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Abstract

Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For
example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in
not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein
burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we
applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-
compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as
integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that
control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this
feature, even if one is able to measure only a small fraction of the system’s parameters, one can infer the rest. We applied
this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in
bacteria, and calcium homeostasis in mammals.
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Introduction

Biological networks have been shown to be composed of a small

set of recurring interaction patterns, called network motifs [1–6].

Each motif is a small circuit element that can carry out specific

dynamical functions. An organism often shows hundreds or

thousands of instances of each network motif, each time with

different genes or proteins.

Qualitative aspects of the dynamics of each network motif are

usually determined by their connectivity pattern - the arrows in the

circuit diagram (Fig. 1a). However, in order to understand the

detailed dynamics of a network motif, one needs to also know its

biochemical parameters – the numbers on the arrows (Figs. 1b and

1c). If a given circuit has n biochemical parameters, every instance

of the circuit can be described by a point in an n-dimensional

parameter space. Parameter space has been useful in theoretical

studies that explore the range of dynamics accessible by a

particular circuit, by sampling many points (many parameter

combinations) and studying the dynamics of the resulting circuits

[7–11]. Note that when the number of parameter is large,

scanning the parameter space is a combinatorially difficult task.

An open question concerns the distribution of naturally

occurring instances of a circuit in parameter space. One may

imagine different scenarios: instances of the circuit may be

distributed widely over parameter space (Fig. 1d), or, instead, be

localized to a low-dimensional manifold within this space (Fig. 1e).

The latter situation would be helpful because all the parameters of

the circuit could then be derived from the estimate of only a small

subset of parameters.

Recently, an analogous question has been posed for animal

morphology, in which each organism is represented by a point in a

space of traits [12,13], called morphospace [14]. Animal

morphology usually fills only a small part of morphospace. The

range of morphology in a class of species – called the suite of

variation- often falls on a line in morphospace. One theoretical

explanation for such lines is that organisms need to perform

different tasks, and thus face a fundamental tradeoff: No single

phenotype (no point in trait space) can be optimal at all tasks.

Shoval et al. [12] showed, using the concept of Pareto optimality

[15–17], that tradeoffs often lead natural selection to phenotypes

arranged on low dimensional regions in morphospace, such as

lines and triangles. The vertices of these lines and triangles are

phenotypes optimal at a single task, called archetypes.

Biological circuits also face multiple tasks [18–26]. For example

they must effectively carry out a given function, but they must also

economize the levels of the proteins made by the cell because

unneeded proteins carry a fitness cost [27–32]. This tradeoff

between economy and effectiveness in circuits, described by El

Samad et al. [33], raises the possibility that a similar Pareto front

analysis may be useful to analyze the distribution of the

biochemical parameters of a circuit in parameter space.

Here, we apply such an analysis to a simple circuit, in order to

exemplify an approach to study how tradeoff between tasks can

lead evolved circuits to low-dimensional regions of parameter

space. As a model system we study a circuit known as integral

feedback- which serves as a simple model of a wide range of

systems that govern physiological homeostasis, and is a mainstay of

engineering feedback control. The circuit has two components
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(Fig. 2a): an internal variable x and an output y. In response to an

input, u, the level of y changes from its set point y0. As a result, x

levels change slowly, causing y to return to y0. The defining

property of integral feedback is that the rate of change of x is

proportional to the difference between y and its set-point y0, a

mathematical feature that guarantees exact return to y0 no matter

what the model parameters are [34,35].

As an example, consider the bacterial heat-shock system

(Fig. 2b): unfolded proteins, y, result from changes in temperature

u. The heat shock proteins - chaperones and proteases, collectively

described by x, increase in level until unfolded proteins y return to

baseline. Integral feedback has also been proposed to describe the

dynamics of DNA repair [36–38] and hormonal systems [35]. A

detailed model of the bacterial heat shock system was previously

studied by [33], suggesting that the parameters of the E. coli heat

shock system are Pareto optimal with respect to effectiveness and

economy. As in most studies that employ the Pareto front, the

analysis of El Samad was in performance space. In the present

study, we analyze the shape of the Pareto front in parameter space.

