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A B S T R A C T   

In developing countries, smart grids are nonexistent, and electricity theft significantly hampers 
power supply. This research introduces a lightweight deep-learning model using monthly 
customer readings as input data. By employing careful direct and indirect feature engineering 
techniques, including Principal Component Analysis (PCA), t-distributed Stochastic Neighbor 
Embedding (t-SNE), UMAP (Uniform Manifold Approximation and Projection), and resampling 
methods such as Random-Under-Sampler (RUS), Synthetic Minority Over-sampling Technique 
(SMOTE), and Random-Over-Sampler (ROS), an effective solution is proposed. Previous studies 
indicate that models achieve high precision, recall, and F1 score for the non-theft (0) class, but 
perform poorly, even achieving 0 %, for the theft (1) class. Through parameter tuning and 
employing Random-Over-Sampler (ROS), significant improvements in accuracy, precision (89 %), 
recall (94 %), and F1 score (91 %) for the theft (1) class are achieved. The results demonstrate 
that the proposed model outperforms existing methods, showcasing its efficacy in detecting 
electricity theft in non-smart grid environments.   

1. Introduction 

1.1. Context and motivation 

Electricity theft remains a pervasive challenge for utility providers globally, resulting in substantial financial losses exceeding $96 
billion annually attributed to Non-Technical Losses (NTLs), with electricity theft as the primary culprit. Sub-Saharan Africa, in 
particular, grapples with significant theft, where approximately 50 % of generated energy is reported stolen, according to the World 
Bank [1]. 
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Electricity losses are typically classified into two categories: energy delivered to customers but not paid for (termed as unpaid 
energy), and losses occurring within transmission and distribution lines, which are inherent to electricity transmission. Non-technical 
losses constitute the majority of losses in electricity networks and can exceed 40 % of the total electricity produced [2]. These losses 
originate from various sources, with the primary contributors being metering equipment tampering, illegal connections to the elec
trical grid, and energy theft [3]. 

Electricity theft poses several significant risks, including increased electricity demand, strain on electrical systems, and substantial 
revenue loss for power companies, and threats to public safety such as fires and electric shocks. For instance, according to Ref. [4], 
approximately 100 million Canadian dollars are lost each year due to electricity theft. This amount of lost electricity could power 
approximately 77,000 homes for a year. 

While Smart grids may be subject to cybersecurity attacks [5], they address the issue of electricity theft by integrating power grids 
with intelligent devices that communicate with smart meters and sensors to manage grid operations [6]. However, in countries where 
smart power grids are either absent or only partially implemented, the risk of electricity theft remains high. The primary objective of 
the proposed model is to develop a system that can be trained using monthly consumption data from customers to identify potential 
instances of electricity theft at electricity distribution points where meter readings are collected. 

Currently, a prevalent trend involves the utilization of machine learning and deep learning methodologies for predictive tasks, 
including the detection of electricity theft. While a substantial portion of research focuses on employing machine learning and deep 
learning techniques for this purpose, the inherent characteristics of the datasets pose challenges. Despite achieving high accuracy rates 
in many cases, the precision and recall rates specifically concerning the identification of instances related to theft are often notably 
lower [7,8]. 

The objective of this study is to develop a streamlined deep learning model with minimal computational complexity yet yielding 
significant performance outcomes. To achieve this, a lightweight deep learning framework is proposed, integrating various techniques 
such as direct and indirect feature engineering, Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t- 
SNE), and resampling methods including Random-Under-Sampler (RUS), Synthetic Minority Over-sampling Technique (SMOTE), and 
Random-Over-Sampler (ROS). A comprehensive evaluation of these techniques within the context of the lightweight deep learning 
model is conducted, aiming to identify the optimal approach for addressing the research benchmarks. 

An important issue to address is the improvement in precision and recall degrees for identifying the events connected to electric 
theft although this area has already broad research spaces for applying machine learning and deep learning techniques to predictive 
tasks. This gap highlights why there is a need to come up with more efficient procedures to deal with theft detection systems challenges 
resulting due to intrinsic attributes of the datasets. Ultimately, the accuracy of the theft detection systems will be enhanced. 

1.2. Research contribution 

This research makes several significant contributions to the field of electricity theft detection in non-smart grid environments. 
Firstly, it introduces a unique and simple deep learning model specifically designed to recognize cases of electricity theft through 
customers’ monthly readings. This model is tailored to be computationally efficient, making it suitable for deployment in systems with 
limited resources, which are common in developing nations. 

Secondly, the study develops a novel approach in feature engineering by incorporating both direct and indirect methods into the 
model development to enhance its predictive power. This not only improves the accuracy of theft detection but also contributes to deep 
learning by demonstrating how different feature engineering techniques can be effectively integrated. 

Furthermore, dimensionality reduction and resampling techniques, including PCA, t-SNE, RUS, SMOTE, and ROS, are examined. 
The results allow us to predict how much these techniques influence precision and recall values when identifying cases of illegal energy 
consumption. In terms of accuracy, precision, and recall, this study conducts a thorough evaluation that attests to the superiority of the 
designed system over current methods, making it a reliable means to reveal illegal consumption in non-smart grid environments. This 
is particularly relevant in addressing one of the challenging issues faced by power suppliers in many developing nations. 

Finally, this research demonstrates the practical application of deep learning methods in real-life challenges. By providing an 
effective solution to the pervasive problem of electricity theft, this study paves the way for further research in similar areas where deep 
learning can address significant problems under resource limitations. 

1.3. Structure of the article 

This article is organized into several key sections to systematically present the research findings and contributions. Following this 
introduction, Section 2 presents a literature review, highlighting current research efforts and identifying the gaps that this study aims 
to fill. Section 3 outlines the proposed methodology, detailing the development of the lightweight deep learning model, the dataset 
preparation, feature engineering techniques, and the evaluation methods used. Section 4 presents the results of the study, offering a 
comparative analysis of the model’s performance against existing methods and discussing the significance of the findings. Finally, 
Section 5 concludes the article with a recapitulation of the research contributions and suggests directions for future work in the area of 
electricity theft detection in non-smart grid environments. This structure is designed to provide a coherent flow of information, from 
identifying the problem and reviewing existing solutions to presenting a novel approach and discussing its implications for both theory 
and practice. 
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2. Literature review 

2.1. Current research 

Different machine learning techniques and deep learning work on large datasets and can draw useful conclusions. Machine learning 
models run on various algorithms to accurately predict the presence or absence of predicted classes. Deep learning and machine 
learning models are utilized across various domains for early prediction purposes, including text mining [9], health protocoling [10], 
disease forecasting [11], diabetic retinopathy [12], tumor classification [13], agriculture [14], smart vehicles [15], Smart Energy and 
Smart Buildings Management [16], and education [17]. 

The study of [18] addressed the problem of electricity theft in power grids using a combination of CNN and Random Forest (RF) 
techniques. The dataset used was from Ireland and SEAI. The model’s performance was evaluated using metrics such as Precision, AUC, 
Recall, and F1 Score. However, the study identified privacy as a limitation, suggesting a need for further enhancement in securing user 
data. 

The research in Ref. [19] focused on electricity theft using datasets from various random areas, employing temperature-dependent 
theft detection using load monitoring (TDTLM). While the approach provided insights into theft detection, the study neglected to 
emphasize performance metrics, making it challenging to assess its efficacy thoroughly. Despite this, the temperature-dependent 
method showed superior outcomes, indicating its potential effectiveness in detecting electricity theft using smart meter data. 

The study in Ref. [20] employed Long Short-Term Memory (LSTM) and a bat-based random under-sampling boosting method using 
the SGCC dataset. Significant metrics including F1 score, precision, recall, and ROC-AUC were achieved. Despite these promising 
results, the study highlighted a lack of robustness in the system, indicating areas for improvement. This model aimed to enhance 
unbalanced data, parameter optimization, and overfitting issues, making it applicable to both commercial and residential electricity 
information. 

In addressing electricity theft detection with concerns about the curse of dimensionality and overfitting, the study [21] used 
SMOTE on the SEAI dataset. The study focused on metrics such as DR, FPR, Time Complexity, and Recall but faced issues with 
overfitting and privacy leakage due to the high sampling rate. This approach tackled the problem of overfitting by utilizing the 
Synthetic Minority Over-sampling Technique (SMOTE), although it highlighted the need for improved handling of privacy issues. 

Using the SGCC dataset, the study in Ref. [22] applied Tomek Links, AlexNet, and Peephole techniques to detect electricity theft in 
smart grids. It reported high performance in PR-AUC, accuracy, precision, recall, F1-score, and AUC. However, it mainly considered 
low sampling data, limiting its broader applicability. The use of synthetic monitoring samples and techniques like Tomek and Peephole 
helped in addressing the electricity problem in smart grids, and the model was recommended for future use to reduce power losses. 

In 2018, broad CNNs were applied to analyze one-dimensional data, while deep CNNs were employed for two-dimensional data. 
Specifically, the one-dimensional data were transformed into two-dimensional representations of electricity consumption data [8] and 
achieved an accuracy is 78 % on Wide and Deep CNN. Conversely, another investigation involved the utilization of a Support Vector 
Machine (SVM), which utilized customer consumption data alongside the total energy distributed by the supplier. This approach 
facilitated the computation of errors arising from electricity meter readings [23]. 

In the commercial area of Brazil, the research in Ref. [24] used the Binary Hole Algorithm (BHA) and Optimal Power Flow (OPF). 
The study achieved mean accuracy but faced challenges with a biased dataset and inappropriate performance metrics, suggesting a 
need for more balanced data and relevant metrics. This study offered a comparison of deep neural network technology for electricity 
theft detection, supplying Recall, F1 score, and AUC, and proposed further investigation into other supervised learning algorithms. 

