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Target position and avoidance 
margin effects on path planning 
in obstacle avoidance
Mohammad R. Saeedpour‑Parizi  1,3*, Shirin E. Hassan  2, Ariful Azad  3, Kelly J. Baute4, 
Tayebeh Baniasadi1 & John B. Shea  1

This study examined how people choose their path to a target, and the visual information they use 
for path planning. Participants avoided stepping outside an avoidance margin between a stationary 
obstacle and the edge of a walkway as they walked to a bookcase and picked up a target from different 
locations on a shelf. We provided an integrated explanation for path selection by combining avoidance 
margin, deviation angle, and distance to the obstacle. We found that the combination of right and 
left avoidance margins accounted for 26%, deviation angle accounted for 39%, and distance to the 
obstacle accounted for 35% of the variability in decisions about the direction taken to circumvent an 
obstacle on the way to a target. Gaze analysis findings showed that participants directed their gaze 
to minimize the uncertainty involved in successful task performance and that gaze sequence changed 
with obstacle location. In some cases, participants chose to circumvent the obstacle on a side for 
which the gaze time was shorter, and the path was longer than for the opposite side. Our results of a 
path selection judgment test showed that the threshold for participants abandoning their preferred 
side for circumventing the obstacle was a target location of 15 cm to the left of the bookcase shelf 
center.

When walking through the environment, we often take a path that circumvents obstacles on the way to our des-
ignated goal. Humans are capable of avoiding obstacles during gait to designated target locations. This requires 
the recognition of objects in the environment which might interfere with arrival at the target location. Safe 
avoidance strategies are characterized by appropriate path and speed selections which depend on the obstacle 
crossing angle and estimation of the minimum distance1,2. Baxter and Warren1 recently followed-up on earlier 
research by Fajen and Warren2,3, and Gerin-Lajoie and Warren4 on path selection and obstacle avoidance. Baxter 
and Warren investigated whether the differences in relative distance, or the deviation angle of the ends of the 
obstacle would regulate path selection. Participants in Baxter and Warren’s study walked at a normal pace in a 
virtual environment toward a goal (a pole) while avoiding a rectangular shaped obstacle located between the start 
position and the goal. After walking 1.5 m, the obstacle appeared with the goal visible behind it. As the participant 
approached, the goal and barrier disappeared, and the next trial began. Obstacle orientation and lateral position 
were manipulated to obtain differences in relative distance and differences in deviation angle of the ends of the 
obstacle. The analysis of relative distance and deviation angle measures showed that during obstacle avoidance 
participants chose a pathway that minimized relative distance and deviation angle. Moreover, the effects of 
relative distance and deviation angle were independent and additive. Baxter and Warren concluded there are 
two alternative options for path selection when an obstacle exists in the pathway to an intended endpoint. First, 
participants might select the path that has a smaller deviation angle from the straight line. Second, participants 
might select the path that is closer to the edge of the obstacle. In addition, Baxter and Warren expressed the view 
that rather than planning and evaluating alternative paths to the final goal, the path is emergent, and depends 
on the evolution of relative distance and deviation angle during walking.

The present study paralleled the Baxter and Warren study with some noteworthy differences. The participant 
walked at a self-selected pace in a real environment (as opposed to a virtual environment) along a walkway to a 
target (cup) located on a bookcase shelf, and encountered an obstacle along the way. The target and obstacle were 
visible at the beginning of a trial in contrast to not appearing until after the participant walked some distance. 
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Thus, we were somewhat confident that path planning was performed at the beginning of a trial. The participant 
was required to act on the target by picking it up when they arrived at the bookcase. This requirement is differ-
ent from having the barrier and goal disappear before the participant’s arrival. The most important difference 
between this study and that of Baxter and Warren is that we included an avoidance margin that was specified as 
the distance between the outer edge of the obstacle and the edge of the walkway. Thus, the avoidance margin was 
the available space through which the participant could walk to circumvent the obstacle without encountering 
the obstacle or crossing the walkway boundary. Other studies have demonstrated the importance of an avoid-
ance margin which has been defined as the distance between the participant’s body and the edge of the obstacle 
during obstacle avoidance. These studies have demonstrated that participants will maintain an avoidance margin 
between themselves and the obstacle, and that this distance depends on the characteristics of the obstacle5–16. 
Previous path planning models have described the effects of deviation angle and/or minimum distance from an 
obstacle on path planning1,2. However, we considered avoidance margin, as well as deviation angle and minimum 
distance from the obstacle as factors related to path planning. Finally, we incorporated measurement of visual 
gaze into our study.

Although path planning may be achieved using different sensory systems such as audition17 to inform the 
motor system of adjustments necessary for path selection, the visual system provides the most precise environ-
mental information about the pathway18,19. Obstacle avoidance models have not properly incorporated the use of 
gaze and vision to guide actions and avoid obstacles. For example, the recent Baxter and Warren model is based 
on the Fajen and Warren3 model, and neither of these models describe how gaze selection affects decision making 
regarding obstacle avoidance. A number of obstacle avoidance studies have examined the importance of gaze 
selection during obstacle avoidance, and they have shown that individuals need appropriate information about 
the target and obstacle location20–23. Gaze patterns have been found to indicate how the performer selects the 
information to be encoded24–26. Previous studies on goal directed gait demonstrated that participants adjust their 
gaze characteristics such as position and duration19,27,28 during performance. The order in which gazes are made 
during path planning may provide critical information not only about what environmental information is being 
extracted and used as a person walks to a target, but also about the order in which that information is obtained. 
Several studies have addressed gaze sequence during daily activities18, reaching24,29, precision-walking18,28–32, and 
obstacle avoidance21. Even when previous studies have made it clear that gaze selection plays an important role 
in obstacle avoidance, they have failed to relate avoidance margin as an issue of uncertainty. It has been demon-
strated that there is a relationship between uncertainty and gaze behavior23,30. Decreased avoidance margin size 
may increase uncertainty in path planning. By including gaze as a factor in path selection, we can gain a better 
understanding of decision-making while avoiding an obstacle.

The unique contribution of this study was determination of how avoidance margin and target location interact 
along with gaze selection behavior (gaze allocation and gaze sequence) in path planning when a person walks 
to a target located on a bookcase shelf. The description of path planning by Baxter and Warren is dichotomous 
by which individuals may use either the deviation angle from the straight line or the edge of the obstacle to plan 
a path. In contrast, we provide a multivariate model for weighting of different sources of information used by 
participants during path planning. To gain a better understanding of the role played by target location on path 
selection we also subjectively assessed participants’ path planning for different target locations. This test allowed 
us to determine a threshold value for target location along the bookcase shelf at which the path direction around 
an obstacle would be changed.

Methods
Participants.  Twelve normally sighted college students (mean age ± standard deviation: 20.3 ± 1.4 years, 10 
female) participated in the study. All participants completed the Edinburgh Handedness Inventory33, and were 
right-hand (score 86.1 ± 9.05) and right-foot dominant. None of the participants had a history of neurological 
and musculoskeletal disorders, or any other conditions which limited their mobility at the time of participation, 
according to self-report. The experimental protocol was approved by, and performed in accordance with, the 
relevant guidelines and regulations of the Indiana University Bloomington Institutional Review Board and con-
formed to the standards set by the Declaration of Helsinki. All participants provided written informed consent 
prior to participation.

Apparatus.  Figure 1 shows the experimental set-up. The start position was located 7.5 m away from and 
directly opposite to a 1.84 m (height) × 0.90 m (width) × 0.22 m (depth) bookcase with two shelves. The lower 
shelf was 0.88  m above the ground. An empty 16  oz cup (the “target”) measuring 15.87  cm in height and 
8.30 cm in diameter and weighing 275.23 g was on the lower shelf. Three wooden boxes each measuring 45 cm 
(length) × 32 cm (width) × 24 cm (height) were used to create three obstacles of different widths by arranging the 
boxes end-to-end so that the total width of the obstacles were 45 cm (one box), 90 cm (two boxes), and 135 cm 
(three boxes). These obstacles were arranged across the middle of the walkway which was 213 cm in width. The 
left and right edges of the walkway were marked by a 5 cm wide strip of red tape. The right avoidance margin 
(AM-R) was the distance between the right outer edge of the obstacle and the right edge of the walkway, and 
the left avoidance margin (AM-L) was the distance between the left outer edge of the obstacle and the left edge 
of the walkway.