We use a much simpler model, which has the drawback of

neglecting many biological details such as non-linearity, but has

the virtue of being analytically solvable and thus the shape of the

Pareto front in parameter space can be solved exactly. We apply

this analysis also to hormonal control and bacterial DNA repair

systems. We find that natural selection with two objectives of

effectiveness and economy can lead integral feedback circuits to a

one-dimensional manifold in parameter space. This manifold can

help to estimate difficult-to-measure parameters in each system.

Figure 1. In nature, the parameters that determine the dynamics of a circuit may fill the parameter space uniformly or, instead, lie
in a confined manifold within parameter space. (a) A schematic diagram of a circuit whose parameters, q1 and q2 (b) determine the dynamics
(c) of the internal variable (x, red) and the output (y, blue) for a given input time series (u, green). Two schematic illustrations of possible scenarios
that could exist in nature are (d) the occurrences of the circuit fill parameter space or (e) the occurrences of the circuit are confined to a curve or
manifold in parameter space. Natural selection in the context of tradeoffs can effectively remove points from (d), resulting in (e).
doi:10.1371/journal.pcbi.1003163.g001

Author Summary

Many systems in the cell work to keep homeostasis, or
balance. For example, damage repair systems make special
repair proteins to resolve damage. These systems typically
have many biochemical parameters such as biochemical
rate constants, and it is not clear how much of the huge
parameter space is filled by actual biological systems. We
examined how natural selection acts on these systems
when there are two important tasks: effectiveness – rapidly
repairing damage, and economy – avoiding excessive
production of repair proteins. We find that this multi-task
optimization situation leads to natural selection of circuits
that lie on a curve in parameter space. Thus, most of
parameter space is empty. Estimating only a few param-
eters of the circuit is enough to predict the rest. This
approach allowed us to estimate parameters for bacterial
heat shock and DNA repair systems, and for a mammalian
hormone system responsible for calcium homeostasis.

Tradeoffs in Biological Homeostasis Systems
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Results

Integral feedback as a simple model for biological
damage response and homeostasis systems

As a model system, we choose a well-studied class of circuits that

are used to maintain homeostasis. To capture the essential

behavior of these systems, we follow the models proposed by

[35,39]. These authors described the calcium and heat shock

systems at various levels of detail, showing that they are essentially

integral feedback loops. Here we use the simplest possible linear

description of this feedback loop, ignoring important details (such

as feed-forward control and non-linearity which will be treated in

later sections) in order to gain clarity for analysis.

The integral feedback loop has three components. The input

signal U causes a change in output Y (e.g. temperature U causes

increase in unfolded proteins Y ). The internal variable X acts to

reverse the effect of the input, so that Y returns to its baseline level

(e.g. X are heat shock proteins that cause unfolded proteins Y to

return to a basal level). We describe these effects by a linear

equation:

Y (t)~aU(t){bX (t) ð1Þ

Feedback in these systems occurs because an increase in Y leads

to production of X , causing Y to return to its basal levels. Integral

feedback is a specific form of feedback, in which the rate of

production of X is dependent on the difference between the level

of output Y and its desired basal level Y0:

dX (t)

dt
~K Y tð Þ{Y0ð Þ ð2Þ

The time constant for this process is K . The larger K , the faster

X responds when Y departs from its baseline Y0. The only

possible steady-state for X is when Y~Y0. For this reason,

integral feedback is a robust circuit that leads the output to its

baseline, regardless of parameter values.

Note that we used the separation of timescales that occurs in the

biological examples, in order to simplify the mathematical

description: the production of X is typically much slower than

the action of X and U on Y . Thus, Eq 2 is a differential equation;

whereas equation 1 is algebraic.