The study of [25] focused on the SGCC dataset and applied a deep artificial neural network for electricity theft detection. It reported 
Recall, F1 score, and AUC as performance metrics, recommending experimentation with other supervised learning algorithms to 
improve results. The finite mixture model was employed alongside the gradient boosting machine method, clustering, and evolu
tionary genetic algorithms, enhancing the handling of attack circumstances and suggesting future use in utility corporations. 

Using datasets from Ireland, the study of [26] combined gradient-boosting machine algorithms with clustering and evolutionary 
genetic algorithms. The reported metrics were accuracy, F1 score, AUC, and precision. However, it did not address the imbalanced 
nature of the data adequately, indicating a potential area for future work. The gradient boosting machine algorithm was used to 
enhance detection capabilities, but the study emphasized the need for better data balance management. 

In the study of [27], an SVM with Kernel-PCA was employed. However, this approach necessitates manual feature engineering or 
selection, which can be time-intensive and may not consistently capture the most pertinent information from the data. Despite 
achieving an accuracy of 89 %, precision of 85 %, and recall of 88 %, it’s important to note the potential limitations of this method. 

A Privacy-Preserving Electricity Theft Detection Scheme was utilized in the study [28], focusing on Load Monitoring and Billing for 
AMI Networks. Using a real-time dataset, the study reported ROC-AUC and accuracy but indicated that the security features resulted in 
a slightly lower detection rate, suggesting a trade-off between security and performance. This approach was particularly notable for its 
emphasis on privacy-preserving techniques to detect fraudulent clients. 

Employing SVM on a Malaysian dataset, the study [29] reported accuracy as the primary metric but faced limitations with 
appropriate metrics selection, highlighting a need for better evaluation criteria in future research. The use of SVM provided a robust 
framework for theft detection, though it underscored the importance of selecting suitable performance metrics. 

The study in Ref. [30] used a feature-engineered CatBoost algorithm combined with SMOTETomek on the SGCC dataset. It ach
ieved accuracy, recall, and precision but neglected improvements in system robustness, suggesting a potential area for enhancement. 
The SMOTETomek technique helped manage data imbalances, while CatBoost provided effective feature categorization, although 
further robustness improvements were needed. 
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In developing the Smart Energy Theft System (SETS), the study [31] combined MLP, RNN, LSTM, and GRU. The proposed technique 
demonstrated better accuracy and applicability in industrial and commercial sectors, indicating its potential for wider adoption. This 
system incorporated various machine learning models, including the Simple Moving Average (SMA) statistical model, to enhance 
detection accuracy and applicability. 

Utilizing XG-Boost on the Endesa dataset, the study [32] focused on TPR, Recall, FPR, Precision, and AUC. The model, however, 
consumed high processing time on large datasets, suggesting a need for optimization in handling large-scale data. The use of XG-Boost 
provided a comprehensive analysis of electricity theft, though it highlighted the need for time-efficient processing methods. 

The study in Ref. [33] applied XGBoost on an Irish dataset, reporting FPR, Recall, AUC, and Precision as metrics. It faced challenges 
with limited training data, imbalanced data, and constrained results, highlighting areas for further research. The limited dataset size 
affected the model’s performance, indicating the need for more extensive training data. 

Using the CSS for the ANN-MLP method on a Brazilian dataset, the study [34] employed PSO, SGHS, and BP. The proposed model 
did not adequately handle the imbalanced nature of data, suggesting a need for better balancing techniques in future studies. The 
application of ANN-MLP highlighted the challenges of data imbalance, requiring more effective balancing methods. 

The research in Ref. [35] also used ANN-MLP on a Brazilian dataset, focusing on accuracy, precision, and recall. However, it noted 
that the results of the proposed model were not sufficiently accurate, indicating a need for model refinement. The study emphasized the 
necessity of improving model accuracy for effective theft detection. 

Applying SVM to the SEAI dataset, the study [36] focused on DR and FPR but neglected accuracy, limiting its comprehensive 
evaluation, and suggesting a need for more balanced performance metrics. The use of SVM highlighted the importance of considering a 
broader range of metrics for a thorough assessment. 

The study [37] used CNN-LSTM on the SGCC dataset and reported MCC and F1 scores. It faced issues with high processing time on 
datasets, indicating a need for more efficient algorithms to handle large data sets. The combination of CNN and LSTM provided robust 
theft detection capabilities but required optimization for processing efficiency. 

In a Turkish shopping mall context, the research in Ref. [38] used an ensemble model combining LR, RF, and KNN. The reported 
metrics included TPR, FPR, F-measure, and precision but neglected the balance of TPR and FPR in the proposed work, suggesting an 
area for improvement. The ensemble model demonstrated potential for theft detection but required better metric balance. 

Addressing issues of low accuracy, overfitting, and high FPR in electricity theft detection, the study [39] used an LSTM-based model 
on a self-made dataset. It achieved precision, recall, F1 score, and convergence speed but was not suitable for large datasets, indicating 
a need for scalability in future research. The LSTM model highlighted the challenges of overfitting and the necessity for scalable 
solutions. 

There was a study done in 2021 that stood as a benchmark for the assessment of different classification algorithms. Among these, 
primary interest turned to light-GBM, an algorithm based on decision trees that has shown an 84 % accuracy rate [40]. The novel 
algorithm was also compared to some of the ordinary algorithms such as logistic regression, which had an accuracy of 71 %, stochastic 
gradient descent with an accuracy of 65 %, and the decision tree had an 86 % accuracy. 

In [41], researchers evaluated 23 classifiers, employing the F1 score as the performance metric. Utilizing data from a Brazilian 
company focused on the electric power sector, encompassing 261,489 consumers and around 1400 attributes, they determined that 
ensemble methods, notably classifiers, are best suited for identifying non-technical instances of electric power loss. The 
gradient-boosted tree yielded an F1 score of 0.45 and achieved a 66.50 % accuracy in comparison to field inspections, outperforming 
the rotation forest classifier. 

This study addressed in Ref. [42] the widespread issue of electricity theft, recognized as a non-technical loss, which adversely 
impacts electric distribution companies and consumers, leading to severe repercussions such as fires and power outages. The research 
focused on identifying the most effective prediction model using Machine Learning to combat electrical energy theft. Data from 42,372 
consumers sourced from the State Grid Corporation of China served as the basis for analysis. Employing data imputation and feature 
extraction, efforts were made to enhance energy theft detection. Five Machine Learning models were evaluated, with the SVM model 
demonstrating the highest accuracy at 81 %, followed by K-Nearest Neighbors at 79 %, Random Forest at 80 %, Logistic Regression at 
69 %, and Naive Bayes at 68 %. Thus, it is concluded that the SVM model outperforms others, offering the most reliable performance 
with an accuracy of 81 %. 

Work [43] introduces a novel method for detecting electricity theft using ensemble learning and prototype learning techniques, 
demonstrating exceptional performance even on imbalanced datasets and diverse abnormal data. Leveraging convolutional neural 
network (CNN) and long short-term memory (LSTM) models, abstract features are extracted from electricity consumption data, 
resulting in an impressive accuracy of 89 %. 

This study of [44] introduces a hybrid Multi-Layer Perceptron (MLP) with a Gated Recurrent Units (GRU) approach to address 
challenges associated with conventional Electricity Theft Detection (ETD) models, achieving notable accuracy, precision, recall, and 
F1-score of 81 %, 89 %, 82 %, and 85 % respectively on 25 % test data. 

The author in Ref. [45] proposed an optimal scheduling model for isolated microgrids using automated reinforcement 
learning-based multi-period forecasting of renewable power generations and loads. This approach involved a prioritized experience 
replay automated reinforcement learning (PER-AutoRL) to simplify deployment, a single-step multi-period forecasting method based 
on PER-AutoRL, and a scheduling model considering demand response to minimize total microgrid operating costs. Simulation results 
demonstrated significant reductions in system operating costs by improving prediction accuracy, with privacy being a potential area 
for future improvement. 

In [46], the proposed methodology was an ensemble machine learning (ML) model for detecting energy theft in smart grids using 
customers’ consumption patterns. Several algorithms, including adaptive boosting, categorical boosting, extreme boosting, random 
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forest, and extra trees, were tested to find their false positive and detection rates. An extensive analysis based on a practical dataset of 
5000 customers revealed that bagging models outperformed other algorithms, with the random forest and extra trees models achieving 
the highest area under the curve score of 0.90. The precision analysis showed that the proposed bagging methods perform better, 
indicating their effectiveness in electricity theft detection. 

The paper [47] presented a hybrid deep neural network model combining a convolutional neural network, particle swarm opti
mization, and gated recurrent units. It aimed to perform accurate electricity theft detection and overcome issues in existing models. 
The proposed model was evaluated by performing simulations in terms of accuracy, the area under the curve, F1 score, recall, and 
precision. The results indicated that the proposed hybrid deep neural network model is more efficient in handling class imbalance 
issues and performing electricity theft detection. 

The proposed model in Ref. [48] maintained the role of electricity theft detection considering cost-efficiency in smart grids and 
handling large electricity consumption datasets. Researchers used three modules: data imputation, outlier handling, normalization, 
and class balancing algorithms, three different machine learning (ML) methods, and a temporal convolutional network (TCN). 
Experimental results confirmed that the proposed framework yields a highly accurate, robust classification performance compared to 
other well-established machine and deep learning models. 

The paper [49] compared three gradient-boosting machines for electricity theft detection: extreme gradient boosting, light gradient 
boosting machine, and cat boosting. It conducted experiments on a realistic dataset released by the State Grid Corporation of China 
with true malicious samples. Experimental results showed that gradient-boosting machines outperformed wide and deep convolutional 
neural networks for electricity theft detection, highlighting the effectiveness of boosting algorithms. 

An ensemble model for electricity theft detection based on genetic optimization was developed in Ref. [50]. Synthetic samples were 
prepared through SMOTE, features of anomalous electricity consumption were extracted through PCA, and an ensemble deep learning 
network based on AdaBoost was established to mine implicit information in continuous time series data. The hyperparameters of the 
deep neural network were optimized based on a genetic algorithm. The results showed that the model is superior to other detection 
methods in terms of sensitivity and AUC. 