Participants’ eye movements were measured using a mobile eye tracker from Pupil Labs. Eye movement data 
was updated at 120 Hz. The eye-tracking software developed by Pupil Labs34 was used to extract eye tracking 
data from the recorded videos. A nine-point calibration was performed.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15285  | https://doi.org/10.1038/s41598-021-94638-y

www.nature.com/scientificreports/

Participants’ position in the room was tracked using two Microsoft Kinect cameras. A customized visual stu-
dio C++ application based on the Kinect SDK 2.0 was developed and used to detect, track, and record the human 
motion for post-analysis. For more details of the eye tracker and Kinect setup, see Saeedpour-Parizi et al.35.

Task and design.  The task was to walk from the start position to the bookcase at a self-selected pace and 
pick up the target positioned on the lower shelf while avoiding an obstacle and not stepping outside the walkway 
boundary. There were eight obstacle conditions (see Table 1). Each obstacle condition was determined by left-
side and right-side avoidance margins. In Condition 1 (NOBST), no obstacles were present within the walkway. 
This condition provided a baseline for validation of the assumption in the literature1 that the path taken to the 
target from the start position would be a straight-line in the absence of an intervening obstacle. This condition 
also provided a baseline from which the findings for the other obstacle conditions could be interpreted.

The avoidance margin conditions were crossed with three target location conditions. The target was posi-
tioned either on the center of the lower bookcase shelf, 30 cm to the left of the lower bookcase shelf center, or 
30 cm to the right of the lower bookcase shelf center. Participants walked to the target three times for each of 
the avoidance margin conditions. These experimental manipulations resulted in an 8 (avoidance margins) × 3 
(target position) × 3 (trials) repeated measures design.

Procedure.  At the beginning of each trial, participants stood with their eyes closed and barefoot at the 
start position with both feet side-by-side, and shoulder width apart. Participants were advised that they would 
receive a verbal “ready” command followed by a verbal “start” command from the experimenter. They were 
instructed to open their eyes and commence walking to the bookcase and pick-up the target only after hearing 
the “start” command. Participants were instructed to walk at a comfortable, self-selected pace to the bookcase 
and pick-up the target. On trials for which an obstacle was present, participants were instructed to avoid making 
contact with the obstacle, but that they were free to take any path they liked to reach the bookcase and pick-up 
the target. Therefore, participants were not instructed about which side of the walkway they should use to walk 
to the target. Participants were also instructed not to step on or over the red tape marking the boundary of the 
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Figure 1.   Experimental setup. Participants walked 7.5 m to a bookcase that had an empty 16 oz cup (the 
“target”) sitting on its lower shelf (.88 m from the floor).

Table 1.   Obstacle conditions. AM-L represents the left avoidance margin; AM-R represents the right 
avoidance margin.

Condition Obstacle length Obstacle location AM-L (cm) AM-R (cm)

1 No obstacle NA NA NA

2 45 cm Center of the walkway 83.5 83.5

3 90 cm Center of the walkway 61.0 61.0

4 90 cm Right side of the center of walkway 84.0 40.0

5 90 cm Left side of the center of walkway 40.0 84.0

6 135 cm Center of the walkway 39.0 39.0

7 135 cm Right side of the center of walkway 52.0 25.0

8 135 cm Left side of the center of walkway 25.0 52.0
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experimental walkway. After participants had picked up the target at the end of a trial, they placed the target back 
to its original position and returned to the start position.

Upon completion of performing the eight obstacle conditions for each of the target positions, participants 
were administered a path selection judgement test. For this test, participants were asked to stand at the start 
position and the target was placed in the center of the lower shelf of the bookcase. The walkway setup was the 
same as for Condition 3 (i.e., an obstacle was placed in the middle of the walkway such that the left and right 
avoidance margins were 61 cm each). The target position was then successively changed by 5 cm to the left side 
up to a distance of 35 cm from the center of the shelf. Participants were asked to rate on a 0–10 Likert Scale which 
side of the obstacle they would walk around to reach the target when it was in the middle of the shelf and for 
each 5 cm displacement of the target. The same procedure was repeated by moving the target from the center to 
the right side of the bookcase shelf.

Data pre‑processing.  Path data.  In this study there were three parameters that may have affected obsta-
cle avoidance: a.) relative distance to the obstacle; b.) relative angle to the target; and c.) avoidance margin. As 
shown in Fig. 2, DL and DR correspond to the distance from the center of the starting position to the left and right 
edges of the obstacle, respectively. Relative distance is the difference in the distance between the right and left 
sides of the obstacle and can be computed as ΔD = DR − DL. If ΔD was equal to zero, the distance to the right and 
left sides of the obstacle were equal. If ΔD was positive, the distance to the right side of the obstacle was longer 
than the distance to left side of the obstacle. The converse is true for a negative ΔD.

The angle between the straight line connecting the target from the starting position and the line connecting 
the outer left edge of the obstacle from the starting position is the left deviation angle (θL, see Fig. 2). Similarly, 
θR represents the right deviation angle and is defined as the angle between the straight line connecting the target 
from the starting position and the line connecting the outer right edge of the obstacle from the starting position. 
The relative angle is the difference in the deviation angle between the right and left sides and can be calculated 
as Δθ = θR − θL. Positive Δθ indicates that the right deviation angle was larger than the left deviation angle. The 
converse is true for negative Δθ. When Δθ = 0, the deviation angles of the right and left sides were equal. The 
deviation angle from the straight line in the NOBST condition was also calculated for different target positions.

As previously described, AM-R represents the right avoidance margin and was calculated as the distance 
between the outer edge of the right obstacle and the right edge of the walkway. Similarly, AM-L represents the 
left avoidance margin and was calculated as the distance between the outer edge of the left obstacle and the left 
edge of the walkway. Avoidance margin ratio (AMR) was calculated as AM-R divided by AM-L. An avoidance 

Figure 2.   Experimental setup. Participants walked to a bookcase that had an empty 16 oz cup (the “target”) 
sitting in its lower shelf (.88 m from the floor). AM-L represents the left avoidance margin; AM-R represents the 
right avoidance margin; DL and DR correspond to the distance from the center of the starting position to the left 
and right edges of the obstacle, respectively. θL is the left deviation angle and is the angle between the straight 
line connecting the target and the center of the starting position and the line connecting the outer left edge of 
the obstacle relative to the starting position. θR represents the right deviation angle and is defined as the angle 
between the straight line connecting the target from the center of the starting position and the line connecting 
the outer right edge of the obstacle relative to the center of the starting position.
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margin ratio equal to 1.0 means that the right and left avoidance margins were equal in size. An avoidance margin 
ratio greater than 1.0 means that the right avoidance margin was greater than the left avoidance margin. The 
converse is true for avoidance margins less than 1.0.

Variations in the difference in relative distance (ΔD), relative angle (Δθ) and the avoidance margins (AM-R 
and AM-L) were achieved by manipulating the obstacle orientation and target positions. For example, when 
obstacles were positioned in the middle of the pathway, ΔD was equal to zero and the AM-R and AM-L were 
equal in value. In this situation, if the target was located in the middle of the shelf, Δθ was also zero. When the 
target was moved to the left or right, Δθ was positive or negative in value, respectively. When obstacles were 
moved to the right side of the pathway, ΔD was positive, and AM-R was smaller than AM-L. When obstacles were 
moved to the left side of the pathway, ΔD was negative, and AM-R was greater than AM-L. For each participant, 
we calculated Δθ, ΔD, AM-R, and AM-L for a total of 24 levels (8 levels of obstacle × 3 levels of target position).

Gait speed.  For each participant, gait speed was calculated for each trial of the obstacle and target conditions. 
As described by Dolatabadi et al.36, gait speed was considered as the displacement of the ankle along the ante-
rior–posterior (AP) plane divided by the elapsed time between the start of the first and completion of the last 
swing phase. Two measures of gait speed were calculated. These were the average gait speed for the entire path-
way, and the average gait speed to the middle of the avoidance margin.

Start foot analysis.  Based on the data collected by the Kinect cameras, the number of trials for starting with the 
right and left foot was determined for each obstacle and target position.