In order to reduce the number of free parameters in the model,

we rescale the variables. We normalize X and K by the parameter

Figure 2. An integral feedback model for damage response and homeostasis systems. (a) An increase of the input, u, leads to a rise in the
level of the output, y, which, in turn triggers the production of the internal variable, x, that lowers the output back to its original level. This feedback
loop is at the heart of systems such as (b) the E. coli heat shock system - where the input is temperature, the internal variable is the amount of
chaperones and the output is the level of unfolded proteins; and (c) the E coli SOS DNA repair system where the input is DNA damaging agents such
as c irradiation, the internal variable is DNA repair machinery and the output is the level of DNA damage. Another example is the regulation of the
levels of calcium in the dairy cow (d) where the input is the calcium needed for milk production per day, the internal variable is calcium flux that goes
into the blood from food, bone and other stores, and the output is flux of calcium that leaves the blood per day and is required for the activities of
essential organs, such as heart and neurons.
doi:10.1371/journal.pcbi.1003163.g002

Tradeoffs in Biological Homeostasis Systems
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b (x~bX , �KK~bK ), U by a (u~aU ). We normalize time by the

typical timescale t over which the system is activated, There

remain only two scaled parameters, k~ �KKt and y0~Y0. Thus we

will work with the rescaled model (Fig. 2)

y(t)~u(t){x(t) ð3Þ

dx(t)

dt
~k y tð Þ{y0ð Þ ð4Þ

The parameter space for this model is two dimensional, with

axes of k and y0, corresponding to the responsiveness rate of x and

the baseline level of y. Each choice of k and y0 determines a

particular dynamical system, which has its own characteristic

dynamic response to a given change in input u. Note that the time

is now measured in units of t.

In Fig. 3 we plot the response of the integral feedback system to

a step change in input that goes from an initial level u0 to a final

level uf , at time t~0. An advantage of this model is that the

dynamics can be solved analytically. The internal variable x rises

and exponentially approaches its new steady state

x(t)~uf {e{kt uf {u0

� �
{y0: ð5Þ

The output y responds immediately, reaching a maximal level

ymax~y0zuf {u0. The output y then decays due to the rise in x,

eventually returning precisely to its initial level, the baseline level

y0

y(t)~e{kt uf {u0

� �
zy0: ð6Þ

The timescale of changes in both x and y is 1=k.

Tasks for an integral feedback system include economy
and effectiveness

We define two tasks for the integral feedback system, following

[33]. The first task is effectiveness, namely minimizing the

‘damage’ y. In a damage response system, the more effective the

circuit, the less the average output y, because y causes damage to

the cell, and lower values of y mean higher fitness. The second task

is economy: the less of the proteins x are made, the higher the

fitness due to reduced protein burden [27–29]. There is a tradeoff

inherent in these two tasks: effective systems require high levels of

x, while economizing systems require low levels of x. Thus, natural

selection needs to compromise between effectiveness and econo-

my.

We consider a case where the system is at steady state for a time

T , and then a step change in input occurs that lasts for time t (for

example, ambient temperature for time T , followed by temper-

ature increase for time t). A simple choice for a performance

function for the task of effectiveness, P1, is the average output over

time

P1 k,y0ð Þ~{
1

tzT

ðt

{T

y2dt ð7Þ

And for economy, described by the performance function, P2 , the

average of x over time

P2 k,y0ð Þ~{
1

tzT

ðt

{T

x2dt ð8Þ

We use quadratic terms, x2 and y2, because biological cost is

often an accelerating function of the cost-inducing factor [29], and

because of the ease of analytical solutions [23]. Other functional

forms for the performance functions lead to similar conclusions

and will be discussed below.

The performance functions depend on the two circuit param-

eters k and y0: for each choice of k, y0ð Þ, one computes the

dynamics for a given step increase in input (from u0 to uf ), plug the

dynamics y tð Þ and x(t) into equations 7 and 8, and computes the

performances – effectiveness and economy- that characterize that

point in parameter space. Analytical solutions for these equations

are provided in Methods.

