Moreover, the SPSS 26.0 software (IBM SPSS Statistics, IBM,
Armonk, NY, United States) was used for statistical analysis.

Results

Research and validation of the
classifier model

A total of 35 features were screened out through the tree
model. Classification ability tests with or without improvement
were performed on each of the 35 features, with the results
shown in Figure 2A. Overall, there were 27 (77.14%) features
with AUC values less than 0.7 and only eight features with
AUC values of 0.7–0.85, with the highest AUC value of 0.82 at
the time of disease. Due to the small amount of experimental
data available, it was necessary to consider the sensitivity of
the current experimental data to particular features; therefore,
it was also necessary to validate whether a mixture of multiple
features could improve the model performance. The details of
the feature selection process are provided in Figure 1. The
feature selection was first carried out for the dataset based

on the tree model to obtain the important features (only the
results of XGBoost are described in this article), resulting in
35 important features being obtained. The greedy algorithm
was used to screen the most important feature set from the
35 important features; as a result of this process, six features
were identified through screening, with the importance ranking
shown in Figure 2B. An average AUC value of 0.97 was finally
obtained through the application of these six features to the
training XGBoost model under 10-fold cross-validation. This
10-fold cross-validation was also used in the ablation analysis to
evaluate the contribution of the six features to model prediction
(results are shown in Figure 2C). The absence of any one
feature would lead to a decline in the AUC value; here, the
observed duration of disease and BPM was found to be the most
important features, and the AUC value decreased to 0.73 when
the duration of disease was removed. Moreover, a comparison
was also drawn with other machine study methods in aspects of
performance of prediction. The ROC curves of biggest gradient
boosting, random forest, and logistic reversion are plotted in
Figures 2D–F, respectively, while the average AUC values of
0.97, 0.94, and 0.84, respectively, were obtained, indicating
that the extreme gradient boosting algorithm produced better
results when compared with the logistic regression algorithm.
The outcomes of the extreme gradient boosting algorithm
were slightly better than those of the random forest algorithm.
Meanwhile, the recall rate and sensitivity when distinguishing
LVRR from non-LVRR cases were compared for the three
classifiers (as shown in Table 2), with the results validating the
conclusions above.

Our main findings in this study were as follows (as shown
in Table 3): (1) extreme gradient boosting and random forest
algorithms, when combined with the collected medical data,
were superior to the logistic regression algorithm in terms of
predicting the variance between LVRR and non-LVRR cases;
(2) the time of disease and the mean heart rate were the
most important features; and (3) according to the statistical
analysis, when compared with the non-LVRR cluster, the LVRR
set had a shorter duration of disease, slightly lower creatine
kinase (CK) and MB isoenzyme of creatine kinase (CK-MB)
values, slightly lower right ventricular diameters and left atrial
diameters, and lower mean heart rates (BPM). According to the
ablation analysis results, the duration of disease and BPM made
greater contributions to the model prediction.

Discussion

To the best of our knowledge, the present research is the first
to use an integrated tree model of machine learning to predict
LVRR. To avoid the assumptions that a linear relationship exists
between variables and the accuracy of statistical models, these
models can be used instead. Classifiers such as the XGBoost
and random forest algorithms, both of which were used in
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FIGURE 2

(A) AUC values of each feature for classification during the modeling process. (B) Importance ranking of the optimal features derived by the
greedy algorithm. (C) Evaluation of the contribution of each feature to the model through ablation analysis. (D) ROC curve of 10-fold
cross-validation using extreme gradient boosting algorithm. (E) ROC curve of 10-fold cross-validation using random forest algorithm. (F) ROC
curve of 10-fold cross-validation using logistic regression algorithm.

our research, predicted LVRR with a comparable degree of
accuracy. An improved risk factor management in patients
with HFrEF may be made possible through the use of these
integrated tree models (12). The most important elements of
the model were the duration of the disease, the mean heart

rate, the CK, the CK-MB, the right ventricular size, and the
left atrial size. Early clinical care and early prevention plan
application may be significant for identifying patients who do
not respond to drug therapy using these machine classifiers.
It is important to highlight that our results differ from those
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TABLE 2 Model performance comparison.

Classifier Classification
results

Accuracy Recall rate F1 value

XGBoost LVRR 0.858 0.875 0.856

Non-LVRR 0.896 0.871 0.875

Random forest LVRR 0.851 0.861 0.836

Non-LVRR 0.897 0.896 0.886

Logistic regression LVRR 0.840 0.657 0.696

Non-LVRR 0.788 0.899 0.825

TABLE 3 Comparison of important features obtained by
greedy algorithms.