Eye tracking data.  Calculating gaze allocation.  Gaze behavior across the different target and obstacle 
conditions was analyzed to determine the information used by participants for path selection. Records of each 
participant’s trials were processed manually. To calculate gaze allocation, for each frame of the eye recordings, we 
found the 2D gaze vector and projected that vector to the ground plane with the reference set at the start posi-
tion. As a result, gaze allocation in each trial was calculated using a Gaussian density estimate. These Gaussians 
were normalized by the total duration of each trial. When we found the coordination of gaze allocation for each 
trial, we scaled the result from 0 to 10 and drew a 3D counter plot for each of the different avoidance margins. 
The total number of recorded frames in each trial was larger than the number of frames with gazes on the three 
possible locations (target, avoidance margin, and path area) because not all of the participants’ gaze vectors 
intersected the three possible locations. Gaze frequency was also calculated as the sum of gazes on each of the 
areas of interest for trials.

The gaze object sequence.  To assess gaze order, we quantified each participant’s gaze object sequence and the 
duration of their gaze sequence. The models of Haji Fathaliyan et al.37 and Pan et al.38 were used to calculate gaze 
object sequence. Gazes on the area of interests were analyzed. A color was assigned for each area of interest. 
These were red for avoidance margin, blue for target, and white for path. Gazes outside of these areas of interest 
were not analyzed. Because different trials had different durations, each trial was normalized to the total dura-
tion and divided into 100 equal segments (see Fig. 3). Figure 3 presents an example of the gaze sequence analysis 
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Figure 3.   Gaze object sequence calculation procedure. In matrix A, “T” indicates gazes on the target area, “P” 
indicates gazes on the path area, and “S” indicates gazes on the avoidance margin area. The colors in the figure 
correspond to the color-coded objects (Blue: Target, White: Path, and Red: Avoidance Margin). Each raw gaze 
object sequence was represented by a (1 × 100) set of frames. In the first line of this example, the gaze object 
transitioned from the target to path and then to the target. “N” indicates number of trials in each avoidance 
margin condition. Matrix B shows a convert matrix. We scaled the result to integer numbers (e.g., “2” indicates 
target area, “5” indicates path, and “10” indicates avoidance margin). Matrix C shows average result.
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derived by converting gazes to matrix form. This resulted in eight matrices, and each matrix represented one of 
the eight avoidance margin conditions. For each avoidance margin condition there were three matrices. These 
were Matrices A, B, and C. In Matrices A and B different rows (N) indicate the number of trials in each avoidance 
margin condition, and each column represents the gaze position. In matrix A, “T” indicates gazes on the target 
area, “P” indicates gazes on the path area, and “S” indicates gazes on the avoidance margin area. In the first row 
of Matrix A of this example, the gaze position transitioned from the target to path and then to the target. For 
Matrix B, we scaled the data of matrix A to integer numbers which were arbitrarily determined. The number “2” 
indicated the target area, the number “5” indicated the path area, and the number “10” indicated the avoidance 
margin. Matrix C shows the average of the numbers (of 2, 5, and 10) for each of the 100 trial segments. Based on 
Matrix C, a plot for every avoidance margin condition was generated.

To compare gaze sequences in different obstacle positions we used the “ScanMatch” model39 which is based 
on the Needleman-Wunsch algorithm used in bioinformatics to compare DNA sequences. This model aligns one 
string with one another to maximize a similarity score. For this reason, we calculated a similarity score between 
different trials. The means of the similarity scores between obstacle positions were calculated.

Avoidance margin gaze ratio.  To assess the effect of gazes on avoidance margins for path selection, we quanti-
fied cases for each participant on the left and right avoidance margins. Then, we defined avoidance margin gaze 
ratio (AMGR) as described in Eq. (1):

AMGR is a value between − 1 and + 1. An AMGR equal to zero means that gazes on the right and left avoidance 
margins were equal in time. An AMGR greater than zero means that the gazes on the right avoidance margin 
were longer than the gazes on left avoidance margin. The converse is true for AMGR less than Zero.

Data analysis.  Multiple logistic regressions were performed on ΔD and AMR when accounting for Δθ 
(when the target was in the middle, left, and right positions on the bookcase shelf) to assess the relationship of 
each of these parameters on path planning. A univariate logistics regression was performed on Δθ to assess the 
relationship of this parameter on path planning. Ground truth binary labels were Right side = 1 and Left side = 0.

To assess the effect of all parameters together (ΔD, Δθ, AMR) on path selection, a multivariate analysis model 
was performed. This model also accounted for the interaction of ΔD and AMR with Δθ. To assess the effect of 
these parameter weights, we used a bootstrapping technique with random shuffling of 2000 surrogate data. We 
then used a machine learning logistic regression model with a sparse set of features determined by L1 regulariza-
tion (LASSO) to predict whether a selected path was to the right or left. To evaluate model performance, we used 
a leave-one-out cross validation method40. We then calculated the “Variance account for each of the parameters” 
in path planning. The Logistics regression was implemented in Python using the scikit-Iearn machine-learning 
library. To assess the effect of different parameters at an individual level, a multilevel analysis41 was performed 
to find the weight that each participant assigned to each of the decision variables.

An 8 (obstacle condition) × 3 (target position) repeated-measures ANOVA was conducted on average gait 
speed to assess how speed changed as a result of the different obstacle conditions and target positions.

An 8 (obstacle condition) × 3 (target position) × 3 (gaze position) repeated-measures ANOVA was conducted 
on gaze frequency to assess how gaze behavior changed as a result of the different obstacle conditions and target 
positions. Distribution of gaze allocation was also assessed by the HyBayes package42.

A Kolmogorov–Smirnov test was used for different avoidance margin conditions to assess the normality 
assumption of similarity scores for gaze sequence. The PROPER method proposed by Jahandideh et al.43 was used 
for comparison of similarity scores. A one-way ANOVA was conducted on similarity scores between Conditions 
2 to 8 and the NOBST condition to assess how gaze sequence behavior changed as a result of different avoidance 
margins. Bonferroni corrected post hoc comparisons were used to further investigate the effect of the avoidance 
margin condition on the gaze sequence.

Univariate logistic regressions were performed to assess the effect of AMGR on path planning. Ground truth 
binary labels were Right side = 1 and Left side = 0. To assess the effects of AMGR and AMR on path selection, a 
multivariate analysis model was performed.

An independent analysis for trials was not significant and the trial scores were therefore averaged. All analyses 
were performed in Python, and Greenhouse–Geisser epsilon was used to control for violations of sphericity. An 
alpha level of .05 was used for all tests.

Ethical approval.  All procedures were approved by the Indiana University Bloomington at Institutional 
Review Board.

Results
Deviation angle from straight line in the NOBST condition.  When the target was in the middle of 
the bookcase shelf in the NOBST condition, participants walked straight to the target. However, when the target 
was located either to the right or left side of the bookcase shelf participants did not walk straight to the target to 
pick it up. Instead, when the target was located to the right-side, the deviation angle from the straight line was 
3.05 ± 0.15 degrees (Mean ± SD). The converse was true when the target was positioned to the left since the left 
side deviation angle was 2.61 ± 0.20 degrees (Mean ± SD) from the straight line to the target.

(1)AMGR =

(

Gaze time on Right AM − Gaze time on Left AM
)

(

Gaze time on Right AM + Gaze time on Left AM
)
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Path planning results.  The probability of walking to the right of the obstacle for different decision-making 
parameters is shown in Fig. 4. Figure 4A shows the influence of ΔD on the probability of walking to the right 
of the obstacle for different target locations. It can be seen when ΔD was equal to zero (when the obstacle was 
equidistant from the starting position), the probability of walking to the right side was 70% when the target was 
located in the middle, was 95% when the target was located on the right side, and was 40% when the target was 
located on the left side of the bookcase. As ΔD became negative (the distance to the right edge of the obstacle 
was less than the distance to the left edge of the obstacle), the probability of walking to the right-side increased 
for all the target locations. When ΔD was equal to, or less than, − 10 cm, participants always walked to the right 
side of the obstacle (the probability was equal to 100%). Also, when ΔD was positive (when the distance to the 
left side of the obstacle was less than the distance to the right side of the obstacle), the probability of walking to 
the right side of the obstacle decreased. When ΔD was greater than 5 cm (the left edge of the obstacle was 5 cm 
closer than the right edge of the obstacle), the probability of walking to the left side of the obstacle was equal to, 
or greater, than walking to the right side.