In Fig. 4a, we plot the contours of effectiveness in parameter

space- lines of equal P1 k,y0ð Þ Parameter space is plotted with
y0

u0

on one axis, and
k

kz1
on the other axis. The latter is a way to

present an infinite range of k in a compact way (k?? means
k

kz1
?1).

Effectiveness (P1) is maximized at a point that can be called the

effectiveness archetype, at k � ,y0�ð Þ~ ?,0ð Þ. This archetype

system is an extreme (limiting) case in which economy does not

factor at all into consideration. It has an infinitely brief rise in y
after a step change in the input, caused by an infinitely rapid

increase in x. This archetype effectively makes an infinite amount

of x in order to speed the return of y to the baseline. Contours of

performance at task 1 radiate around the archetype in elongated

rings (Fig. 4a).

Economy (P2) is maximized at a different point, the economy

archetype (archetype 2), at k � ,y0�ð Þ~ 0,u0ð Þ . This too is an

extreme case where effectiveness is not a consideration. Here no x
is produced at all (so that economy is maximal). As a result, y
responds in an unmitigated way to the change in input, without

returning to baseline. In effect, this archetype is akin to a loss of the

response system x. Contours of decreasing economy (increasing

P2) surround the archetype in elongated rings (Fig. 4b).

The Pareto front is a curve in parameter space that best
compromises between the tasks

We next computed the Pareto front [12,20,40–42], defined as

follows. We term point A in parameter space as dominated by

point B if the performance in both task 1 and 2 is better at B than

in A (that is P1 Bð Þ§P1 Að Þ and P2 Bð Þ§P2 Að Þ). Because

biological fitness is an increasing function of P1 and of P2, point

B has higher fitness than point A. As a result, natural selection

would tend to select against systems at point A, and they would

vanish from the population. The Pareto front is the set of points

that remains after all points dominated by another point are

removed. The Pareto front thus represents the maximal set of

phenotypes that will be found given that natural selection is the

main force at play.

The Pareto front is a powerful concept because it does not

require knowledge of the precise shape of the fitness function, as

long as fitness is an increasing function of both performances. The

exact shape of the fitness function, F P1,P2ð Þ determines which

point along the front is selected.

Tradeoffs in Biological Homeostasis Systems
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Figure 3. Dynamics of the integral feedback model show exact adaptation following a step change in input. (a) A step of input at t~0
leads to (b) an increase in the internal variable level, x. The parameter k determines the rate of response. (c) The output y increases rapidly due to the
input step, and decreases back to its baseline level y0 due to the action of x.
doi:10.1371/journal.pcbi.1003163.g003
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We calculated the Pareto front in parameter space [20,43,44]

(Fig. 4d). For this purpose, we used the fact that the Pareto front is

the locus of points at which the contours of the two performance

functions are externally tangent [12,13]. This allowed an

analytical solution of the front (see Methods). We tested the

analytical solution by numerical simulations in which points

dominated by other points were removed in evolutionary

simulations (see Methods).

We find that the Pareto front, in the case where input changes

are rare Twwtð Þ, is a curve that connects the two archetypes

(Fig. 4c). Its formula is
y0

u0
~f (k)~

ek{e{k 1z2kð Þ
4 ek{1{kð Þ . Thus, most

of parameter space is predicted by this theory to be empty, and

natural systems are expected to fall on a curve. Interestingly, the

front does not depend on the final input value in the step, uf , but

only on the ambient input u0 (See Methods). When effectiveness is

more impactful for fitness than economy
dF

dP1
w

dF

dP2

� �
, systems

should lie on the front closer to the effectiveness archetype - with

lower baseline y0 and faster responsiveness k. When economy is

more impactful for fitness, systems should lie on the front closer to

economy archetype, with higher baseline y0, and slower respon-

siveness (lower k).

We tested the sensitivity of the Pareto front to variations in the

form of the performance functions (Fig. 5). We tested

P1 k,y0ð Þ~{
1

tzT

ðt

{T

y(t)mdt and

P2 k,y0ð Þ~{
1

tzT

ðt

{T

x(t)ndt

We find that changing the powers n and m between 1 and ?
had only minor effects on the shape of the front. The higher n or

m, the higher the baseline value y0 of the effectiveness end of the

front. The front is insensitive to performance function shape at the

economy end. We also tested other functional forms of the

performance functions and find similar insensitivity of the front

shape (Fig. S1 and S2).