The paper [51] proposed a hybrid method combining an adaptive boosting algorithm (AdaBoost) and convolutional neural net
works (CNN) for electricity theft detection. Multiple CNN-based classifiers were trained to extract different features from the electricity 
consumption data, and AdaBoost combined them into a strong classifier based on their performance. Experimental results based on the 
Irish Smart Energy Trial showed the hybrid classifier had better performance than other conventional data-driven methods in elec
tricity theft detection. 

The research in Ref. [52] focused on the Irish smart energy trail utilizing the XGBoost methodology, which has great accuracy and 
resilience. However, the study faced limitations such as restricted data collection and outcomes. The costs sustained in Brazil due to 
electricity theft are significant, with commercial losses reaching $4 billion in 2011. The authors employed the Binary Black Hole 
Algorithm (BBHA) to address this issue. Regarding precise non-technical loss (NTL) identification and execution speed, the method 
outperformed current optimization strategies like genetic and particle swarm optimization techniques. However, reliable performance 
metrics like recall and accuracy were not used to evaluate the model. 

A trustworthy assessment metric is critical for measuring model performance in an unbalanced data classification challenge. For 
IoT-based smart houses, the research in Ref. [53] produced a revolutionary supervised machine learning-based theft detection 
technique. The suggested model combined SMOTETomek with a feature-engineered CatBoost algorithm. The SMOTETomek approach, 
which concurrently over- and under-samples the data classes, was employed to prevent data class imbalances. The CatBoost algo
rithm’s intelligence categorizes data into real and fraudulent consumers, and the results showed the model achieved accuracy, recall, 
and precision. 

This research [54] highlights the significance of smart meters in a smart grid system and emphasizes the potential of machine 
learning and deep learning approaches for analyzing energy consumption behavior and detecting theft in smart meter data. The 
proposed theft detection dataset (TDD2022) and the machine learning-based solution provide valuable resources for automated theft 
identification in the smart grid, offering a benchmark for comparative studies and demonstrating the effectiveness of the random forest 
model in achieving improved performance metrics by 10 % or more compared to other models. 

In this research [55], authors emphasize the significance of non-technical loss (NTL) detection in the context of electricity theft, 
which poses challenges for distribution network operators (DNOs) and affects the quality of the supply. The introduction of a new data 
set, incorporating location information of missing values, coupled with a neural network model built through neural architecture 
search (NAS), demonstrates promising results with an excellent AUC value of approximately 0.926. The use of NAS enables automatic 
model updates, making it a user-friendly tool for engineers without expertise in neural networks, as highlighted by the case study 
employing Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for missing value pattern analysis. 

The authors highlight the issue of non-technical loss (NTL) in the electricity grid system in their research paper [56], emphasizing 
the threat it poses to sustainability and stability. The proposed approach utilizing deep reinforcement learning (DRL) addresses the 
challenge of imbalanced electricity usage datasets and eliminates the need for extensive pre-processing or dataset balancing. The 
simulation results demonstrate the superiority of the proposed method, outperforming conventional algorithms in detecting NTL 
across different simulation environments. Non-technical losses (NTLs) pose significant challenges to the electricity distribution system 
in developing countries, impacting its quality and creating economic issues. Despite regulatory advancements in Brazil, the high levels 
of unbilled electricity consumption persist, affecting tariffs, investment capacity, and public policy development. This research paper 
[39] emphasizes the need for coordinated strategic actions, including a cultural shift in attitudes towards electricity theft, and aims to 
provide valuable insights to regulatory authorities, government, concessionaires, and researchers to develop practical solutions for 
mitigating NTLs in Brazil. 
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In addition, feature engineering using structured query language (SQL) analytic functions was implemented in a study by Oprea 
and Bâra (2022) to detect electricity fraud [57]. They proposed an extensive feature engineering approach using SQL analytic functions 
to enhance the detection of irregularities in consumption, highlighting the importance of combining classifiers with an anomaly 
detection feature obtained with an unsupervised ML algorithm—Isolation Forest [57]. Our proposed approach builds on these findings 
by incorporating feature engineering techniques such as SQL analytics, aggregation, merging datasets, and anomaly detection. This 
approach significantly improves the classification scores and offers a salient tool for utility companies to identify suspicious consumers, 
thereby reducing the costs related to periodic on-site investigations and non-technical losses. 

2.2. Research gap 

Despite the extensive application of machine learning and deep learning techniques in predicting and detecting electricity theft, as 
highlighted in sections 1.1 and 2.1, a significant research gap exists in developing efficient models suitable for non-smart grid envi
ronments, particularly in developing countries. The main challenges in these regions include the absence of smart grid infrastructure, 
limited computational resources, and unique patterns of electricity usage that differ significantly from those in more developed areas. 
Previous studies have focused on applying complex models that, while effective in certain scenarios, do not address these unique 
challenges, often requiring extensive computational power and data not available in developing countries. 

Furthermore, the literature review reveals that while existing models demonstrate considerable success in electricity theft 
detection, they often suffer from low precision and recall rates, especially in identifying actual instances of theft. This limitation is 
significant because it indicates a high rate of false positives or negatives, which can lead to unnecessary investigations or missed theft 
instances, respectively. This inefficiency poses a critical problem for utility companies, as it directly impacts their financial stability 
and the reliability of electricity supply to consumers. 

The absence of models that can manage imbalanced datasets, a prevalent problem in power theft detection where theft occurrences 
are far less frequent than authorized usage, is another serious gap that has been found. Despite having excellent overall accuracy rates, 
many present techniques are unable to correctly identify theft cases within these datasets, which results in models that miss a sig
nificant percentage of real stolen events. 

This research addresses these gaps by introducing a lightweight deep learning model specifically designed for environments lacking 
smart grid technology. By focusing on monthly customer readings and employing a strategic combination of direct and indirect feature 
engineering, dimensionality reduction, and resampling techniques, the proposed model not only caters to the computational limita
tions of developing countries but also significantly improves precision and recall rates for detecting electricity theft. The incorporation 
of PCA, t-SNE, RUS, SMOTE, and ROS techniques into the model architecture specifically aims to tackle the challenge of imbalanced 
datasets, enhancing the model’s ability to accurately identify theft instances without excessively increasing false positives or negatives. 

Thus, the contributions outlined in section 1.2 are crucial for filling the identified research gap, presenting a novel approach that 
not only surpasses the performance limitations of existing models but also aligns with the practical realities faced by utility providers in 
non-smart grid environments. This research, therefore, not only advances the academic discourse on electricity theft detection but also 
provides a tangible solution with significant potential for real-world application, especially in developing countries grappling with the 
pervasive challenge of electricity theft. 

3. Proposed methodology 

The proposed methodology encompasses a lightweight deep learning model characterized by a reduced number of layers. Before 
delving into the model development process, it is imperative to address dataset cleansing by handling null entries and subsequent 
scaling to normalize the dataset, as depicted in Fig. 1. Following a comprehensive understanding and preprocessing of the dataset, the 
exploration of the model architecture is depicted in Fig. 3. 

3.1. Dataset collection 

The dataset is obtained from the [58] site which has consumption records of 42373 customers. For every client, there has been 
electricity use of 1034 days from year 2014–2016. 

The data is based on the daily level of consumed electric energy produced by the Power Grid Corporation of China, created on 
December 29, 2002, and serving more than 1.1 billion people covering 88 % of the national regions [7]. 

The ’Flag’ column contains values of either 0, indicating customers not involved in electricity theft, or 1, indicating involvement in 

Fig. 1. Proposed work.  
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electricity theft. All columns are depicted in Table 1, with ’N/A′ representing missing values. In total, there are 1034 records in the 
dataset. To provide an overview, we display the first five and last five records in Table 1. 

After filling in missing values using the mean function, the consumption data of all customers involved in electricity theft and those 
not involved in electricity theft is depicted in Fig. 2 from 2014 to 2016. 

All images in Fig. 2 illustrate that while there are 100 % reliable customers, approximately 40 % of them are classified as unreliable 
customers. This indicates that the data is imbalanced. 

3.2. Feature engineering 

Feature engineering in the context of an electricity dataset involves several crucial steps aimed at enhancing data quality and 
optimizing it for effective machine learning modeling. Initially, the process typically begins with identifying and handling missing 
values within the dataset to ensure completeness and reliability. This may involve techniques such as mean imputation for numerical 
features or mode imputation for categorical features. Following this, numerical features are often scaled to a consistent range using 
methods like StandardScaler, which standardizes data to have zero mean and unit variance. This scaling prevents features with larger 
numeric ranges from dominating those with smaller ranges during model training. In addition to scaling, dimensionality reduction 
techniques such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold 
Approximation and Projection (UMAP) are applied. PCA transforms high-dimensional data into a lower-dimensional representation, 
facilitating easier visualization and potentially improving model performance by focusing on the most informative features. t-SNE is 
nonlinear and UMAP is mixed mode dimensionality reduction techniques particularly useful for capturing complex relationships 
within the data that may not be linearly separable. Moreover, addressing class imbalance, which is common in many real-world 
datasets including electricity datasets, is crucial. Techniques like Random Over-Sampling (ROS), Random Under-Sampling (RUS), 
and Synthetic Minority Over-sampling Technique (SMOTE) are employed to balance the class distribution. ROS randomly replicates 
instances from the minority class, RUS randomly removes instances from the majority class, and SMOTE generates synthetic samples 
for the minority class based on nearest neighbors. These techniques ensure that machine learning models trained on the dataset are not 
biased towards the majority class, thereby improving their ability to generalize and make accurate predictions across all classes. 
Collectively, these feature engineering strategies optimize the preprocessing pipeline for electricity datasets, enhancing the efficacy 
and robustness of subsequent machine learning models. 