Figure 4B shows the influence of Δθ on the probability of walking to the right of the obstacle. It can be seen 
that when Δθ was equal to zero (the target was positioned on the middle of the shelf), the probability of walking 
to the right side of the obstacle was 90%. As Δθ became negative (the target was positioned on the right side of 
the shelf), the probability of walking to the right-side increased. Notably, when Δθ was equal, or less than − 5°, 
participants always walked to the right side of the obstacle (the probability was equal to 100%). Also, for posi-
tive Δθ measures (the target was positioned on the left side of the shelf), the probability of walking to right side 
decreased.

Figure 4C shows the influence of the avoidance margin on the probability of walking to the right of the 
obstacle. It can be seen that when the target was in the middle of the bookcase shelf (red line), and the avoidance 
margin was equal to 1 (the situation where the right and left avoidance margins were equidistant from the edge 
of the pathway), the probability of walking to the right side was approximately 90%. With an increase of the 
width of the right avoidance margin relative to the width of the left avoidance margin, the probability of walk-
ing to the right side of the obstacle increased. However, when the width of the left avoidance margin increased, 
participants started walking to the left side of the obstacle. When the target was on the right side of the bookcase 
shelf (pink line), and the avoidance margin ratio was 0.5, participants walked to the right side of the obstacle. 
When the target was on the left side (blue line), and the avoidance margin ratio was 1.4, participants walked to 
the left side of the obstacle.

Logistics regression analysis.  Table 2 shows the result of the univariate logistics regression analysis. It 
can be seen that when the target was located on the left side of the bookcase shelf (increasing Δθ), the logit-
probability of walking to the right side significantly decreased by a coefficient of 0.34. Also, when the target was 
in the middle of the bookcase shelf and ΔD increased (the distance to the right edge of the obstacle increased as 
opposed to the distance to the left edge) the logit-probability of walking to the right side significantly decreased 
by a coefficient of 0.35. The AMR coefficient shows that when the ratio of the width of the right avoidance margin 
and left avoidance margin increased by 1, and the target was in the middle of the bookcase shelf, the logit-prob-
ability of walking to the right side significantly increased by a coefficient of 4.67. When the target was on the left 
side of the bookcase shelf, and ΔD increased, the probability of walking to the right side significantly decreased 
by coefficient of 0.65. Furthermore, increasing AMR resulted in a significant increase in the probability of walk-
ing to the right side of the obstacle by a coefficient of 5.13. However, when the target was on the right side of the 
bookcase shelf, participants walked to the right side of the obstacle without consideration of ΔD and AMR. The 
individual level analysis is presented in Supplementary Figs. 2–4 and Supplementary Table 1.

Multivariate logistics regression analysis.  Table 3 shows the confidence intervals for the multivariate 
logistics regression. It can be seen that all parameters and interactions contributed to the model (p < .05). All 
three predictor variables played a significant role in the decision about the path to take to the target (p < .05). The 
model accuracy using LOOCV reached 85.1 ± 2.07% (mean ± SD). It can be seen in Table 3 that the most impor-
tant factor which accounted for more than 37% of the variance in path planning was Δθ (an indicator of target 
position) and ΔD accounted for more than 36% of the variance in path planning. However, including AMR in 
the model accounted for approximately 26% of the variance in path planning decision making.

Speed analysis.  Figure 5 shows the average gait speed for different target locations under different condi-
tions. Figure 5A shows the average speed between the start and target locations. Figure 5B shows the average 
velocity between the start and obstacle area. It is notable that the NOBST condition was faster than the other 
conditions. In general, the average velocity decreased as the avoidance margin decreased. In Condition 6, the 
average obstacle speed declined dramatically. The avoidance margins for both sides in this condition is the small-
est of all conditions. As a result, the participant had to slow down to successfully cross the obstacle.

The ANOVA performed on averaged speed showed there were significant main effects for obstacle con-
dition, F(7, 77) = 3.11, p < .01, and target location, F(2, 22) = 4.81, p = .018. In addition, the Obstacle × Target 
Location, F(14, 154) = 2.44, p < .01 interaction was significant. The ANOVA performed on the obstacle averaged 
speed showed there was a significant main effect for obstacle condition, F(7, 77) = 7.68, p < .01. However, the 
target location and interaction of Obstacle × Target Location was not significant.

Start foot analysis.  The Friedman test indicated that starting with the right foot or the left foot was signifi-
cant for different obstacle and target positions (χ2 = 15.97, p = .001). The frequency of starting with the right foot 
when the target was on the middle or on the right side of the shelf was in the range of 65% to 66%, as shown in 
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Figure 4.   Probability of walking to the right side of the obstacle based on the target and obstacle locations. (A) 
Influence of ΔD on the probability of walking to the right of the obstacle. (B) Influence of Δθ on the probability 
of walking to the right of the obstacle. (C) Influence of avoidance margin on the probability of walking to the 
right of the obstacle.
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Table 4. Starting with the right foot decreased to 52% when the target was placed on the left side of the bookcase 
shelf. The Pearson correlation coefficient between the starting foot and selected path for different obstacle and 
target position was 0.53 (p = .03).

Eye tracking results.  Gaze allocation.  Figure 6 shows the gaze allocation analysis for the different ob-
stacle conditions and target positions. It can be seen that when avoidance margin decreased, gaze allocation in 
the avoidance margin area increased. The repeated measures ANOVA performed on the gaze frequency showed 
that there were significant main effects for obstacle condition, F(7, 77) = 3.446, p < .01, and gaze position, F(2, 
22) = 806.64, p < .01. In addition, Obstacle Condition × Gaze Position, F(14, 154) = 39.383, p < .01, Gaze Posi-
tion × Target Position, F(4, 44) = 5.586, p < .01, and Obstacle Condition × Target Position × Gaze Position, F(28, 
308) = 11.92, p < .01, interactions were all significant.

Gaze object sequence.  Figure 7 is a visual representation of the gaze object sequence for each of the eight obsta-
cle conditions. Blue sections indicate gaze on the target area, Red sections indicate gaze on the avoidance margin 
area, and the White sections indicate gaze directed within the path area. Some differences in gaze sequence 
were observed within the initial 60% of the trial time. These differences included variable amounts of time spent 
looking at the target area and obstacle. However, during the last 40% of the total trial time, no differences were 
observed between the different obstacle conditions.

Table 5 shows the similarity scores from the different gaze object sequences computed across the different 
obstacle conditions. Kolmogorov–Smirnov tests showed that the distributions of the similarity scores across the 
different obstacle conditions were normal (p > .05). There was a greater similarity score within obstacle conditions 
as shown with the dashed squares. This indicates that participants had similar gaze sequence behavior within each 
obstacle condition. Similarity scores between the NOBST condition and those conditions with an obstacle were 
small as supported by a significant effect for condition, F(6,9065) = 11,014, p < .01, indicating that gaze sequence 
changed as a function of avoidance margin. Post hoc comparisons showed that Condition 2 significantly dif-
fered from Conditions 6, 7 and 8 (p < .05). Condition 3 significantly differed from Conditions 6, 7 and 8 (p < .05). 
Condition 4 significantly differed from Conditions 5, 6, 7 and 8 (p < .05). Condition 5 significantly differed from 
Conditions 6, 7 and 8 (p < .05). All other remaining comparisons were not significant.

Effect of gazes on avoidance margin on path selection.  The probability of walking to the right of the obstacle as 
a function of AMGR is shown in Fig. 8. It can be seen that when more gazes were directed on the left avoidance 
margin (AMGR < 0), the probability of walking to the right side was less than 50% and the participant walked 
to the left side. However, in most cases, when more gazes were on the right avoidance margin (AMGR > 0), the 
probability of walking to the right side was more than 50%. It is interesting that in some cases when AMGR > 0 
(gazes on the right side were greater than the left side), the participant did not walk to the right side. The rela-

Table 2.   Regression coefficient and p-values for univariate regression analysis.

Feature Regression coefficient p value

Δθ  − 0.34  < .01

Target on the middle

ΔD  − 0.35  < .01

AMR 4.67  < .01

Target on the left side

ΔD  − 0.65  < .01

AMR 5.13  < .01

Target on the right side

ΔD 0.55 .87

AMR 43.17 .99

Table 3.   Estimated effect, 95% confidence interval (CI), and ratio to total effect on path planning in the 
multivariate analysis with bootstrapping technique with random shuffling of 2000 surrogate data.