Characteristics LVRR Non-LVRR

Duration of disease (months), M[Q] 7 (0.1–60) 48 (1–168)

CK, M± SD 80.11± 59.08 94.23± 56.56

CK-MB, M± SD 2.61± 5.16 2.99± 4.49

Right ventricular diameter 27.19± 5.70 28.54± 8.00

Left atrial diameter 45 (10–60) 51 (32–70)

Bpm 69.94± 22.42 88.19± 20.32

of earlier studies. In one study, it was shown that natriuretic
peptides may be useful in predicting LVRR; in another, a large
variance in LVRR incidence between men and women was
found (20). Natriuretic peptides and sex differences were shown
by the findings of our study not to be useful in predicting
LVRR. There are several possible explanations for this. For
example, NT-proBNP was originally included in the 35 key
features assessed by the tree model, based on the clinical
dataset employed. The classifier proposed herein sought to
find the best combination of features that would maximize
AUC. Moreover, because the feature combination containing
NT-proBNP scored lower in the greedy algorithm’s secondary
screening than any of the other feature combinations, NT-
proBNP was eventually dropped from further consideration
in this article. In the LVRR group, based on our clinical
dataset, there were 17 female patients (36.1%), while 23 female
patients (or 37.1%) were found in the non-LVRR group.
The machine learning algorithm was able to remove sex
differences because the proportions between the two sets of
data were so similar. Our study findings revealed that the
duration of disease was the most significant contribution to
the prediction model. In the early stage of heart failure, the
optimization of current drug interventions might slow down
the progressive loss of myocardial cells; the continuous disorder
of myocardial cell proteome, metabolome, and transcriptome;
and the progressive erosion of the natural 3D tissues of the
extracellular matrix surrounding the cardiomyocytes; in this
way, it can improve the LVEF and stabilize the left ventricular
reverse remodeling (21). This view was supported by the
observation that most clinical cases of recovered left ventricular

function linked to lasting clinical steadiness occurred after
transient damage (e.g., energy deficiency or cardiotoxin) rather
than permanent or/and long-term injury (e.g., myocardial
infarction and genetic abnormalities). Mean heart rate also
contributed significantly to the LVRR prediction model, while
the incidence rate and mortality rate of cardiovascular disease
were associated with an increased mean heart rate (BPM).
The association between sustained tachycardia (>100 BPM)
and the incidence rate and mortality rate of cardiovascular
disease was first demonstrated more than 70 years ago (22).
The Framingham study in 1987 showed that an increase in
heart rate of 10 BPM was linked with a 14% rise in overall
mortality rate in the general populace; in addition, the danger
of heart attack was significantly higher in subjects with a
baseline heart rate > 80 BPM (23). In clinical practice, reports
from large registration agencies showed that more than 50%
of patients with heart failure diseases still had a heart rate of
>70 BPM following optimal drug therapy, and moreover, that
there was a notable increase in both the mortality rate and
the number of hospitalizations due to cardiac deterioration if
it was beyond the threshold. According to the Italian Network
on Heart Failure (IN-HF) Outcome Registry (24), registration
information on heart failure in Italy identified 3,755 outpatient
chronic heart failure patients who were followed up after 1 year:
among these, 53.4% had a heart rate of ≥70 BPM, 29.7%
had a rate of ≥75 BPM, and 17.2% had a rate of ≥80 BPM.
The use of β-blockers to handle heart failure aimed to reduce
the patient heart rate to 70 BPM or lower; while the dose
adjustment should have been directed toward achieving this
goal, the said goal was unfortunately only achieved in half
of the patients.