3.3. Deep learning model 

In Fig. 3, the process begins with the data being divided into training data (75 %) and testing data (25 %). The input layer receives 
the data, with the number of neurons denoted as ’n-neuron’, representing the input dimensions or features as shown in Eq-1 and Eq-2. 
Following this, there are three hidden layers: Hidden Layer-1 comprises 512 neurons with ReLU activation processed in Eq-2, Eq-3 & 
Eq-3a, Hidden Layer-2 consists of 256 neurons with tanh activation processed in Eq-4, Eq-5 & Eq-5a, and Hidden Layer-3 includes 128 
neurons with ReLU activation processed in Eq-6, Eq-7 & Eq-7a. Dropout layers with a dropout rate of 0.3 are applied after Hidden 
Layer-1 and Hidden Layer-2 to mitigate overfitting. The output layer utilizes softmax activation with 2 neurons, typically for binary 
classification tasks. Following processing, the results are analyzed, likely involving metrics such as accuracy or loss evaluation as 
depicted in Eq-8, Eq-9 & Eq-10. Overall, this network architecture employs a combination of activation functions including ReLU, tanh, 
and softmax, as shown in Equations 11, 14, and 16.  

F0B7 Input Layer 

X,W,B=

⎡

⎢
⎢
⎢
⎢
⎣

x1
x2
.

.

x1034

⎤

⎥
⎥
⎥
⎥
⎦
, [w1 w2 . . w24 ], [ b1 b2 . . b24 ] (1) 

Table 1 
Missing values in features.  

Features Name Missing Values 

Feature-0 January 1, 2014 29 % 
Feature-1 October 1, 2014 28 % 
Feature-2 November 1, 2014 29 % 
Feature-3 December 1, 2014 29 % 
Feature-4 1/13/2014 34 % 
– – – 
Feature-1030 May 9, 2016 1 % 
Feature-1031 June 9, 2016 1 % 
Feature-1032 July 9, 2016 1 % 
Feature-1033 August 9, 2016 1 % 
Feature-1034 September 9, 2016 1 %  
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Fig. 2. Theft and not-theft electricity from 2014 to 2016.  

Fig. 3. Deep learning neural Network Model.  
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F0B7 Hidden Layer-1 

⋃512

i=1
O1i =

∑1034

j=1

{
xi ∗ wi + bi,Relu(xi ∗ wi + bi) > 0

0,Relu(xi ∗ wi + bi) < 0 (2)  

⋃1034

j=1
New

(
Wj
)
=wjold − η δL

δOld
(
Wj
) (3)  

where
δL

δw1jold
=

{
1, xi ∗ wi + bi > 0
0, xi ∗ wi + bi < 0 (3a)    

F0B7 Hidden Layer-2 

⋃256

i=1
O2i =

∑512

j=1

{
O1j ∗ w1j + b1j,Relu

(
O1j ∗ w1j + b1j

)
> 0

0,Relu
(
O1j ∗ w1j + b1j

)
< 0 (4)  

⋃512

j=1
W1jnew =w1jold − η δL

δw1jold
(5)  

where
δL

δw1jold
=

{
1,O1j ∗ w1j + b1j > 0
0,O1j ∗ w1j + b1j < 0 (5a)    

F0B7 Hidden Layer-3 

⋃128

i=1
O2i =

∑256

j=1

{
O1j ∗ w1j + b1j,Relu

(
O1j ∗ w1j + b1j

)
> 0

0,Relu
(
O1j ∗ w1j + b1j

)
< 0 (6)  

⋃256

j=1
W1jnew =w1jold − η δL

δw1jold
(7)  

where
δL

δw1jold
=

{
1,O1j ∗ w1j + b1j > 0
0,O1j ∗ w1j + b1j < 0 (7a)    

F0B7 Output Layer 

ŷ=
∑128

j=1

{
1, Softmax

(
O2j ∗ w2j + b2j

)
> 0.5

0, Softmax
(
O2j ∗ w2j + b2j

)
< 0.5 (8)  

L=
(y − ŷ)

2
(9)  

⋃15

j=1
W2jnew =w2jold − η δL

δw2jold
(10) 

The ReLU activation function is employed to activate this block, meaning that negative values of the matrix are set to 0, while 
positive values remain unchanged, as represented by Eq-11, Eq-12 and Eq-13. 

Relu(z)=max(0, z) (11)  

Where z=

(
∑n

i=1
xi wi+ bi

)

(12)  

Output at Hidden Layer1=

{
z,Relu(z) ≥ 0
0,Relu(z) < 0 (13) 

The hyperbolic tangent function (tanh) outputs values in the range [− 1, 1], making it suitable for normalizing data and regulating 
the flow of information within neural networks, formula is given in Eq-14 and Eq-15. 
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tanh(z)=
ez − e− z

ez + e− z (14)  

Output at Hidden Layer2=

{
1, tanh(z) ≥ 0
− 1, tanh(z) < 0 (15)  

In this equation, e represents Euler’s number (approximately equal to 2.71828), and x is the input to the function. 
The softmax function takes as input a vector z of real numbers and outputs another vector of the same length. Each element in the 

output vector is a probability between 0 and 1, and the sum of all elements is equal to 1. The formula for the softmax function is shown 
in Eq-16 and Eq-17, where there are two outputs: 0.9 and 0.1. The first value represents 90 % probability of electricity not being stolen 
by the customer, and the second value represents 10 % probability of electricity theft by the customer. 

f(zi)=
ezi

∑
jezj (16)  

Output=
{

0.9 %,Theft = 90%
0.1 %,Not − Tjeft = 10% (17) 

The rest of the parameters used in the Model are shown in Table 2 About 75 % of the data from the training set was used during 
training [59]. All of the training data includes both the dependent variable (the result identifier) and the input factors (the predictor 
variables). Efficiency issues, including overfitting and underfitting, are addressed in the suggested technique by including validation 
data into the model. A 25 % testing subset is thus used for model evaluation [60]. When working with Keras, the parameters. 

3.4. Direct classification 

After preprocessing the data to handle missing entries, the dataset is directly fed into the deep learning model depicted in Fig. 3, 
with the value of ’n-neuron’ set to 1034 at the input layer and trained for 5 epochs. Other parameters are taken from Table 2, such as 
the ’Training Set’ comprising 31779 rows and 1034 columns, and the ’Test Set’ containing 10593 rows and 1034 columns. Following 
training, the test data is evaluated using the model, and the predicted results are obtained. 

A sample of the first five and a randomly selected record (with a prediction of False (0)) using direct classification is shown in 
Table 3. If the ’Softmax Predicted Value-0′ is greater than ’Softmax Predicted Value-1′, it indicates the ’Not-Theft (0)’ class; otherwise, 
it indicates the ’Theft (1)’ class. 

Although the trained model achieved an overall accuracy of 91 %, its precision for the Theft class is 48 % and recall is 1 %, resulting 
in an F1-score of 03 %, as shown in Table 4. This suggests that many unreliable customers are also classified as reliable in this clas
sification. While the model demonstrates high accuracy (91 %), its ability to recall instances of theft (Recall: 0.01) is relatively low, 
indicating a potential for improvement in correctly identifying theft cases. 

3.5. Indirect classification 

Indirect Classification refers to the process where the dataset is first passed through a scaler to scale all the values within the dataset 
to a range of 0–1, making it easily interpretable by the model. The dataset is then split into 75 % for training and 25 % for testing, and 
passed through a StandardScaler, which standardizes features by removing the mean and scaling to unit variance. This process ensures 
that the data has a mean of 0 and a standard deviation of 1. A sample of the first five records for both the training and testing data after 
applying StandardScaler is shown inTables 5 and 6, respectively. Due to the large size of the dataset (31779 rows with 1034 columns 
for the Training set and 10593 rows with 1034 columns for the Test Set), it cannot be fully displayed. 

Training data from Table 5 is fed into the deep learning model depicted in Fig. 3, with the value of ’n-neuron’ set to 1034 at the 
input layer and trained for 5 epochs. The remaining parameters such as learning rate, momentum, and batch size are taken from 
Table 2. A sample of the first five and last five detected classes using indirect classification on the test data from Table 6 is shown in 
Table 7. If the ’Softmax Predicted Value-0′ is greater than ’Softmax Predicted Value-1′, it indicates the ’Not-Theft (0)’ class; otherwise, 
it indicates the ’Theft (1)’ class. 

Table 2 
Used parameters in Model.  

Parameters Values 

Training Set 31779 rows × 1034 columns 
Test Set 10593 rows, 1034 columns 
Learning Rate 0.001 
Momentum 0.9 
Validation_split 0.25 
Batch Size 256 
Total Batch 94 
Loss Function binary_crossentropy  
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Table 3 
Prediction using direct classification.  

Features Actual Softmax Predicted Value-0 Softmax Predicted Value-1 Predicted Result 

Feature-0 Not-Theft (0) 0.995192 0.004808 True Not-Theft (0) 
Feature − 1 Not-Theft (0) 0.998483 0.001517 True Not-Theft (0) 
Feature − 2 Not-Theft (0) 0.997343 0.002657 True Not-Theft (0) 
Feature − 3 Not-Theft (0) 0.998777 0.001223 True Not-Theft (0) 
Feature − 4 Not-Theft (0) 0.997148 0.002852 True Not-Theft (0) 
Feature − 170 Theft (1) 0.996946 0.003054 False Not-Theft (0)  

Table 4 
Measures from direct classification.  