Feature Estimated effect CI 95% p value Ratio to total effect on path planning (%)

Δθ  − 0.17 (− 0.20, − 0.14)  < .01 37.69

ΔD  − 0.06 (− 0.09, − 0.03)  < .01 36.07

AMR  − 0.22 (− 0.42, − 0.01) .036 26.22

Δθ: ΔD 0.01 (0.10, 0.15)  < .01

Δθ: AMR 0.12 (0.00, 0.01)  < .01
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tionship between the probability of walking to the right side, AMR, AMGR, and target position is presented in 
the Supplementary files, Fig. 1.

Table 6 shows the result of the univariate and multivariate logistics regression analysis. It can be seen that 
when there was a greater number of gazes on the right avoidance margin (AMGR increased), and the logit-prob-
ability of walking to the right side significantly increased by coefficient 1.94. Upon multivariate analysis, it was 
shown that the coefficients of AMR, AMGR, and probability of walking to the right side were positively related.
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Figure 5.   Average speed as a function of target location and obstacle condition. (A) Average velocity from the 
start location to bookcase (B) Average speed from the start location to the obstacle area. The obstacle conditions 
are C1: Condition 1 (NOBST), C2: Condition 2 (AM-R80/AM-L80), C3: Condition 3 (AM-L61/R61), C4: 
Condition 4 (AM-L84/R40), C5: Condition 5 (AM-L40/R84), C6: Condition 6 (AM-L39/R39), C7: Condition 7 
(AM-L52/R25), C8: Condition 8 (AM-L25/R52). Error bars indicate SE.
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Target position effect.  Figure 9 shows the results of the path selection judgement test. The dashed line represents 
when there was a 50% probability of choosing to walk to the right side of the obstacle/walkway. Probabilities 
higher than 50% mean that the participant preferred to choose walking on the right side of the obstacle to reach 
the target. However, it can be seen that participants chose to walk on the left side of the obstacle/walkway when 
walking to the target when the target was shifted as close as 15 cm to the left side relative to the middle of the 
shelf.

Discussion
Path selection around obstacles by participants was systematic. The aim of this study was to discover how people 
choose their path and the visual information used in path selection. This study examined obstacle avoidance 
strategies in response to stationary obstacles. The findings of this study provided a multivariate model for the 
weighting in path selection to a target by combining avoidance margin, deviation angle, and distance to the 
obstacle. At the outset of a trial the participant assessed the size of the avoidance margin, the deviation angle 
from the target, and the distance from the obstacle, and weighted the importance of each of these factors, and 
then made their path selection. This contrasts with Baxter and Warren who provided a dichotomous model for 
which path selection was limited to either deviation angle or distance to the obstacle. The difference in finding 
between our studies might reflect Baxter and Warren not considering avoidance margin in their study. Baxter and 
Warren did not find an interaction effect and concluded that deviation angle and relative distance to the obstacle 

Table 4.   Frequency (%) of choosing the right foot as the starting foot cross the 8 obstacle conditions. Obstacle 
conditions are as 1: Condition 1 (NOBST), 2: Condition 2 (AM-R80/AM-L80), 3: Condition 3 (AM-L61/R61), 
4: Condition 4 (AM-L84/R40), 5: Condition 5 (AM-L40/R84), 6: Condition 6 (AM-L39/R39), 7: Condition 7 
(AM-L52/R25), 8: Condition 8 (AM-L25/R52).

Cup position

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 Condition 7 Condition 8

Choose right foot as the start foot (%)

Middle 55% 90% 85% 45% 55% 80% 70% 40%

Left 60% 60% 45% 30% 60% 60% 55% 45%

Right 55% 80% 75% 55% 60% 65% 45% 60%

Condition 1
 (NOBST)

Condition 2 
(AM-L83.5/R83.5)

Condition 3 
(AM-L61/R61)

Condition 4 
(AM-L84/R40)

Condition 5 
(AM-L40/R84)

Condition 6 
(AM-L39/R39)

Condition 7 
(AM-L52/R25)
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(AM-L25/R52)
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Figure 6.   The gaze allocation on the target location, path area, and avoidance margins (hatched lines indicate 
obstacle and solid circle indicates cup position).
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A. Condition 1 (NOBST)

B. Condition 2 (AM-L83.5/R83.5)

C. Condition 3 (AM-L61/R61)

D. Condition 4 (AM-L84/R40)

E. Condition 5 (AM-L40/R84)

F. Condition 6 (AM-L39/R39)

G. Condition 7 (AM-L52/R25)

H. Condition 8 (AM-L25/R52)
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Figure 7.   Characteristic gaze object sequences were produced using dynamic time warping barycenter 
averaging over gaze data from participants for each of the 8 obstacle conditions (A–H). The colors in the figure 
correspond to red as avoidance margin area, white as path area, and blue as target area. The lengths of the 
sequences were normalized to 100 segments for visualization. *p < .05 as opposed to Condition 1, ¤p < .05 as 
oppose to Condition 2, **p < .05 as oppose to Condition 3, ¤¤p < .05 as oppose to Condition 4, and ¥p < .05 as 
oppose to Condition 5.

Table 5.   Mean (± SD) similarity scores of gaze sequences across the 8 obstacle conditions. Red dashed squares 
indicate similarity within each obstacle condition. The numbers 1–8 represent the obstacle conditions as 1: 
Condition 1 (NOBST), 2: Condition 2 (AM-L80/R80), 3: Condition 3 (AM-L61/R61), 4: Condition 4 (AM-
L84/R40), 5: Condition 5 (AM-L40/R84), 6: Condition 6 (AM-L39/R39), 7: Condition 7 (AM-L52/R25), 8: 
Condition 8 (AM-L25/R52).
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were additive and independent. In contrast, we found (Table 3) not only main effects but also the interactions of 
our factors to be significant (deviation angle, relative distance, and avoidance margin) and therefore our model 
addresses the complexity of decision making for path planning. We also provided an objective measurement 
of a baseline pathway to the target which has not previously been provided by research on the topic of obstacle 
avoidance1,20,44. Other studies have assumed that participants would take a straight-line path to the target in the 
absence of an obstacle. We found that the participants took a straight path when the target was on the middle of 
the bookcase shelf. However, they deviated from the straight-line path when the target was either on the right or 
left side of the bookcase shelf. We conditioned our data based on the actual deviation angel used by participants. 
We also included a description of gaze characteristics dependent on the avoidance margin, target, and obstacle 
relationship to the start position in our study.

The univariate analyses showed deviation angle from the straight line, distance to the left and right edges 
of the obstacle, and the left and right avoidance margins played key roles in how participants made their path 
selections (Table 2). Our findings using the deviation angle showed that participants selected a path to the tar-
get that had the smallest deviation angle (Fig. 4B). When Δθ was zero and the target was on the middle of the 
bookcase shelf, there was a 90% probability that the participant would walk to the right side of the obstacle. It 
has been demonstrated that right-handed individuals tend to use their right hand when performing bimanual 
tasks45,46. This attentional bias might also explain why participants in this study preferred the right path. When 
Δθ was negative and the target was on the right side of the bookcase shelf, there was a 100% probability that the 
participant would walk to the right side of the obstacle. Therefore, the participant did not consider the relative 
distance to the obstacle nor the avoidance margins for path selection. However, when the Δθ was positive (15 deg) 
and the target was on the left side of the bookcase shelf there was just a 15% probability that the participant 
would walk to the right side of the obstacle. These findings indicate that participants used a smaller deviation 
angle which resulted in a less curved path to the target to decide on which path they would take to get to the 
target. We also found that when the target was on the middle or the left side of the bookcase, the side of the 
obstacle with the closest proximity to the participant (relative distance) was used for path selection (Fig. 4A). It 
can be seen in Fig. 4A that when ΔD was equal to zero, there was an 85% probability of walking to the right side 
of the obstacle. When the right edge of the obstacle was closer to the participant (negative ΔD), all participants 
chose to walk on the right side of the obstacle as they walked to the target. However, the probability of choosing 
the right-side decreased when the left edge of the obstacle was closer to the participant. The use of the smallest 
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Figure 8.   Probability of walking to the right side of the obstacle based on the avoidance margin gaze ratio 
(AMGR). The dashed line is zero AMGR (gazes on the right and left avoidance margin were equal in time). p 
value indicates significant level of univariate logistics regression. Black error bars represent SE for Y-Axis and 
Blue error bars represent SE for X-Axis.

Table 6.   Regression coefficient and p-values for regression analysis between AMGR and probability of walking 
to the right side.