Two significant clinical parameters of the cardiac structure
identified via echocardiography were observed in this study.
Echocardiography represents the first-line analysis method for
people with heart failure. Our findings were the same as those
of earlier studies on the prognosis of patients who suffered
from heart attack. Heart failure with preserved ejection fraction
(HFpEF) is associated with the elevated left atrial pressure
and its spread to the pulmonary circulation, while HFrEF may
be associated with pre- and post-capillary pulmonary arterial
hypertension. Compared with the control group (1.4%/mmHg),
patients with HFrEF or HFpEF (0.8–0.9%/mmHg) had a
moderately lower vascular elastic dilation coefficient (25); recent
research has also revealed that right ventricular dysfunction
may be indicative of increased pulmonary arterial pressure
(26), which may itself be a progressive phase of ventricular
remodeling. Although the right ventricular end-diastolic
diameter cannot fully reflect the right ventricular function, it
can provide valuable predictive information when combined
with extreme remodeling features, such as functional mitral
regurgitation and other atrial enlargements. Motoki et al. (27)
reported that a severe decline in the right ventricular function
was associated with left atrial volume index, left ventricular
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diastolic dysfunction, decreased left ventricular discharge
portion, and standard indices of right ventricular diastolic
and systolic dysfunctions (right ventricle S’, E’/A’, right atrial
volume index) in 171 patients with HFrEF. The long-term
(5-year) adverse events (all-cause mortality, hospitalizations
for heart relocation, and heart attack) can be predicted based
on right ventricular compliance. In addition, adverse events
can also be predicted based on the corrected age, right atrial
capacity index, right ventricular end-diastolic volume, and
left ventricular ejection fraction. The differences between the
LVRR and non-LVRR clusters in terms of right ventricular
end-diastolic volume and left atrial end-diastolic volume show
that blocking the sympathetic nervous system and the renin–
angiotensin–aldosterone system could reverse pulmonary
vascular resistance, including pulmonary microvascular
remodeling, vasoconstriction, and endothelial dysfunction;
thus, reduction in the right ventricular end-diastolic volume
and left atrial end-diastolic capacity could increase expulsion
fraction, thereby improving the left ventricular ejection
function. The left ventricular end-diastolic size was not
considered a predictive factor for LVRR because the author
considered the duration of disease to be the most important
predictive factor for LVRR. Patients with shorter disease
duration, for example, had milder left ventricular myocardial
fibrosis after early optimization of medication therapy,
which neither contributed to left ventricular remodeling nor
affected the left ventricular end-diastolic volume. A significant
biomarker in diagnosing coronary disorders, including acute
myocardial infarction (AMI), is CK-MB. Cardiovascular disease
can be diagnosed using CK-MB, along with other biomarkers
(such as cardiac troponin), when used in combination. An
innovative heart failure risk prediction model based on the
multi-index technique and the random forest algorithm (28)
was created in China in 2019; this study involved 193 people
(80 heart failure victims and 113 gender- and age-matched
healthy controls) between June 2017 and December 2017.
Cardiac biomarkers and echocardiographic measurements
were subjected to a correlation and regression analysis. In
individuals with heart failure, the levels of CK-MB, BNP,
Gal-3, and sST2 were found to be significantly elevated. For
HF, BNP was able to accurately predict the outcome of a test
(AUC.956). C-reactive protein, sST2, and gal-3 levels were all
found to have moderate diagnostic performance for HF. The
average decline in accuracy for BNP was much higher than
that for other variables. Despite this, the multi-marker model’s
sensitivity and specificity improved, reaching 91.5 and 96.7%,
respectively. There was also no significant difference between
NT-proBNP and CK and CK-MB diagnosis performance in
our investigation; moreover, the prognostic effect of myocardial
markers in the LVRR group was rarely reported, according
to our findings. In addition, HFrEF is a clinical syndrome
that affects multiple organ systems due to a variety of causes.
It is important to identify LVRR in a timely fashion so as to

achieve accurate management and determine the reasonable
timing of ICD implantation. Machine learning applications may
represent a powerful solution to this problem. Pérez-Rodon
et al. (29) began their study in 2017 by selecting outpatients
with LVEF of 35% as observational subjects for a 6-month
follow-up study to investigate drug optimization treatment.
These authors found that ischemic cardiomyopathy, prolonged
duration of heart failure, and larger left ventricular end-diastolic
diameter were the three most significant predictors of LVRR
loss. Moreover, long-term ischemic cardiomyopathy produces
scar tissue, which causes an increase in the width of the left
ventricular end-diastolic area that is difficult to treat with
medicines. It is suggested that an ICD be implanted as soon
as possible in these patients because of their significant risk
of sudden death.