Class Precision Recall F1 Score Support 

Not-Theft (0) 0.91 0.1 0.95 9677 
Theft (1) 0.48 0.01 0.03 916 
Average 0.88 0.91 0.87 10593 
Accuracy 0.91   

Table 5 
Standard Vector’s sample from 75 % training set.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 0.058349 0.082829 0.329711 0.149208 0.286052 
Customer-1 − 0.00096 0.000305 0.002359 0.001404 0.11674 
Customer-2 − 0.16019 − 0.0975 − 0.0918 − 0.11951 − 0.18499 
Customer-3 − 0.00096 0.000305 0.002359 0.001404 0.11674 
Customer-4 − 0.00096 0.000305 0.002359 0.001404 0.11674  

Table 6 
Standard Vector’s sample from 25 % test set.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 − 0.00259 0.135581 − 0.30413 0.275571 0.286052 
Customer-1 − 0.01562 0.045043 0.17927 0.07339 − 0.20071 
Customer-2 − 0.00096 0.000305 0.002359 0.001404 0.11674 
Customer-3 − 0.00096 0.000305 0.002359 0.001404 0.11674 
Customer-4 − 0.00096 0.000305 0.002359 0.001404 0.11674  

Table 7 
Prediction using indirect Classification.  

Features Actual Softmax Predicted Value-0 Softmax Predicted Value-1 Predicted Result 

Feature-0 Not-Theft (0) 0.960379 0.039621 True Not-Theft (0) 
Feature − 1 Not-Theft (0) 0.998239 0.001761 True Not-Theft (0) 
Feature − 2 Not-Theft (0) 0.989917 0.010083 True Not-Theft (0) 
Feature − 3 Not-Theft (0) 0.999246 0.000754 True Not-Theft (0) 
Feature − 4 Not-Theft (0) 0.99757 0.00243 True Not-Theft (0) 
Feature − 170 Theft (1) 0.990929 0.009071 False Not-Theft (0)  

Table 8 
Measures from indirect classification.  

Class Precision Recall F1 Score Support 

Not-Theft (0) 0.92 0.99 0.95 9677 
Theft (1) 0.46 0.05 0.10 916 
Average 0.88 0.91 0.88 10593 
Accuracy 0.91   
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Despite the trained model achieving an accuracy of 91 %, the precision for the Theft class is 46 %, with a recall of 05 % and an F1- 
score of 10 %, as indicated in Table 8. This suggests that many instances of theft may be overlooked, as a significant portion of un
reliable customers are being classified as reliable in this scenario. While the model exhibits high overall accuracy, its ability to 
accurately identify instances of theft (Recall: 0.05) is notably lacking, indicating the need for improvement in correctly identifying 
theft cases. 

3.5.1. PCA for feature extraction 
The graph in Fig. 4 illustrates the relationship between Cumulative Explained Variance Ratio and the Number of Principal Com

ponents. It reveals an elbow point occurring approximately between 200 and 300 principal components. Beyond this threshold, the 
increase in explained variance ratio becomes less pronounced. Therefore, it may be advisable to consider selecting around 200 to 300 
principal components for dimensionality reduction, as this allows for retaining most of the variance in the dataset. 

Principal Component Analysis (PCA) is a mathematical technique used for dimensionality reduction and feature extraction. The 
main idea behind PCA is to transform the original data into a new coordinate system, where the axes (principal components) are 
orthogonal to each other and are ordered by the amount of variance they explain in the data. Given a dataset X of size n × m, where n is 
the number of samples and m is the number of features, the steps of PCA can be represented in following equations Eq-8 to Eq-13: 

mean=
1
n
∑n

i=1
xi (8)  

Xcentered =X − mean (9)  

covariancematrix =
1
n
XT

centered.Xcentered (10)  

eigenvalues, eigenvectors= eig(covariance matrix) (11)  

principal components= eigenvectors[:, : k] (12)  

transformeddata =Xcentered .principal components (13) 

Using PCA, the dataset is reduced to 300 columns from its original 1034 columns. Before modelling, the dataset undergoes scaling 
to normalize all values between the ranges of 0–1, facilitating ease of interpretation by the model. The dataset is then split into 75 % for 
training and 25 % for testing and passed through a Standard Scaler to standardize features, ensuring a mean of 0 and a standard 
deviation of 1. Samples of the first five records for both training and testing data after StandardScaler transformation are presented in 
Tables 9 and 10, respectively. Due to the large size of the dataset, with 31779 rows and 300 columns for the Training set and 10593 
rows and 300 columns for the Test Set, it cannot be fully displayed in the tables. 

After extracting features using PCA, these transformed features are then used for the classification task. The training data from 
Table 9 is utilized in a deep learning model, as depicted in Fig. 3, with the input layer comprising 300 neurons and trained for 5 epochs. 
Other parameters such as learning rate, momentum, and batch size are obtained from Table 2. Table 11 displays samples of the first five 
and last five detected classes using the deep learning model on the test data from Table 10. In this classification, if ’Softmax Predicted 
Value-0′ is greater than ’Softmax Predicted Value-1′, it indicates the ’Not-Theft (0)’ class; otherwise, it indicates the ’Theft (1)’ class. 

While the model achieves an overall accuracy of 91 %, its precision for identifying theft instances is only 39 %, with a recall of 03 % 
and an F1-score of 06 % (Table 12). This indicates that a significant number of unreliable customers are being mistakenly classified as 
reliable. Despite its high accuracy, the model’s ability to recall theft instances is notably low (Recall: 0.03), highlighting the need for 

Fig. 4. Explained variance ratio of principal components.  

S.M. Saqib et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e35167

13

improvement in correctly identifying theft cases. 

3.5.2. T-SNE for feature extraction 
T-distributed Stochastic Neighbor Embedding (T-SNE) is a nonlinear dimensionality reduction technique primarily used for data 

visualization. It converts high-dimensional data into two or three dimensions while preserving the relationships between data points as 
much as possible. T-SNE is particularly effective at visualizing clusters or groups within high-dimensional data. 

Given a dataset X of size n × m, where n is the number of samples and m is the number of features, the steps of T-SNE can be 
represented in the following simplified steps.  

1. Compute pairwise similarities in the high-dimensional space.  
2. Define a probability distribution over pairs of high-dimensional objects.  
3. Compute pairwise similarities in the low-dimensional space.  
4. Minimize the divergence between the two distributions using gradient descent. 

Another scheme for reducing 1034 columns into 2 columns is t-distributed Stochastic Neighbor Embedding. 
The major equation in t-SNE involves calculating the conditional probabilities Pj∣I for each pair of data points i and j in the high- 

dimensional space. Eq-14 is a mathematical form of t-SNE. 

Pj|i =
exp

(
− ‖xi − xj ‖

2/2σ2
i
)

∑

k∕=i

(
− ‖xi − xk ‖

2/2σ2
i
) (14) 

Table 9 
Standard Vector’s sample from 75 % training set using PCA-Features.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 3.751599 − 0.33999 − 0.95836 − 0.15773 0.558934 
Customer-1 − 2.48934 − 0.52361 − 1.27975 − 1.67704 0.063539 
Customer-2 − 1.9622 1.295758 − 2.136 − 2.04847 1.953631 
Customer-3 − 2.6735 2.083855 − 0.13416 0.074281 1.566703 
Customer-4 − 6.83315 0.568223 1.585305 0.316115 − 1.23705  

Table 10 
Standard Vector’s sample from 25 % test set using PCA-Features.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 − 0.46064 − 1.03737 − 0.07175 − 0.22073 − 0.18469 
Customer-1 1.923886 − 2.23756 1.432769 − 0.32944 0.941785 
Customer-2 3.961314 − 0.6589 − 2.3892 − 2.5295 1.339889 
Customer-3 7.303255 − 1.90127 − 1.20112 − 1.87013 1.768308 
Customer-4 3.452378 − 1.54425 − 0.57962 − 0.16906 0.123072  

Table 11 
Prediction using PCA-Features classification.  

Features Actual Softmax Predicted Value-0 Softmax Predicted Value-1 Predicted Result 

Feature-0 Theft (1) 0.951588 0.048412 False Not-Theft (0) 
Feature − 1 Not-Theft (0) 0.949844 0.050156 True Not-Theft (0) 
Feature − 2 Not-Theft (0) 0.785116 0.214884 True Not-Theft (0) 
Feature − 3 Not-Theft (0) 0.900009 0.099991 True Not-Theft (0) 
Feature − 4 Not-Theft (0) 0.883137 0.116863 True Not-Theft (0) 
Feature − 170 Not-Theft (0) 0.792567 0.207432 True Not-Theft (0)  

Table 12 
Measures from PCA-Features classification.  

Class Precision Recall F1 Score Support 

Not-Theft (0) 0.91 0.1 0.95 9661 
Theft (1) 0.39 0.03 0.06 932 
Average 0.87 0.91 0.87 10593 
Accuracy 0.91   
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This equation computes the similarity between data points i and j using a Gaussian kernel, where xi and xj are the high-dimensional 
feature vectors of the data points, and σi is a parameter controlling the variance of the Gaussian distribution for point i. This equation is 
fundamental in t-SNE as it establishes the conditional probabilities based on pairwise similarities, which are further used in the al
gorithm’s optimization process to embed the data into a lower-dimensional space while preserving local structures. 

Using t-SNE, the dataset is reduced to 2 columns from its original 1034 columns. Before modelling, the dataset is scaled to range 
between 0 and 1 to facilitate model interpretation. The dataset is then split into 75 % for training and 25 % for testing and passed 
through a StandardScaler to standardize features. This process ensures that the data has a mean of 0 and a standard deviation of 1. 
Samples of the first five records for both training and testing data after StandardScaler transformation are presented in Tables 13 and 
14, respectively. Due to the large size of the dataset, with 31779 rows and 2 columns for the Training set and 10593 rows and 2 
columns for the Test Set, it cannot be fully displayed in the tables. 

After extracting features using T-SNE, these transformed features are then used for the classification task. The training data from 
Table 13 is utilized in a deep learning model, as depicted in Fig. 3, with the input layer comprising 2 neurons and trained for 5 epochs. 
Other parameters such as learning rate, momentum, and batch size are obtained from Table 2. Table 15 displays samples of the first five 
and last five detected classes using the deep learning model on the test data from Table 14. In this classification, if ’Softmax Predicted 
Value-0′ is greater than ’Softmax Predicted Value-1′, it indicates the ’Not-Theft (0)’ class; otherwise, it indicates the ’Theft (1)’ class. 