Feature Regression coefficient p value

Univariate analysis

AMGR 1.94 2.00e−16

Multivariate analysis

AMGR 1.41 2.06e−15

AMR 4.57 2.00e−16
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relative distance for the selected path to the target coincided with the shortest path to the target and reduced 
the energy usage for path selection to the target. This finding is consistent with Rosenbaum47 who showed that 
participants chose the shortest distance to walk to the target.

Our results also showed that changes in the avoidance margin between the left and right edges of the obstacle 
affected the path selected to the target (Fig. 4C). Participants chose their path based on the avoidance margin that 
had the greatest effect of minimizing a collision from occurring. When the right avoidance margin was equal to 
the left avoidance margin and the target was in the middle of the bookcase, there is an 80% probability of walk-
ing to the right side of the obstacle. When the right avoidance margin was wider than the left avoidance margin, 
participants chose the right side of the obstacle to approach the target. However, the probability of choosing the 
right-side decreased when the left avoidance margin was wider than the right avoidance margin. In the case when 
the avoidance margin was greatly reduced in size, but participants had enough space to avoid a collision, they 
chose the larger avoidance margin to approach the target. It is important to point out here that they chose to not 
take the shortest path to the target, but instead chose to take the longer path to the target (the one that deviated 
most from a straight line). This was in spite of the fact they knew they could safely circumvent the obstacle. We 
suggest this was because they chose the path that required less cognitive effort. The shorter path with a smaller 
avoidance margin would have required a greater number of adjustments in gait to circumvent the obstacle.

The use of a multivariate logistics regression analysis showed that Δθ, an indicator of target location, was more 
important than other variables in path selection (Table 3). The second most important variable in this analysis 
was ΔD which indicates distance to the obstacle. These results jointly indicate that a smaller deviation angle 
which results in a straighter path to the target is the most important consideration in path selection. This finding 
indicates that participants preferred the path that minimized local variables D and θ. This finding is consistent 
with the finding of Gérin-Lajoie and Warren4. When the ΔD and Δθ agreed, responses overwhelmingly favored 
the path with the smallest distance and deviation angle. However, when ΔD and Δθ were in conflict, participants 
chose the path with the smallest deviation angle (Δθ) to the target and not the path with the smallest distance 
to the edge of the obstacle (ΔD). A possible reason for this discrepancy is that the straighter path to the target 
might be more important than shorter or curved paths to the target. Our findings are not consistent with those 
of Silva et al.12 which showed that participants used only the minimum distance for path selection.

We found that the right and left avoidance margins combined accounted for 26% of the variance in decision 
making related to path planning. Research11,48 has demonstrated that individuals tend to initiate an avoidance 
behavior 4 m from an obstacle. However, to our knowledge there has not been a study which has addressed 
the importance of avoidance margins in path planning. Our findings are different from those studies that have 
restricted path selection using vertical poles8,49. These studies showed that individuals do not choose the path 
between two poles when the distance between the poles is less than 1.4 times of their shoulder width. Our results 
showed that in addition to ΔD and Δθ, our participants may have selected a path with the widest avoidance 
margin which required the least amount of cognitive effort50. Therefore, this finding is consistent with the frame-
work proposed by Harrison et al.51 allowing for the influence of “soft” constraints (cognitive effort) together with 
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Figure 9.   Probability of choosing to the right side of the obstacle as a function of target location when the 
target was changed by 5 cm successively to the left side or to the right side. M indicates target in the middle, L 
indicates a shift of the target to the left side and R indicates a shift of the target to the right side. The dashed line 
shows 50% probability of selecting the right side of the obstacle.
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“hard” constraints (ΔD and Δθ) on behavior. In addition, a study by Nordin et al.52 revealed that the activity in 
supplementary motor area and premotor cortex increased after individuals saw obstacles. Animal studies indicate 
that the motor cortex is involved in locomotion modifications53 such as adjusting gait during obstacle avoidance.

It can be seen in Table 4 that participants preferred using the right foot when the target was on the right side 
or middle of the bookcase shelf. However, when the target was on the left side of the shelf, there was no prefer-
ence for a start foot. Our results describing the start foot selection for different obstacle and target positions, 
therefore, show that normal right foot selection is sometimes violated to accommodate the path selection to the 
target. These results are consistent with the findings of a recent study54,55, which indicated accurate foot placement 
is controlled by the combination of sensory feedback and an internal feedforward model to accurately estimate 
the joint movement. Results of a neurophysiology study56 indicated that limb selection coordination affected 
activity in the supplementary motor area.

We found that the participant slowed down when they encountered obstacles compared to the NOBST 
condition. In our study, we found that a smaller avoidance margin caused a slower average speed toward the 
obstacle as well as towards the target. The target position also changed the total average speed. Baxter and Warren 
view their data as reflecting an emergent path dependence on changes in relative distance and deviation angle 
encountered during walking. This finding may reflect their procedure of not showing the target and obstacle 
locations to their participants until they started walking. We, however, showed the target and obstacle locations 
to participants before they started walking. Therefore, participants had time to plan their path to the target, but 
they used online planning to modulate their gait speed to accommodate the circumvention of the obstacle. As 
shown in Table 2, when the target was on the right side of the shelf the participants chose the right side without 
consideration of the avoidance margin. This resulted in faster average speeds in most of the conditions. Because 
the participants preferred the right side, they used less caution in circumventing this side of the obstacle. Also, 
the average speed to the obstacle decreased when the avoidance margin was small (Conditions 6, 7, and 8). The 
results of the study are in line with those of a recent study5, which found that individuals slow down their walk-
ing speed when they are 2 m from the obstacle. Therefore, our findings indicate that individuals plan ahead to 
maintain an avoidance margin between themselves and obstacles. Neurophysiology studies52,56 indicated that 
the prefrontal cortex, primary motor cortex, and supplementary motor area are engaged in the planning and 
programming of a set of motor commands in gait planning.

Knowledge of the intervening obstacle and monitoring body position are necessary for trajectory modifica-
tions during gait to the target21. The extent to which gaze movement was deployed during visual scene processing 
in path planning was investigated by comparing gaze distributions and sequences for different obstacle condi-
tions. The allocation of participants’ gaze time on the target location, path area, and avoidance margins is shown 
in Fig. 6. When the obstacle was not present (NOBST condition) the role of vision was modest. In this condition, 
participants looked primarily at the target location with only a few gazes on the path. Gazes on the target were 
used to describe the direction of gait to the target location. When an obstacle was present participants looked at 
the target location, as well as the avoidance margin and path area. A notable finding was that the gaze sequence 
on the target location, path area, and avoidance margin areas changed with the obstacle condition (Fig. 7). The 
greatest proportion of gaze time was on the target. As participants got closer to the target (time > 80%), gazes 
on the path or avoidance margin areas decreased to almost zero. This could be due to participants using their 
peripheral vision to navigate the path as they approached the target. Earlier along the travel path (time < 10%) 
there were some gazes on the avoidance margin and target areas. These gazes allowed for path planning and sug-
gest that the use of visual information (Δθ, ΔD, AM-L, and AM-R) was emphasized. Later in the path taken to the 
target (25% < time < 45%), participants’ gaze shifted to the avoidance margin area. Gazes shifted to the avoidance 
margins when the width of the avoidance margins was small. After passing the obstacle (45% < time < 80%), there 
were few gazes on the path area and a greater number of gazes on the target location. Our results collectively sup-
port the findings of previous studies21,44 showing that visual information is needed for path planning to the target. 
Participants need to know the location of the target, and this information is provided by gazes on the target and 
path area. When they encounter an obstacle in the path between them and the target, participants need to know 
the magnitude of the change in direction necessary to circumvent the obstacle. Gazes on the avoidance margin 
area are useful for this purpose. While other studies21,44,57 have generally showed gaze data is used for safe travel 
during obstacle avoidance, our analyses specified the magnitude for use of gazes in terms of both allocation and 
sequencing according to avoidance margins, path, and target area. Results of the gaze sequence similarity scores 
(Table 5) showed that when there was an obstacle in the path to the target, and there was a decrease in the width 
of the avoidance margin, a different gaze sequence pattern was used by participants. Figure 8 and Table 6 allow a 
direct comparison between gaze time on the avoidance margin and path selection. When gaze time was greater 
on the left avoidance margin (AMGR < 0), the participants chose to walk on the left side of the obstacle as they 
walked to the target. In most cases when a greater number of gazes were directed toward the right avoidance 
margin (AMGR > 0), the probability of walking to the right side was greater than 50%. But in some cases when 
AMGR > 0 was observed (gazes on the right side were higher than on the left side), participants did not walk past 
the right side of the obstacle as they walked to the target. As a consequence of the increase in the number of gazes 
toward the right avoidance margin, the participants rejected the option with the smaller avoidance margin by 
selecting the left side of the obstacle as they walked to the target. Our results suggest that optimum performance 
requires gaze to be directed in a way that reduces the uncertainty of variables necessary to complete a given 
task. The present results are consistent with previous findings that link gaze activity to uncertainty reduction in 
driving58 and walking tasks23,26,30.