We also tested the sensitivity of this analysis to changes in the

integral-feedback model itself. We added feed-forward control,

known to occur in the bacterial heat shock system, by changing the

parameter k into kzau, allowing the input u to directly affect the

internal variable, x . This describes the effect of input signal on the

responsiveness of x. Since we consider step changes in u, the

present analysis applies precisely to this case as well, when one

adjusts k by the value of uf . The resulting Pareto front is identical

to Fig. 5, with appropriate change of k to kzauf . We also tested

the model by adding non-linearity to the equations, and by

removing the assumption of separation of timescales between x
and y. The results are detailed in Fig. S3, and generally show that

the qualitative conclusions of a Pareto front curve, which connects

the two archetypes and is insensitive to the form of the

performance functions, remain valid.

It is likely that many damage response systems evolve in the

limit when input changes are relatively rare Twwtð Þ. For

completeness, we also studied the Pareto front when changes in

input are more frequent (T comparable to t) (Fig. 6) [45]. In this

case, unexpected complexity was found in this simple model

system. As long as T=tw1, the front is a curve resembling Fig. 5

that connects the two archetypes, with an unstable region near

archetype 1, at which the front jumps to k~? (Fig. 6a,b). At

T=t~1=3 the front splits into two disjoint components, one of

which is a range of y0 values with k~? (Fig. 6d). At T=t*0:14,

the front splits again into two disjoint curves separated by an

unstable ridge.(Fig. 6e,f).

Heat shock, DNA repair and calcium hormone system
parameters may be inferred from the Pareto front

Heat shock system. Finally, we explore the implications of

the Pareto analysis for three biological examples of homeostasis

systems (Table 1). We begin with the heat-shock system of E. coli.

The baseline level of unfolded proteins at ambient temperature

(370C) has been estimated to be about y0~6:104 1

cell
[39], which

amounts to about 2–3% of the total protein in a growing cell. The

responsiveness parameter of the system, k, can be estimated from

the typical timescale at which unfolded proteins are removed by

the heat-shock system, which is about 10{15 min [39]. Consid-

ering the dynamics over a cell generation time, so that

t = 40{60 min, yields kt~3{5. Plotting this point on the Pareto

front (Fig. 7a) suggests that it lies towards the effectiveness

archetype, in a relatively flat region of the front at which the value

of u0 can be robustly estimated as u0~4y0. This suggests a value of

u0~2:105 unfolded proteins

cell
. This value can be interpreted to

mean that without a heat-shock system, at ambient temperature,

E. coli would have had u0~2:105 unfolded proteins

cell
, amounting to

about 10% of its total protein. This level agrees with the estimated

lethal limit of unfolded protein [46], and with the fraction of

proteins that require extra chaperone assistance to fold as they exit

the ribosome [47].

In this example, the Pareto front allows estimation of the

amount of unfolded protein expected without a heat-shock system,

a value that is otherwise difficult to study because knockout of the

heat shock system is lethal at ambient temperature [48].

DNA repair system. The second example is DNA damage

repair in E coli. Here the timescale for the response to c irradiation,

which causes double stranded DNA breaks (1=k), is about 20 min

[49] (similar to timescale for response to UV damage [38]). By

taking t as the cell generation time, 40–60 min, we find that

kt&2. The baseline level of double stranded DNA breaks is

y0~0:17
double stranded breaks

cell
[50]. Using the Pareto front

(Fig. 7b), one can estimate the level of damage expected if

there was no repair system and no irradiation,

u0~0:4
double stranded breaks

cell
.

Note that detailed experiments and models of the SOS repair

system and its mammalian counterpart show additional features

such as multiple pulses of repair enzyme production [38,51,52].