Limitations

There are several limitations of our research. For example,
one study found that a scan employing cardiac magnetic
resonance (CMR) might better predict the LVRR (30). CMR
is indeed considered the gold standard for measuring cardiac
ventricles; however, because echocardiography is more readily
available in daily clinical practice, we did not include additional
information regarding the results of cardiac MRI in this article.
The efficacy and sensitivity required to evaluate LVRR have been
confirmed in prior research. Second, the definition of LVRR was
found to vary substantially throughout the literature (31); as a
result, the definition of LVRR provided in this article appears
somewhat arbitrary. In addition, we did not conduct sensitivity
analyses based on various definitions of LVRR, which may have
weakened the findings of this study. Another key issue is that
various exclusion criteria were applied in this study in order to
ensure better completion of the machine learning and provide
a more balanced statistical analysis. As the sample size of the
study is currently small, prospective studies with larger samples
and external validation will be required in the future to obtain
stronger evidence. Furthermore, while this study focuses on
factors that may predict an elevated risk of sudden cardiac
death (SCD), the nature of retrospective investigations makes it
difficult to acquire complete diagnoses for each patient.

Conclusion

The random forest and XGBoost algorithms were found to
perform very well at forecasting LVRR in people with HFrEF.
The LVRR of HFrEF could be predicted using a combination of
conventional laboratory testing and echocardiographic indices.
These machine learning classifiers can aid in achieving precise
managing and danger assessment for people with HFrEF.

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.864312
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-864312 August 11, 2022 Time: 15:51 # 10

Liu et al. 10.3389/fcvm.2022.864312

Data availability statement

The original contributions presented in this study are
included in the article/supplementary material, further inquiries
can be directed to the corresponding authors.

Ethics statement

The studies involving human participants were
reviewed and approved by Ethics Committee of
Affiliated Zhongshan Hospital of Dalian University. The
patients/participants provided their written informed consent
to participate in this study.

Author contributions

LL and CQ: conception and design of the research and
writing of the manuscript. HQ, X-RW, X-YZ, Y-OW, and
X-MY: acquisition of data. LL, CQ, and J-RZ: analysis and
interpretation of the data. J-RZ and JQ: statistical analysis.
S-LZ and JQ: critical revision of the manuscript for intellectual
content. All authors read and approved the final draft.

Funding

This study was supported by National Natural Science
Foundation of China (No. 81370307).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

1. Gayat E, Arrigo M, Littnerova S, Sato N, Parenica J, Ishihara S, et al. Heart
failure oral therapies at discharge are associated with better outcome in acute heart
failure: A propensity-score matched study. Eur J Heart Fail. (2018) 20:345–54.
doi: 10.1002/ejhf.932

2. Crespo-Leiro MG, Anker SD, Maggioni AP, Coats AJ, Filippatos G, Ruschitzka
F, et al. European society of cardiology heart failure long-term registry (ESC-HF-
LT): 1-year follow-up outcomes and differences across regions. Eur J Heart Fail.
(2016) 18:613–25. doi: 10.1002/ejhf.566

3. Acanfora D, Scicchitano P, Acanfora C, Maestri R, Goglia F, Incalzi RA,
et al. Early initiation of sacubitril/valsartan in patients with chronic heart failure
after acute decompensation: A case series analysis. Clin Drug Investig. (2020)
40:493–501. doi: 10.1007/s40261-020-00908-4

4. Martin CA, Lambiase PD. Pathophysiology, diagnosis and treatment of
tachycardiomyopathy. Heart. (2017) 103:1543–52. doi: 10.1136/heartjnl-2016-
310391

5. Hellawell JL, Margulies KB. Myocardial reverse remodeling. Cardiovasc Ther.
(2012) 30:172–81. doi: 10.1111/j.1755-5922.2010.00247.x

6. Michowitz Y, Kronborg MB, Glikson M, Nielsen JC. The ’10 commandments’
for the 2021 ESC guidelines on cardiac pacing and cardiac resynchronization
therapy. Eur Heart J. (2021) 42:4295. doi: 10.1093/eurheartj/ehab699

7. D’Auria F, Polito MV, Vitulano G, Ciccarelli M, De Rosa R, Gigantino A, et al.
Predictors of left ventricular reverse remodeling in patients with chronic heart
failure. J Cardiovasc Med. (2018) 19:465–9. doi: 10.2459/JCM.0000000000000679

8. Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola
VP. Epidemiology and one-year outcomes in patients with chronic heart failure and
preserved, mid-range and reduced ejection fraction: An analysis of the ESC heart
failure long-term registry. Eur J Heart Fail. (2017) 19:1574–85. doi: 10.1002/ejhf.813

9. Kimura Y, Okumura T, Morimoto R, Kazama S, Shibata N, Oishi H, et al. A
clinical score for predicting left ventricular reverse remodelling in patients with
dilated cardiomyopathy. ESCHeart Fail. (2021) 8:1359–68. doi: 10.1002/ehf2.13216

10. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. The 22nd
ACM SIGKDD International Conference. New York, NY: ACM (2016).