The finding that the target position had the strongest effect on path selection, and that participants chose a 
path with the smallest deviation angle from the straight path to the target, is of notable importance for under-
standing obstacle avoidance. The purpose of the path selection judgement test was to provide a more complete 
analysis of the weighting given to target location in path selection. The findings for the path selection judgment 
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test (Fig. 9) showed that when the target was in the center of the bookcase shelf the probability of walking to the 
right side of the obstacle was almost 80%. When the target was placed 35 cm on the right from the center of the 
shelf, the probability of walking to the right side of the obstacle was 100%. When the target was placed 35 cm 
on the left from the center of the shelf, the probability of walking to the left side of the obstacle was almost 88%. 
These findings were consistent with our findings in path selection trials for which the participants walked to the 
target. A notable finding was that when the target was placed 15 cm to the left side of the bookcase center, the 
probability of walking to the right side and left side of the obstacle was equal. The sensitivity of the path selection 
decision making process is highlighted by the finding that a change in target location of one additional centimeter 
to the left side (i.e., to 16 cm), which is the equivalent of 0.076 degrees of change in the visual angle, resulted in the 
participant changing their path selection to the left side of the obstacle. Therefore, the threshold for participants 
abandoning their preferred side for circumventing the obstacle was 15 cm to the left of the bookcase shelf center.

Conclusion
This study investigated how people choose their path and the visual information used for obstacle avoidance. 
The unique contribution of this study was to provide a multivariate model for the weighting in path selection to 
a target by combining avoidance margin, deviation angle, and distance to the obstacle. This study showed that 
participants chose a path with a smaller deviation angle from a straight line to the target. In addition, partici-
pants chose a side of the obstacle which was closer to them. We found that the right and left avoidance margins 
combined to account for 26% of the variability in decision making related to path planning. We found that in 
some cases participants chose a longer path around the obstacle even when the available avoidance margin which 
would have resulted in a straight line to the target was large enough to allow passage.

Our gaze analysis findings showed that participants directed their gaze to minimize the uncertainty involved 
in successful task performance. Gaze allocation was directed to optimize information pick up for successful task 
performance, and reflected the interaction of target location, path area, and avoidance margins. Gaze sequence 
changed with obstacle location. Early in participants’ walk to the target, the greatest allocation of gaze was on 
the avoidance margin and target. Later in participants’ walk to the target, gaze shifted to the avoidance margin 
when it was small, and then shifted primarily to the target after the obstacle was passed.

Results of the path selection judgment test showed that when the target was placed 15 cm to the left side of 
the bookcase center, the probability of walking to the right side and left side of the obstacle was equal. Therefore, 
the threshold for participants abandoning their preferred side for circumventing the obstacle was 15 cm to the 
left of the bookcase shelf center.

Received: 28 January 2021; Accepted: 12 July 2021

References
	 1.	 Baxter, B. A. & Warren, W. H. Route selection in barrier avoidance. Gait Posture (2020).
	 2.	 Warren, W. H. & Fajen, B. R. Behavioral dynamics of visually guided locomotion. in Coordination: neural, behavioral and social 

dynamics 45–75 (Springer, 2008).
	 3.	 Fajen, B. R. & Warren, W. H. Behavioral dynamics of steering, obstable avoidance, and route selection. J. Exp. Psychol. Hum. Percept. 

Perform. 29, 343 (2003).
	 4.	 Gérin-Lajoie, M. & Warren, W. The circumvention of barriers: Extending the steering dynamics model. J. Vis. 8, 1158 (2008).
	 5.	 Bourgaize, S. M., McFadyen, B. J. & Cinelli, M. E. Collision avoidance behaviours when circumventing people of different sizes in 

various positions and locations. J. Mot. Behav. 53, 166–175 (2021).
	 6.	 Pfaff, L. M. & Cinelli, M. E. Avoidance behaviours of young adults during a head-on collision course with an approaching person. 

Exp. Brain Res. 236, 3169–3179 (2018).
	 7.	 Hecht, H., Welsch, R., Viehoff, J. & Longo, M. R. The shape of personal space. Acta Psychol. (Amst) 193, 113–122 (2019).
	 8.	 Hackney, A. L., Vallis, L. A. & Cinelli, M. E. Action strategies of individuals during aperture crossing in nonconfined space. Q. J. 

Exp. Psychol. 66, 1104–1112 (2013).
	 9.	 Olivier, A.-H., Marin, A., Crétual, A. & Pettré, J. Minimal predicted distance: A common metric for collision avoidance during 

pairwise interactions between walkers. Gait Posture 36, 399–404 (2012).
	10.	 Hackney, A. L., Cinelli, M. E. & Frank, J. S. Does the passability of apertures change when walking through human versus pole 

obstacles?. Acta Psychol. (Amst) 162, 62–68 (2015).
	11.	 Cinelli, M. E. & Patla, A. E. Travel path conditions dictate the manner in which individuals avoid collisions. Gait Posture 26, 

186–193 (2007).
	12.	 Silva, W. S., Aravind, G., Sangani, S. & Lamontagne, A. Healthy young adults implement distinctive avoidance strategies while 

walking and circumventing virtual human vs. non-human obstacles in a virtual environment. Gait Posture 61, 294–300 (2018).
	13.	 Chou, L.-S. & Draganich, L. F. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase 

the risk of tripping. J. Biomech. 31, 685–691 (1998).
	14.	 Galna, B., Murphy, A. T. & Morris, M. E. Obstacle crossing in people with Parkinson’s disease: Foot clearance and spatiotemporal 

deficits. Hum. Mov. Sci. 29, 843–852 (2010).
	15.	 Hayduk, L. A. Personal space: An evaluative and orienting overview. Psychol. Bull. 85, 117 (1978).
	16.	 Knowles, E. S., Kreuser, B., Haas, S., Hyde, M. & Schuchart, G. E. Group size and the extension of social space boundaries. J. Pers. 

Soc. Psychol. 33, 647 (1976).
	17.	 Nanhoe-Mahabier, W. et al. The possible price of auditory cueing: influence on obstacle avoidance in Parkinson’s disease. Mov. 

Disord. 27, 574–578 (2012).
	18.	 Land, M. F. & Hayhoe, M. In what ways do eye movements contribute to everyday activities?. Vis. Res. 41, 3559–3565 (2001).
	19.	 Matthis, J. S., Yates, J. L. & Hayhoe, M. M. Gaze and the control of foot placement when walking in natural Terrain. Curr. Biol. 28, 

1224-1233.e5 (2018).
	20.	 Patla, A. E. & Vickers, J. N. Where and when do we look as we approach and step over an obstacle in the travel path?. NeuroReport 

8, 3661–3665 (1997).
	21.	 Patla, A. E., Tomescu, S. S., Greig, M. & Novak, A. Gaze fixation patterns during goal-directed locomotion while navigating around 

obstacles and a new route-selection model. in Eye Movements 677–696 (Elsevier, 2007).



17

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15285  | https://doi.org/10.1038/s41598-021-94638-y

www.nature.com/scientificreports/

	22.	 Jovancevic-Misic, J. & Hayhoe, M. Adaptive gaze control in natural environments. J. Neurosci. 29, 6234–6238 (2009).
	23.	 Tong, M. H., Zohar, O. & Hayhoe, M. M. Control of gaze while walking: task structure, reward, and uncertainty. J. Vis. 17, 28 

(2017).
	24.	 Johansson, R. S., Westling, G., Bäckström, A. & Flanagan, J. R. Eye–hand coordination in object manipulation. J. Neurosci. 21, 

6917–6932 (2001).
	25.	 Hamid, S. N., Stankiewicz, B. & Hayhoe, M. Gaze patterns in navigation: Encoding information in large-scale environments. J. 