These features are not accounted for in the present model. Future

studies may include mutagenic repair as an additional potential

task, perhaps with a new performance function P3 [53].

Calcium homeostasis hormonal system. The final exam-

ple is control of calcium blood levels in mammals (see Methods for

model). Data from dairy cows shows that after giving birth,

calcium levels drop primarily due to milk production. In response,

the hormones PTH and 1, 25-DHCC rise, leading to release of

calcium from body stores. Calcium blood levels return to baseline

exponentially with a time constant of about 0:66 days{1 [35]. In

some cases, failure to recover baseline calcium levels leads to

sickness (parturient paresis), which can be prevented by injecting

Tradeoffs in Biological Homeostasis Systems
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calcium. As an estimate of t we use t~3 days, the time until an

untreated cow typically shows signs of sickness [54], resulting in

kt~2. From the Pareto front, this yields
u0

y0
~2:5 (Fig. 7C).

We can compare these values to an independent estimate. We

interpret y0 as the amount of calcium needed per day by a cow,

estimated to be y0~6+2
gr

day
[55]. The extra loss of calcium due

to milk production, which we interpret as uf , is about uf ~27
gr

day

(uf ~1:2
gr

liter milk
23

liter milk

day
, [56,57]). The treatment for a cow

with parturient paresis, which is caused by a failure to restore

calcium levels following parturition, is to inject &9gr of calcium to

its blood stream [54]. Hence, u0 is estimated to be approximately

27{9~18
gr

day
. This yields

u0

y0
*3, in reasonable agreement with

the value from the Pareto front, u0=y0~2:5.

Discussion

This study examined how natural selection acts on a simple

biological circuit when two tasks are important: effectiveness and

economy. We find that this multi-task optimization situation leads to

natural selection of circuits that lie on a curve in parameter space.

Thus, most of parameter space is empty. The curve is the Pareto front,

composed of best-tradeoff circuits, and connects two archetype points

in parameter space. These archetypes represent circuits optimized for

only one of the two tasks. The simple model of the integral feedback

circuit enabled analytical solution of the front shape.

The resulting Pareto front allows estimation of parameters in

several example systems, bacterial heat shock and DNA repair,

and mammalian calcium homeostasis. Interestingly, all three

examples are in a plateau region of the Pareto front, in the side

tending towards effectiveness. This may result from diminishing

returns [58], in which speeding up system response (increasing k)

leads to small increase in effectiveness but a large increase in

protein cost. In this plateau, a simple relation is found between the

Figure 4. The Pareto front connects the archetypes – systems which are optimal for only one of the two tasks. The effectiveness (a) and

economy (b) contours radiate outwards from the archetypes, which have their dynamics described in adjacent boxes (
T

t
~3). (c) The Pareto front is

the set of points where the contours of the two performance functions are externally tangent. The plot shows the Pareto front when input changes

are rare, that is
T

t
ww1. The Pareto front is a curve that connects the two archetypes. In the inset the Pareto front in performance space- note that

axes are the effectiveness and economy, not the biochemical parameters as in parameter space of (a)–(c). The archetypes have the maximal
performance in their respective tasks. An analytical solution shows the front is a parabola in performance space (see Methods). (d) the overlay of the
contours of (a) and (b), and the resulting Pareto front (See Fig. 6 for further details).
doi:10.1371/journal.pcbi.1003163.g004

Tradeoffs in Biological Homeostasis Systems
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basal input and basal output, u0=y0&2{4. This means that large

gains (large suppression of damage y0 by the basal activity of the

system), are not possible, at least in this simple model. Large gains

can only be reached at very large k, which may be unfeasible in

terms of cost.

Points located in other regions of the Pareto front curve are

expected in organisms which have different relative fitness

contributions from the two tasks. For example, Buchnera, a

relative of E coli which is an obligate symbiont of termites, has a

heat shock system, but its proteins do not seem to change their

expression level upon heat stress [59]. In this system, economy

may outweigh effectiveness, due to the rarity of heat stress in the

environment in which Buchnera evolved; accordingly, a solution

close to the economy archetype seems to have been selected.