11. Sagi O, Rokach L. Approximating XGBoost with an interpretable decision
tree. Inf Sci. (2021) 572:522–42.

12. Wang R, Luo W, Liu Z, Liu W, Liu C, Liu X, et al. Integration of the
Extreme Gradient Boosting model with electronic health records to enable the
early diagnosis of multiple sclerosis. Mult Scler Relat Disord. (2021) 47:102632.
doi: 10.1016/j.msard.2020.102632

13. Podder P, Bharati S, Mondal M, Kose U. Application of machine learning
for the diagnosis of COVID-19. In: Kose U, Gupta, D editors. Data Science for
COVID-19. Amsterdam: Elsevier (2021) p. 175–94.

14. Montomoli J, Romeo L, Moccia S, Bernardin S, Migliorelli L, Berardini
D. Machine learning using the extreme gradient boosting (XGBoost) algorithm
predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients. J Intens
Med. (2021) 1:110–6.

15. Hsiao YW, Tao CL, Chuang EY, Lu TP. A risk prediction model of gene
signatures in ovarian cancer through bagging of GA-XGBoost models. J Adv Res.
(2020) 30:113–22. doi: 10.1016/j.jare.2020.11.006

16. Shtar G, Rokach L, Shapira B, Nissan R, Hershkovitz A. Using machine
learning to predict rehabilitation outcomes in post-acute hip fracture patients. Arch
Phys Med Rehabil. (2021) 102:386–94. doi: 10.1016/j.apmr.2020.08.011

17. Momenzadeh N, Hafezalseheh H, Nayebpour MR, Fathian M, Noorossana
R. A hybrid machine learning approach for predicting survival of patients with
prostate cancer: A SEER-based population study. Inform Med Unlocked. (2021)
27:100763.

18. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP,
Scheinman MM. Tachycardia-induced cardiomyopathy: A review of animal models
and clinical studies. J Am Coll Cardiol. (1997) 29:709–15. doi: 10.1016/s0735-
1097(96)00592-x

19. Fanelli G, Dantone M, Gall J, Fossati A, Gool L. Random forests for real time
3D face analysis. Int J Comput Vis. (2013) 101:437–58.

20. Cannata A, Manca P, Nuzzi V, Gregorio C, Artico J, Gentile P, et al. Sex-
specific prognostic implications in dilated cardiomyopathy after left ventricular
reverse remodeling. J Clin Med. (2020) 9:2426. doi: 10.3390/jcm9082426

Frontiers in Cardiovascular Medicine 10 frontiersin.org

https://doi.org/10.3389/fcvm.2022.864312
https://doi.org/10.1002/ejhf.932
https://doi.org/10.1002/ejhf.566
https://doi.org/10.1007/s40261-020-00908-4
https://doi.org/10.1136/heartjnl-2016-310391
https://doi.org/10.1136/heartjnl-2016-310391
https://doi.org/10.1111/j.1755-5922.2010.00247.x
https://doi.org/10.1093/eurheartj/ehab699
https://doi.org/10.2459/JCM.0000000000000679
https://doi.org/10.1002/ejhf.813
https://doi.org/10.1002/ehf2.13216
https://doi.org/10.1016/j.msard.2020.102632
https://doi.org/10.1016/j.jare.2020.11.006
https://doi.org/10.1016/j.apmr.2020.08.011
https://doi.org/10.1016/s0735-1097(96)00592-x
https://doi.org/10.1016/s0735-1097(96)00592-x
https://doi.org/10.3390/jcm9082426
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-864312 August 11, 2022 Time: 15:51 # 11

Liu et al. 10.3389/fcvm.2022.864312

21. Wilcox JE, Fang JC, Margulies KB, Mann DL. Heart failure with recovered
left ventricular ejection fraction: JACC scientific expert panel. J Am Coll Cardiol.
(2020) 76:719–34. doi: 10.1016/j.jacc.2020.05.075

22. Levy RL, White PD, White PD, Stroud WD, Hillman CC. Transient
tachycardia; prognostic significance alone and in association with transient
hypertension. Med Press Egypt. (1946) 38:207–12.