Vis. 10, 28 (2010).
	26.	 Sprague, N., Ballard, D. & Robinson, A. Modeling embodied visual behaviors. ACM Trans. Appl. Percept. 4, 11-es (2007).
	27.	 Higuchi, T. Visuomotor control of human adaptive locomotion: understanding the anticipatory nature. Front. Psychol. 4, 277 

(2013).
	28.	 Marigold, D. S. & Patla, A. E. Gaze fixation patterns for negotiating complex ground terrain. Neuroscience 144, 302–313 (2007).
	29.	 Bowman, M. C., Johannson, R. S. & Flanagan, J. R. Eye–hand coordination in a sequential target contact task. Exp. Brain Res. 195, 

273–283 (2009).
	30.	 Domínguez-Zamora, F. J., Gunn, S. M. & Marigold, D. S. Adaptive gaze strategies to reduce environmental uncertainty during a 

sequential visuomotor behaviour. Sci. Rep. 8, 1–13 (2018).
	31.	 Hollands, M. A., Marple-Horvat, D. E., Henkes, S. & Rowan, A. K. Human eye movements during visually guided stepping. J. Mot. 

Behav. 27, 155–163 (1995).
	32.	 Hollands, M. A. & Marple-Horvat, D. E. Coordination of eye and leg movements during visually guided stepping. J. Mot. Behav. 

33, 205–216 (2001).
	33.	 Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
	34.	 Kassner, M., Patera, W. & Bulling, A. Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction. 

in Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing: Adjunct publication 1151–1160 
(2014).

	35.	 Saeedpour-Parizi, M. R., Hassan, S. E., Baniasadi, T., Baute, K. J. & Shea, J. B. Hierarchical goal effects on center of mass velocity 
and eye fixations during gait. Exp. Brain Res. https://​doi.​org/​10.​1007/​s00221-​020-​05900-0 (2020).

	36.	 Dolatabadi, E., Taati, B. & Mihailidis, A. Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal 
gait parameters. Med. Eng. Phys. 38, 952–958 (2016).

	37.	 Haji Fathaliyan, A., Wang, X. & Santos, V. J. Exploiting three-dimensional gaze tracking for action recognition during bimanual 
manipulation to enhance human–robot collaboration. Front. Robot. AI 5, 25 (2018).

	38.	 Pan, Y., Azer, E. S. & White, M. Effective sketching methods for value function approximation. arXiv Prepr. arXiv1708.01298 (2017).
	39.	 Cristino, F., Mathôt, S., Theeuwes, J. & Gilchrist, I. D. ScanMatch: A novel method for comparing fixation sequences. Behav. Res. 

Methods 42, 692–700 (2010).
	40.	 Bent, B. et al. The digital biomarker discovery pipeline: An open-source software platform for the development of digital biomark-

ers using mHealth and wearables data. J. Clin. Transl. Sci. 1–8 (2020).
	41.	 Snijders, T. A. B. & Bosker, R. J. Multilevel analysis: An introduction to basic and advanced multilevel modeling. (Sage, 2011).
	42.	 Azer, E. S., Khashabi, D., Sabharwal, A. & Roth, D. Not All Claims are Created Equal: Choosing the Right Statistical Approach to 

Assess Hypotheses. in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics 5715–5725 (2020).
	43.	 Jahandideh, S., Sharifi, F., Jaroszewski, L. & Godzik, A. PROPER: Performance visualization for optimizing and comparing ranking 

classifiers in MATLAB. Source Code Biol. Med. 10, 15 (2015).
	44.	 Domínguez-Zamora, F. J., Lajoie, K., Miller, A. B. & Marigold, D. S. Age-related changes in gaze sampling strategies during obstacle 

navigation. Gait Posture 76, 252–258 (2020).
	45.	 Buckingham, G. & Carey, D. P. Rightward biases during bimanual reaching. Exp. Brain Res. 194, 197–206 (2009).
	46.	 Buckingham, G., Main, J. C. & Carey, D. P. Asymmetries in motor attention during a cued bimanual reaching task: Left and right 

handers compared. Cortex 47, 432–440 (2011).
	47.	 Rosenbaum, D. A. Reaching while walking: reaching distance costs more than walking distance. Psychon. Bull. Rev. 15, 1100–1104 

(2008).
	48.	 Gérin-Lajoie, M., Richards, C. L. & McFadyen, B. J. The negotiation of stationary and moving obstructions during walking: 

Anticipatory locomotor adaptations and preservation of personal space. Mot. Control 9, 242–269 (2005).
	49.	 Hackney, A. L., Cinelli, M. E., Warren, W. H. & Frank, J. S. Are avatars treated like human obstacles during aperture crossing in 

virtual environments? Gait Posture (2020).
	50.	 Saeedpour-Parizi, M. R., Hassan, S. E. & Shea, J. B. Pupil diameter as a biomarker of effort in goal-directed gait. Exp. Brain Res. 

https://​doi.​org/​10.​1007/​s00221-​020-​05915-7 (2020).
	51.	 Harrison, H. S., Turvey, M. T. & Frank, T. D. Affordance-based perception-action dynamics: A model of visually guided braking. 

Psychol. Rev. 123, 305 (2016).
	52.	 Nordin, A. D., Hairston, W. D. & Ferris, D. P. Human electrocortical dynamics while stepping over obstacles. Sci. Rep. 9, 1–12 

(2019).
	53.	 Drew, T., Kalaska, J. & Krouchev, N. Muscle synergies during locomotion in the cat: a model for motor cortex control. J. Physiol. 

586, 1239–1245 (2008).
	54.	 Maeda, R. S., O’Connor, S. M., Donelan, J. M. & Marigold, D. S. Foot placement relies on state estimation during visually guided 

walking. J. Neurophysiol. 117, 480–491 (2017).
	55.	 Sheybani, S., Izquierdo, E. J. & Roth, E. Evolving Dyadic Strategies for a Cooperative Physical Task. in 2020 IEEE Haptics Symposium 

(HAPTICS) 684–689 (2020). https://​doi.​org/​10.​1109/​HAPTI​CS459​97.​2020.​ras.​HAP20.​26.​5d3be​c79.
	56.	 Khanmohammadi, R., Talebian, S., Hadian, M. R., Olyaei, G. & Bagheri, H. Preparatory postural adjustments during gait initiation 

in healthy younger and older adults: Neurophysiological and biomechanical aspects. Brain Res. 1629, 240–249 (2015).
	57.	 Domínguez-Zamora, F. J. & Marigold, D. S. Motor cost affects the decision of when to shift gaze for guiding movement. J. Neuro-

physiol. 122, 378–388 (2019).
	58.	 Sullivan, B. T., Johnson, L., Rothkopf, C. A., Ballard, D. & Hayhoe, M. The role of uncertainty and reward on eye movements in a 

virtual driving task. J. Vis. 12, 19 (2012).

Acknowledgements
This project was partially funded by the Indiana University Vice Provost for Research through the Research 
Equipment Fund.

Author contributions
M.S., J.S., S.H. and K.B. conceived of the study. M.S. and T.B. conducted the experiment. M.S. and A.A. analyzed 
the results. M.S., S.H. and J.S. co-wrote the manuscript text. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1007/s00221-020-05900-0
https://doi.org/10.1007/s00221-020-05915-7
https://doi.org/10.1109/HAPTICS45997.2020.ras.HAP20.26.5d3bec79


18

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15285  | https://doi.org/10.1038/s41598-021-94638-y

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​94638-y.

Correspondence and requests for materials should be addressed to M.R.S.-P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-94638-y
https://doi.org/10.1038/s41598-021-94638-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Target position and avoidance margin effects on path planning in obstacle avoidance
	Methods
	Participants. 
	Apparatus. 
	Task and design. 
	Procedure. 
	Data pre-processing. 
	Path data. 
	Gait speed. 
	Start foot analysis. 

	Eye tracking data. 
	Calculating gaze allocation. 
	The gaze object sequence. 
	Avoidance margin gaze ratio. 

	Data analysis. 
	Ethical approval. 

	Results
	Deviation angle from straight line in the NOBST condition. 
	Path planning results. 
	Logistics regression analysis. 
	Multivariate logistics regression analysis. 
	Speed analysis. 
	Start foot analysis. 
	Eye tracking results. 
	Gaze allocation. 
	Gaze object sequence. 
	Effect of gazes on avoidance margin on path selection. 
	Target position effect. 


	Discussion
	Conclusion
	References
	Acknowledgements