Throughout the Buchnera genome, evidence of economy is

prevalent [60–63].

Previous studies of Pareto optimality of biological circuits

[12,13,20,21,64], engineered circuits [65–67], and of metabolic

fluxes [64,68] have usually focused on performance space. El

Samad et al. [33] found that the E coli heat shock system is on the

Pareto front in performance space, and other studies compared

different circuits theoretically in terms of hypothetical tasks in

performance space [20,21,25]. Lan et al [24] presented a

statistical-mechanics based analysis of the tradeoff in the bacterial

chemotaxis between energetic cost and adaptation error.

Recently, Barton and Sontag [25] analyzed the tradeoff between

insulation and energetic cost of signaling . The present study

computes the shape of the Pareto front of a biological circuit in

parameter space, rather than performance space. This leads to the

possibility of estimating difficult to measure parameters. The

present study aims at categorizing best-tradeoff instances of the

same circuit, rather than comparing between different circuit

topologies [11,18,19].

Other optimization methods are also helpful in understanding

tradeoffs. Variational calculus was employed to optimize temporal

profiles of enzymes with respect to cost [23]. Optimal control using

Figure 5. Altering the mathematical description of the performance functions does not cause substantial difference in the Pareto
front shape. We changed the integrand power in both tasks from 2 to n (equations 7 and 8). The calculated front uses Twwt (method).
doi:10.1371/journal.pcbi.1003163.g005
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Figure 6. When input changes become frequent, the Pareto front shows complex changes in shape. We plot the Pareto front changing
the parameter T=t, which describes the typical duration between input changes. The archetypes of effectiveness and economy (marked in blue and
red, respectively) are connected by the Pareto front (green) , which for any finite T is split into two parts. For T=tw1 the Pareto front resembles its

Tradeoffs in Biological Homeostasis Systems
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Pontryagin’s method was applied to understand the optimal

dynamics of wasp reproductive strategies [69], and the order of

developmental events in the mouse intestinal crypt [70].

The conclusions of the present study can, in principle, be tested

experimentally. Doing so requires measuring the parameters of a

circuit accurately, a difficult task which is becoming more feasible

with advances in experimental technology. It would be instructive

to attempt a comparative analysis of the parameters of a given

circuit in different organisms. For example, measuring k and y0 in

heat shock systems or DNA repair systems in different bacterial

species can test whether these systems all fall on a curve in

parameters space. The position of each organism on this curve

should correspond to the relative importance of effectiveness and

economy in its natural environment. The present theory would be

contradicted if the points fill most of parameter space, instead of

falling on a curve or other low dimensional manifold.

One such empirically discovered curve was found in the analysis

of the biochemical parameters of Rubisco, an important carbon

fixation enzyme. The enzyme affinities and velocity parameters

from different plants and microorganisms fall on a line in a four-

dimensional parameter space [71] . This may represent tradeoffs

between efficiency and specificity of the enzyme.

The present study analyzed the case of two tasks. When there

are a larger number of tasks, theory [12] suggests that Pareto

fronts should resemble polygons whose vertices are the arche-

types: points in parameter space that optimize a single task. Thus,

three tasks should lead to fronts that resemble a full triangle; four

tasks should lead to a tetrahedron etc. If only a single task exists,

limit of rare input changes (a–c). As T gets smaller a local Pareto front (cyan) emerges and a separatrix emerges (red-dashed) and grows. When
T=tv1=3 (d) a local minimum (square) and a saddle point (triangle) emerge for the economy task. And when T=tv0:14 (e) the same occurs to the
effectiveness task and the branches of the Pareto front becomes disjoint, until T=t~0 (f) where two parallel lines emerge. Red dashed lines are
points where contours are tangent but are not part of the Pareto front (see methods).
doi:10.1371/journal.pcbi.1003163.g006