23. Kannel WB, Kannel C, Paffenbarger RS Jr., Cupples LA. Heart rate and
cardiovascular mortality: The framingham study. Am Heart J. (1987) 113:1489–94.
doi: 10.1016/0002-8703(87)90666-1

24. Tavazzi L, Senni M, Metra M, Gorini M, Cacciatore G, Chinaglia A, et al.
Multicenter prospective observational study on acute and chronic heart failure:
One-year follow-up results of IN-HF (Italian network on heart failure) outcome
registry. Circ Heart Fail. (2013) 6:473–81. doi: 10.1161/CIRCHEARTFAILURE.112.
000161

25. Malhotra R, Johnstone C, Halpern S, Hunter J, Banerjee A. Duration of motor
block with intrathecal ropivacaine versus bupivacaine for caesarean section: A
meta-analysis. Int J Obstet Anesth. (2016) 27:9–16. doi: 10.1016/j.ijoa.2016.03.004

26. Tadic M, Pieske-Kraigher E, Cuspidi C, Morris DA, Burkhardt F, Baudisch A,
et al. Right ventricular strain in heart failure: Clinical perspective. Arch Cardiovasc
Dis. (2017) 110:562–71. doi: 10.1016/j.acvd.2017.05.002

27. Motoki H, Borowski AG, Shrestha K, Hu B, Kusunose K, Troughton
RW, et al. Right ventricular global longitudinal strain provides prognostic value
incremental to left ventricular ejection fraction in patients with heart failure. J Am
Soc Echocardiogr. (2014) 27:726–32. doi: 10.1016/j.echo.2014.02.007

28. Yuan H, Fan XS, Jin Y, He JX, Gui Y, Song LY, et al. Development of
heart failure risk prediction models based on a multi-marker approach using
random forest algorithms. Chin Med J. (2019) 132:819–26. doi: 10.1097/CM9.
0000000000000149

29. Pérez-Rodon J, Galve E, Pérez-Bocanegra C, Soriano-Sánchez T, Recio-
Iglesias J. A risk score to predict the absence of left ventricular reverse remodeling:
Implications for the timing of ICD implantation in primary prevention. J Cardiol.
(2018) 71:505–12. doi: 10.1016/j.jjcc.2017.10.019

30. Kubanek M, Sramko M, Maluskova J, Kautznerova D, Weichet J, Lupinek
P, et al. Novel predictors of left ventricular reverse remodeling in individuals
with recent-onset dilated cardiomyopathy. J Am Coll Cardiol. (2013) 61:54–63.
doi: 10.1016/j.jacc.2012.07.072

31. Fornwalt BK, Sprague WW, BeDell P, Suever JD, Gerritse B, Merlino JD,
et al. Agreement is poor among current criteria used to define response to
cardiac resynchronization therapy. Circulation. (2010) 121:1985–91. doi: 10.1161/
CIRCULATIONAHA.109.910778

Frontiers in Cardiovascular Medicine 11 frontiersin.org

https://doi.org/10.3389/fcvm.2022.864312
https://doi.org/10.1016/j.jacc.2020.05.075
https://doi.org/10.1016/0002-8703(87)90666-1
https://doi.org/10.1161/CIRCHEARTFAILURE.112.000161
https://doi.org/10.1161/CIRCHEARTFAILURE.112.000161
https://doi.org/10.1016/j.ijoa.2016.03.004
https://doi.org/10.1016/j.acvd.2017.05.002
https://doi.org/10.1016/j.echo.2014.02.007
https://doi.org/10.1097/CM9.0000000000000149
https://doi.org/10.1097/CM9.0000000000000149
https://doi.org/10.1016/j.jjcc.2017.10.019
https://doi.org/10.1016/j.jacc.2012.07.072
https://doi.org/10.1161/CIRCULATIONAHA.109.910778
https://doi.org/10.1161/CIRCULATIONAHA.109.910778
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Early prediction of clinical scores for left ventricular reverse remodeling using extreme gradient random forest, boosting, and logistic regression algorithm representations
	Introduction
	Materials and methods
	Study population
	Data collection
	Echocardiography
	Return visit
	Statistical study
	Data input
	Model research
	Feature selection
	Baseline features
	Statistical tools and machine learning

	Results
	Research and validation of the classifier model

	Discussion
	Limitations
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