Despite achieving an overall accuracy of 91 %, the trained model exhibits precision and recall scores of 0 % for the Theft class, 
resulting in an F1-score of 0 % (Table 16). This indicates that a significant number of unreliable customers are erroneously classified as 
reliable. Despite its high accuracy, the model’s recall for theft instances is notably deficient (Recall: 0.0), underscoring the imperative 
to enhance its ability to correctly identify theft cases. 

3.5.3. UMAP for feature extraction 
UMAP (Uniform Manifold Approximation and Projection) is a dimensionality reduction technique designed to handle mixed data 

types, such as continuous and categorical data. Developed by McInnes, Healy, and Melville in 2018, UMAP is based on manifold 
learning and topological data analysis. It excels at preserving both local and global data structures, making it ideal for visualizing and 
understanding complex datasets. UMAP is particularly effective in reducing high-dimensional data to lower dimensions while 
maintaining essential relationships between data points. While PCA is typically used for linearly structured data and t-SNE for non- 
linearly structured data, UMAP is well-suited for mixed-mode data. For example, UMAP can reduce a dataset with 1034 columns to 
just 4 columns. 

Given a dataset X of size n × m, where n is the number of samples and m is the number of features, the steps of UMAP can be 
summarized as follows.  

1. Construct a high-dimensional graph representing the data.  
2. Optimize a low-dimensional graph to be as structurally similar to the high-dimensional graph as possible.  
3. Minimize the divergence between the high-dimensional and low-dimensional graphs using gradient descent. 

Using UMAP, the dataset is reduced to 4 columns from its original 1034 columns. Before modelling, the dataset is scaled to range 
between 0 and 1 to facilitate model interpretation. The dataset is then split into 75 % for training and 25 % for testing and passed 
through a StandardScaler to standardize features. This process ensures that the data has a mean of 0 and a standard deviation of 1. 
Samples of the first five records for both training and testing data after StandardScaler transformation are presented in Tables 17 and 
18, respectively. Due to the large size of the dataset, with 31779 rows and 2 columns for the Training set and 10593 rows and 2 
columns for the Test Set, it cannot be fully displayed in the tables. 

After extracting features using UMAP, these transformed features are then used for the classification task. The training data from 
Table 17 is utilized in a deep learning model, as depicted in Fig. 3, with the input layer comprising 2 neurons and trained for 5 epochs. 
Other parameters such as learning rate, momentum, and batch size are obtained from Table 2. Table 19 displays samples of the first five 
and last five detected classes using the deep learning model on the test data from Table 18. In this classification, if ’Softmax Predicted 
Value-0′ is greater than ’Softmax Predicted Value-1′, it indicates the ’Not-Theft (0)’ class; otherwise, it indicates the ’Theft (1)’ class. 

Despite achieving an overall accuracy of 91 %, the trained model exhibits precision and recall scores of 0 % for the Theft class, 
resulting in an F1 score of 0 % (Table 20). This indicates that a significant number of unreliable customers are erroneously classified as 
reliable. Despite its high accuracy, the model’s recall for theft instances is notably deficient (Recall: 0.0), underscoring the imperative 
to enhance its ability to correctly identify theft cases. Results of. 

The results presented in Tables 16 and 20 demonstrate an identical outcome, indicating that t-SNE and UMAP yield equivalent 

Table 13 
Standard Vector’s Sample from 75 % Training Set Using t-SNE Features.  

Customers Feature-0 Feature-1 

Customer-0 1.233045 − 0.86622 
Customer-1 1.139349 0.896794 
Customer-2 0.544359 0.765291 
Customer-3 0.890204 0.4715 
Customer-4 − 1.53817 0.767101  
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Table 14 
Standard Vector’s Sample from 25 % Test Set Using t- SNE Features.  

Customers Feature-0 Feature-1 

Customer-0 − 0.31194 − 1.42367 
Customer-1 0.861471 − 0.31347 
Customer-2 1.241249 − 0.61973 
Customer-3 1.552921 − 0.77741 
Customer-4 1.107586 − 0.57651  

Table 15 
Prediction Using t- SNE Classification.  

Features Actual Softmax Predicted Value-0 Softmax Predicted Value-1 Predicted Result 

Feature-0 Theft (1) 0.985282 0.014717 False Not-Theft (0) 
Feature − 1 Not-Theft (0) 0.972073 0.027927 True Not-Theft (0) 
Feature − 2 Not-Theft (0) 0.982277 0.017723 True Not-Theft (0) 
Feature − 3 Not-Theft (0) 0.987199 0.012801 True Not-Theft (0) 
Feature − 4 Not-Theft (0) 0.979934 0.020066 True Not-Theft (0) 
Feature − 170 Not-Theft (0) 0.985282 0.014717 True Not-Theft (0)  

Table 16 
Measures from t- SNE Classification.  

Class Precision Recall F1 Score Support 

Not-Theft (0) 0.91 0.1 0.95 9661 
Theft (1) 0.00 0.00 0.00 932 
Average 0.83 0.91 0.87 10593 
Accuracy 0.91   

Table 17 
Standard Vector’s sample from 75 % training set using UMAP features.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 

Customer-0 − 0.51282 0.348598 − 1.12284 0.908822 
Customer-1 − 0.62379 − 1.73425 − 0.33973 − 2.24039 
Customer-2 − 0.66981 − 1.25527 − 0.02641 − 0.73275 
Customer-3 − 0.41719 − 1.1326 − 0.36901 − 1.18961 
Customer-4 − 0.91805 2.030792 0.933767 1.074828  

Table 18 
Standard Vector’s sample from 25 % test set using UMAP features.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 

Customer-0 1.35992 0.317409 − 0.33412 − 0.50542 
Customer-1 − 0.14663 0.667956 − 0.91096 − 0.51021 
Customer-2 − 0.52451 0.345385 − 1.05734 0.185526 
Customer-3 − 0.65367 0.387898 − 1.32626 1.0584 
Customer-4 − 0.42799 0.795863 − 0.98597 0.035851  

Table 19 
Prediction using UMAP classification.  

Features Actual Softmax Predicted Value-0 Softmax Predicted Value-1 Predicted Result 

Feature-0 Theft (1) 0.985282 0.014717 False Not-Theft (0) 
Feature − 1 Not-Theft (0) 0.972073 0.027927 True Not-Theft (0) 
Feature − 2 Not-Theft (0) 0.982277 0.017723 True Not-Theft (0) 
Feature − 3 Not-Theft (0) 0.987199 0.012801 True Not-Theft (0) 
Feature − 4 Not-Theft (0) 0.979934 0.020066 True Not-Theft (0) 
Feature − 170 Not-Theft (0) 0.985282 0.014717 True Not-Theft (0)  
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results when applied to the electricity dataset, albeit with different dimensionality reduction targets. Specifically, t-SNE reduces the 
dataset from 1034 columns to 2 columns, while UMAP reduces it to 4 columns. Despite the difference in the number of reduced di
mensions, both techniques effectively capture the essential structure and relationships within the data, leading to comparable results. 
This suggests that both t-SNE and UMAP are equally effective for dimensionality reduction in this particular dataset, providing similar 
insights and data representation. 

3.6. Balanced dataset classification 

As depicted in Fig. 2, it’s evident that the Theft class is significantly underrepresented compared to the Not-Theft class. Therefore, 
there’s a necessity to balance the dataset. To address this imbalance, we employ the following techniques for the model depicted in 
Fig. 3. 

3.6.1. Random-Under-Sampler (RUS) 
The Random Under-Sampling (RUS) technique involves randomly removing samples from the majority class to balance the dataset. 

Following RUS, the dataset, now balanced with 1034 columns, is scaled to ensure values fall within the range of 0–1, aiding model 
interpretation. Subsequently, the dataset is split into 75 % for training and 25 % for testing. StandardScaler is then applied to stan
dardize features, ensuring a mean of 0 and a standard deviation of 1. Tables 21 and 22 display samples of the first five records for both 
the training and testing datasets post-StandardScaler transformation. However, due to the dataset’s size, with 5422 rows and 1034 
columns for the Training set and 1808 rows and 1034 columns for the Test Set, complete records cannot be shown in the tables. 

The training data from Table 21 is utilized in a deep learning model in Fig. 3 with the RUS-Method, featuring 1034 neurons at the 
input layer and trained for 200 epochs. The decision to use 200 epochs is based on the increasing accuracy observed after each epoch. 
Other parameters, such as learning rate, momentum, and batch size, are derived from Table 2. Table 23 showcases samples of the first 
five and last five detected classes using the RUS-Method classification on the test data from Table 22. In this classification, if ’Softmax 
Predicted Value-0′ exceeds ’Softmax Predicted Value-1′, it indicates the ’Not-Theft (0)’ class; otherwise, it indicates the ’Theft (1)’ 
class. 

The trained model has an accuracy of 68 %. For the Theft class, it shows a precision of 71 % and a recall of 58 %, resulting in an F1 
score of 64 % (Table 24). However, some unreliable customers are mistakenly classified as reliable in this process. 

Although the model’s accuracy is above average (68 %), its ability to recall theft instances (Recall: 0.58) is relatively low. This 
suggests there’s room for improvement in accurately identifying theft cases. 

3.6.2. SMOTE technique 
SMOTE (Synthetic Minority Over-sampling Technique) is a method used to address class imbalance in a dataset by generating 

synthetic samples for the minority class. Using SMOTE, the dataset is balanced and reduced to 1034 columns. Afterwards, the dataset 
undergoes scaling to normalize values between 0 and 1, making it easier for the model to interpret. The dataset is then split into 75 % 
for training and 25 % for testing, followed by standardization using StandardScaler to ensure a mean of 0 and a standard deviation of 1. 
Tables 25 and 26 display samples of the first five records for both training and testing data post-StandardScaler transformation. Due to 
the large dataset size, with 58135 rows and 1034 columns for the Training set and 19379 rows and 1034 columns for the Test Set, the 
tables cannot fully display all records. 

The training data from Table 25 is used in a deep learning model in Fig. 3 with the SMOTE-Method, featuring 1034 neurons at the 
input layer and trained for 200 epochs. We chose 200 epochs based on the increasing accuracy observed after each epoch. Other 
parameters, such as learning rate, momentum, and batch size, are obtained from Table 2. Table 27 displays samples of the first five and 
last five detected classes using the SMOTE-Method classification on the test data from Table 26. In this classification, if ’Softmax 
Predicted Value-0′ exceeds ’Softmax Predicted Value-1′, it indicates the ’Not-Theft (0)’ class; otherwise, it indicates the ’Theft (1)’ 

Table 20 
Measures from UMAP classification.  

Class Precision Recall F1 Score Support 

Not-Theft (0) 0.91 0.1 0.95 9661 
Theft (1) 0.00 0.00 0.00 932 
Average 0.83 0.91 0.87 10593 
Accuracy 0.91   

Table 21 
Standard Vector’s sample from 75 % training set using RUS-Method.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 0.058341 − 0.0653 − 0.06416 − 0.0229 − 0.01658 
Customer-1 − 0.08635 − 0.04138 − 0.01538 − 0.16801 − 0.01843 
Customer-2 − 0.1401 − 0.12599 − 0.11687 − 0.14538 − 0.02127 
Customer-3 − 0.15787 − 0.12447 − 0.12511 − 0.16069 − 0.02154 
Customer-4 − 0.05008 − 0.05291 − 0.04527 − 0.05012 − 0.01401  
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Table 22 
Standard Vector’s sample from 25 % test set using RUS -method.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 − 0.15802 − 0.14139 − 0.134 − 0.16801 − 0.02236 
Customer-1 0.000525 0.011423 0.042434 0.076284 − 0.0145 
Customer-2 − 0.03139 − 0.08782 0.256279 0.179627 − 0.01147 
Customer-3 − 0.05008 − 0.05291 − 0.04527 − 0.05012 − 0.01401 
Customer-4 0.171111 0.046541 0.020984 0.041337 − 0.01525  

Table 23 
Prediction using RUS-Method classification.  

Features Actual Softmax Predicted Value-0 Softmax Predicted Value-1 Predicted Result 

Feature-0 Theft (1) 0.59251 0.40749 False Not-Theft (0) 
Feature − 1 Theft (1) 0.567625 0.432375 False Not-Theft (0) 
Feature − 2 Theft (1) 0.089038 0.910962 True Theft (1) 
Feature − 3 Not-Theft (0) 0.814608 0.185392 True Not-Theft (0) 
Feature − 4 Not-Theft (0) 0.692272 0.307728 True Not-Theft (0) 
Feature − 170 Not-Theft (0) 0.792567 0.207432 True Not-Theft (0)  

Table 24 
Measures from RUS-Method classification.  

Class Precision Recall F1 Score Support 

Not-Theft (0) 0.65 0.77 0.70 908 
Theft (1) 0.71 0.58 0.64 900 
Average 0.68 0.68 0.67 1808 
Accuracy 0.68   

Table 25 
Standard Vector’s sample from 75 % training set using SMOTE-Method.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 − 0.04927 − 0.05202 − 0.04693 − 0.05076 − 0.00843 
Customer-1 − 0.13265 − 0.10567 − 0.12429 − 0.13986 − 0.02292 
Customer-2 − 0.11607 − 0.13435 − 0.1395 − 0.11407 − 0.02242 
Customer-3 − 0.18032 − 0.15934 − 0.159 − 0.19754 − 0.02678 
Customer-4 − 0.18124 − 0.15383 − 0.16 − 0.19859 − 0.02699  

Table 26 
Standard Vector’s sample from 25 % test set using SMOTE -method.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 − 0.07085 − 0.06463 − 0.06175 − 0.06823 − 0.01097 
Customer-1 − 0.18124 − 0.07568 − 0.112 − 0.19859 − 0.02328 
Customer-2 − 0.14996 − 0.14503 − 0.12937 − 0.14883 − 0.02337 
Customer-3 − 0.04927 − 0.05202 − 0.04693 − 0.05076 − 0.00843 
Customer-4 − 0.04927 − 0.05202 − 0.04693 − 0.05076 − 0.00843  

Table 27 
Prediction using SMOTE -method classification.  

Features Actual Softmax Predicted Value-0 Softmax Predicted Value-1 Predicted Result 

Feature-0 Theft (1) 0.000155 0.999845 True Theft (1) 
Feature − 1 Not-Theft (0) 0.988456 0.011544 True Not-Theft (0) 
Feature − 2 Theft (1) 0.000142 0.999858 True Theft (1) 
Feature − 3 Theft (1) 0.011812 0.988188 True Theft (1) 
Feature − 4 Theft (1) 0.008208 0.991791 True Theft (1) 
Feature − 170 Theft (1) 0.000155 0.999845 True Theft (1)  
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class. 
The trained model achieves an accuracy of 90 %. For the Theft class, it demonstrates a precision of 90 % and a recall of 92 %, 

resulting in an F1 score of 90 % (Table 28). Most of the unreliable customers are accurately predicted. With its high accuracy (90 %) 
and strong recall for theft instances (Recall: 0.92), the model shows promise for further implementation. 

3.6.3. Random Over Sampling Technique (ROS) 
Using the Random Over-Sampling Technique (ROS) entails replicating samples from the minority class randomly until the class 

distribution achieves balance. With ROS, the dataset is balanced, consisting of 1034 columns. Afterwards, the dataset undergoes 
scaling to normalize values between 0 and 1, enhancing model interpretability. Following this, the dataset is divided into 75 % for 
training and 25 % for testing. Subsequently, it is subjected to StandardScaler to standardize features, ensuring a mean of 0 and a 
standard deviation of 1. Samples of the first five records for both training and testing data post-StandardScaler transformation are 
displayed in Tables 29 and 30. Due to the large dataset size, comprising 58135 rows and 1034 columns for the Training set and 19379 
rows and 1034 columns for the Test Set, not all records can be fully displayed in the tables. 

The deep learning model in Fig. 3 utilizes the ROS-Method, with 1034 neurons at the input layer trained for 200 epochs using the 
training data from Table 29. The decision to use 200 epochs is based on the observed increase in accuracy over each epoch. Other 
parameters such as learning rate, momentum, and batch size are sourced from Table 2. Table 31 showcases samples of the first five and 
last five detected classes using the ROS-Method classification on the test data from Table 30. In this classification, if ’Softmax Predicted 
Value-0′ exceeds ’Softmax Predicted Value-1′, it indicates the ’Not-Theft (0)’ class; otherwise, it indicates the ’Theft (1)’ class. 

The trained model attains an accuracy of 91 %. Specifically for the Theft class, it demonstrates a precision of 89 % and a recall of 94 
%, resulting in an F1 score of 91 % (Table 32.). The majority of unreliable customers are accurately predicted. With its high accuracy 
(91 %) and strong recall for theft instances (Recall: 0.94), the model shows promise for further implementation. 

4. Results and discussions 

All models are implemented in Python using Keras, featuring a single hidden layer with two dropout layers positioned before and 
after the hidden layer. The input layer and output are adjusted based on the input features using relevant methods outlined in the 
methodology section. Further details on the results are provided below. 

4.1. Accuracy and loss during epochs on imbalanced dataset 

Before addressing the imbalanced dataset, trained models achieved high accuracy. However, precision and recall for the Theft class 
fell short, as depicted in Fig. 5. This figure illustrates that all models trained on imbalanced data yielded unsatisfactory results on the 
confusion matrix concerning the Theft class. Specifically, in Fig. 5, Not Scaling, Scaling, PCA, and t-SNE detected 13, 50, 29, and 
0 instances of the Theft class, respectively. Figs. 6 and 7 demonstrate an increase in accuracy and a decrease in loss throughout epochs. 

4.2. Accuracy and loss during epochs on balanced dataset 

Due to the necessity of balancing the dataset, the proposed model yields superior outcomes compared to the imbalanced dataset. In 
Fig. 8, trained models using balanced techniques exhibit high accuracy and recall for the Theft class. Notably, all models trained on 
balanced data demonstrate favorable results on the confusion matrix for both the Theft and Not-Theft classes. Specifically, RUS, 
SMOTE, and ROS exhibit the best True-Theft and True-Not-Theft outcomes in Fig. 8. Additionally, Figs. 9 and 10 depict an upward 
trend in accuracy and a downward trend in loss over the course of epochs. 

4.3. Selection of best models based on precision, recall, and ROC Curve analysis 

As the ’Not-Theft’ class gains high precision and recall, but the ’Theft’ class does not achieve high values, we prioritize the precision 
and recall of the ’Theft’ class for consideration. From Fig. 11, it is clear that each model demonstrates various strengths and weaknesses 
across different evaluation metrics. While several models achieve high accuracy scores of 0.91, there are notable differences in pre
cision and recall for theft detection. Among the models listed, the "ROS" (Random Over-Sampling) model stands out with an accuracy 
of 0.91, precision for theft of 0.89, and recall for theft of 0.94. These metrics indicate that the ROS model not only achieves high overall 
accuracy but also excels in accurately identifying instances of theft, with a high precision rate and a high recall rate. Comparatively, 
other models like "No Scaling," "Scaling," "PCA," and "t-SNE" exhibit similar accuracies of 0.91 but have lower precision and recall 

Table 28 
Measures from SMOTE -method classification.  

Class Precision Recall F1 Score Support 

Not-Theft (0) 0.91 0.89 0.90 9627 
Theft (1) 0.90 0.92 0.90 9752 
Average 0.90 0.90 0.90 19379 
Accuracy 0.90   
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scores for theft detection. The "RUS" model shows decent precision for theft (0.71) but comparatively lower recall (0.58) and a lower 
overall accuracy of 0.68. On the other hand, "SMOTE" also performs well with a precision for theft of 0.9 and a recall for theft of 0.92, 
but its overall accuracy is slightly lower than ROS at 0.9. Considering the balance between accuracy, precision, and recall, the ROS 
model emerges as the most favorable choice among the listed models for theft detection, as it achieves high scores across all three key 
metrics. 

The acronym ROC stands for Receiver Operating Characteristic, and ROC curves are commonly employed to visually illustrate the 
trade-off between clinical sensitivity and specificity across various cutoff points for a test or a combination of tests. Moreover, the area 
under the ROC curve provides insight into the overall efficacy of the test(s) within a model. Since a larger area under the ROC curve 
indicates a more effective test, these areas are utilized to compare the utility of different tests [50]. 

Fig. 12 displays the curves for all the deep learning models used on the test data. In this figure, the area under the curve for SMOTE 
and ROS is the highest. Therefore, based on the ROC curve analysis, SMOTE and ROS are selected as the best models. 

4.4. Ablation study 

The assertion regarding the superiority of the proposed model over CNN, RNN, LSTM, or Ensemble techniques is supported by 
several key factors. Firstly, the inclusion of dropout layers and three hidden layers in the proposed architecture contributes to reducing 
computational costs compared to models relying solely on CNN, RNN, LSTM, or Ensemble techniques. The utilization of fewer layers in 
the proposed model significantly enhances computational efficiency. By reducing the complexity of the network architecture, fewer 
parameters need to be trained during the learning process, thereby decreasing the computational burden. This streamlined archi
tecture not only accelerates training times but also facilitates faster inference during deployment, making the model well-suited for 
real-time applications or scenarios with limited computational resources. Furthermore, the simplicity of the architecture minimizes the 

Table 29 
Standard Vector’s sample from 75 % training set using ROS-Method.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 0.312363 0.051979 0.097924 0.032764 − 0.00665 
Customer-1 − 0.04967 − 0.05311 − 0.04727 − 0.05113 − 0.01195 
Customer-2 − 0.11207 − 0.13101 − 0.13219 − 0.10725 − 0.01924 
Customer-3 − 0.17209 − 0.15465 − 0.15007 − 0.18124 − 0.02151 
Customer-4 0.051475 0.01262 0.02117 0.013343 − 0.01105  

Table 30 
Standard Vector’s sample from 25 % test set using ROS-Method.  

Customers Feature-0 Feature-1 Feature-2 Feature-3 Feature-4 

Customer-0 − 0.17295 − 0.15524 − 0.15099 − 0.18216 − 0.02162 
Customer-1 − 0.17295 − 0.0755 − 0.10696 − 0.18216 − 0.01969 
Customer-2 − 0.00975 − 0.04524 − 0.05268 − 0.06749 − 0.01442 
Customer-3 − 0.04967 − 0.05311 − 0.04727 − 0.05113 − 0.01195 
Customer-4 − 0.04967 − 0.05311 − 0.04727 − 0.05113 − 0.01195  

Table 31 
Prediction using ROS-Method classification.  

Features Actual Softmax Predicted Value-0 Softmax Predicted Value-1 Predicted Result 

Feature-0 Theft (1) 0.000884 0.999116 True Theft (1) 
Feature − 1 Not-Theft (0) 0.99999 9.917467e-06 True Not-Theft (0) 
Feature − 2 Theft (1) 0.003885 0.996115 True Theft (1) 
Feature − 3 Theft (1) 0.41503 0.58497 True Theft (1) 
Feature − 4 Theft (1) 6.6416703e-07 0.999999 True Theft (1) 
Feature − 170 Theft (1) 0.000884 0.999116 True Theft (1)  

Table 32 
Measures from ROS -method classification.  

Class Precision Recall F1 Score Support 

Not-Theft (0) 0.93 0.89 0.91 9627 
Theft (1) 0.89 0.94 0.91 9752 
Average 0.91 0.91 0.91 19379 
Accuracy 0.91   
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risk of overfitting, where the model becomes overly complex and fails to generalize well to unseen data. With fewer layers, the model is 
less prone to memorizing noise or irrelevant patterns in the training data, resulting in improved generalization performance on unseen 
data. 

Moreover, while existing works based on CNN, RNN, LSTM, or Ensemble techniques have demonstrated promising results, there 
remains room for improvement in terms of accuracy, precision, or recall. By addressing this gap and leveraging the advantages of 
dropout layers and multiple hidden layers, the proposed model offers an opportunity for significant performance enhancements. 

In summary, the proposed model not only outperforms existing approaches in terms of computational efficiency but also presents a 
promising avenue for improving performance metrics such as accuracy, precision, and recall when compared similar studies as shown 
in Table 33. 

5. Conclusion 

5.1. Recapitulation 

In conclusion, this study deals with the spread and the difficult challenge of the electricity theft in the non-smart grid environment 
via the development of the robust deep-learning model that runs on the portable hardware. Adjusting to monthly customers’ readings 
for data reactivity, the proposed model in addition implements advocated methods such as scaling, PCA, t-SNE, and sampling methods 
like RUS, SMOTE, and ROS in order to maximize performance. The carefully done exam enrolled carry out of a certain level of accuracy 
of 91 % with this all having a precision, recall, and F1-score of 91 %. The realization of the above mentions outcomes only goes to 
demonstrate the validity of the model as far as it correctly figures out cases of electricity theft while at the same time curbing the cost of 
electricity while ensuring reliability of the supply of electricity for utility providers on the global level. 

Significance of this research is that it helps in fight the serious issue – electricity theft, which is affecting mostly utility companies 
but also customers around the world. A deep learning model that is swift and customized for non-smart grids could be the answer to 
this study’s quest to tackle the problem of regulatory non-compliance, and consequently enhance the safety of power supply and 
reduce financial losses suffered by utility providers. Besides the fact that the mixing of more improved techniques like feature engi
neering and resampling some of the features of the model makes it more powerful and robust, thus the possibilities of applying it in the 
real world are raised. 

Comparing results with other similar studies demonstrates that the accuracy, precision, recall, and F1-score of the proposed system 
are greater than those of the other ones. The approach used by existing methods such as wide & deep CNN, machine learning pipelines, 
and the hybrid approach is now vastly improved by this proposed approach and has shown to perform far better, especially when it 

Fig. 5. Confusion matrix on imbalanced dataset.  
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balances the detection of theft as well as other crimes. For instance, the wide and deep CNN gained 78 %, a hybrid approach got 88 %, 
and the MLP-GRU approach ended up with 81 % precision. Nevertheless, with the suggested model’s accuracy of 91 %, it has surpassed 
the aforementioned results and stood better regarding electricity theft detection. This ensures that the value of the model is high
lighted, and the research is characterized as the model with a promising solution for utility providers who want to enhance the 
detection capabilities of theft in non-smart grid systems. 

5.2. Future work 

Consequently, we would suggest investigating certain major directions for future research where future model development can be 
possible thus making them more effective and applicable. Firstly, using algorithms like machine learning can make the process faster 
and more efficient. Also, the use of data sources like weather patterns or customer behavior can work together to further reveal the 
tendency of thefts. On top of that, using sophisticated anomaly detection tools and real-time electricity data from smart meters could be 
a plus in terms of developing an adaptive model that is capable of reacting quickly to changes in the environment. More global pilot 
runs would be required for this model to be validated in various geographical regions and the utility infrastructure. The results will be 
essential for gaining insights into its effectiveness in the real world and whether it is scalable. In the concluding part, it is recommended 
that we visualize the infusion of advanced technologies such as blockchain and IoT devices that would be an added shield against 
fraudulence. As a means to this end, future work can bring us closer to the pinnacle of innovation in electricity theft detection 
administration and eventually help create more robust and eco-friendly energy systems. 
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List of Abbreviations  

PCA Principal Component Analysis, 
t-SNE t-distributed Stochastic Neighbor Embedding, 
UMAP Uniform Manifold Approximation and Projection 
RUS Random-Under-Sampler, 
SMOTE Synthetic Minority Over-sampling Technique 
ROS Random-Over-Sampler 
NTLs Non-Technical Losses 
DL Deep Learning 
ML Machine Learning 
SVM Support Vector Machine 
CNN Convolutional Neural Network 
LSTM long short-term memory 
MLP Multi-Layer Perceptron 
GRU Gated Recurrent Units 
ETD Electricity Theft Detection 
SQL structured query language 
RF Random Forest 
TDTLM Temperature-dependent theft detection using load monitoring 
BHA Binary hole Algorithm 
OPF Optimal Power Flow 
SETS Smart Energy Theft System 
SMA Simple Moving Average 
PER-AutoRL Prioritized experience replay automated reinforcement learning 
TCN Temporal convolutional network 
AdaBoost Adaptive boosting algorithm 
NTL Non-technical loss 
NAS Neural architecture search 
DNOs Distribution network operators 
DBSCAN Spatial Clustering of Applications with Noise 
DRL Deep reinforcement learning 
ROC Receiver Operating Characteristic 
List of Variables  
Training Set  
Test Set  
Learning Rate  
Momentum  
Validation_split  
Batch Size  
Total Batch  
Loss Function  
Not-Theft (0)  
Theft (1)    

Table 33 
Comparison with similar studies.  

Models Accuracy Precision Recall F1-Score 

Wide & Deep CNN [8] 78 % – – – 
Pipeline in Machine Learning [27] 89 % 85 % 88 % – 
light-GBM [40] 84 % – – – 
Model [41] 66 % – – 45 % 
Hybrid Approach [42] 88 % – – – 
SVM [7] 81 % – – – 
Ensemble Learning and Prototype Learning [43] 89 % – – – 
MLP-GRU [44] 81 % 89 % 82 % 85 % 
Proposed Model: Random-Over-Sampling 91 % 91 % 91 % 91 %  
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