Figure 7. Parameters for three biological systems can be estimated from the Pareto front. Three examples of biological systems that can
be modeled by an integral feedback circuit agree with the model’s prediction. In all, the curve is the Pareto front in the case of a rare input change;
the point represents the specific values for each example. (a) in the heat Shock system (b) the DNA damage repair system of E. coli, and (c) in the
regulation system of the calcium in dairy cows. Values for heat shock and calcium systems were estimated independently and showed good
agreement with the theory. In the SOS DNA repair system (b) we fitted using the model the value of the basal input (u0) by knowing the time scale
(kt) and set-point (y0) of the system, which provides an estimate of the basal level of DNA damage in the absence of a DNA repair system. In all the
data sets the error bars represent different estimates of the values.
doi:10.1371/journal.pcbi.1003163.g007
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natural circuits should all fall on the same point in parameter

space, the point that maximizes the task performance (and

therefore maximizes fitness). Analyzing multi-task cases for

biological circuits is an interesting avenue for further research.

Analyzing the dynamical behavior of other common network

motifs in terms of multiple tasks, such as feedforward loops [3,4]

and autoregulation [72–74] would be fascinating as well.

Methods

Analytical solution for performance functions
In order to find the Pareto front we first calculate the

performance functions of effectiveness and economy normalizing

t to be 1:

P1 k,y0ð Þ~{
1

1zT

ð1

{T

y(t)2dt~
e{2k{1
� �

uf {u0

� �2

2k 1zTð Þ z

2 e{k{1
� �

y0 uf {u0

� �
k(1zT)

{y2
0

ð9Þ

P2 k,y0ð Þ~{
1

1zT

ð1

{T

x(t)2dt~
e{2k{1
� �

uf {u0

� �2

2k 1zTð Þ z

2 e{k{1
� �

uf {y0

� �
uf {u0

� �
k(1zT)

{
T u0{y0ð Þ2z uf {y0

� �2

1zT

ð10Þ

The relation between both performance functions is parabolic,

and given by:

P2{P1ð Þ2~{2 P1zP2ð Þu0
2{u0

4, ð11Þ

We searched in each of the performance functions for extremal

points, by solving for when the derivative of performance functions

according to k and y0 equal 0. Each point was then classified

either as a maximum or a saddle point depending on the value of

the determinant of the Hessian (matrix fo second derivatives). The

set of equations was solved numerically. For each performance

function, we find a critical value of T , called TCrit, at which

behavior changes qualitatively (Fig. 6). When TwTCrit one

maximum point is found, and when TvTCrit two maxima and

one saddle point are found.

Analytical solution for the Pareto front
The Pareto front is the locus of points at which contours of the

two performance functions are externally tangent, namely points

k,y0ð Þ at which

~++P1 k,y0ð Þ|~++P2 k,y0ð Þ~0: ð12Þ

In the two dimensional case this is equivalent to solvingT
a

b
le

1
.

Su
m

m
ar

y
o

f
th

e
d

at
a

u
se

d
to

co
m

p
ar

e
to

th
e

P
ar

e
to

fr
o

n
t

in
Fi

g
u

re
7

.

u
tð
Þ–

in
p

u
t

x
tðÞ

–
in

te
rn

a
l

v
a

ri
a

b
le

y
tðÞ

-
o

u
tp

u
t

U
n

it
s

o
f

y
tð
Þ,

x
tð
Þ

a
n

d
u

tðÞ
t

k
y

0
u

0

T
h

e
h

e
at

sh
o

ck
sy

st
e

m
o

f
E.

co
li

T
e

m
p

e
ra

tu
re

–
T

h
e

am
o

u
n

t
o

f
u

n
fo

ld
e

d
p

ro
te

in
s

th
e

sy
st

e
m

w
o

u
ld

h
av

e
in

th
e

h
yp

o
th

e
ti

ca
l

ca
se

o
f

h
av

in
g

n
o

h
e

at
sh

o
ck

sy
st

e
m

C
h

ap
e

ro
n

e
s

–
T

h
e

av
e

ra
g

e
am

o
u

n
t

o
f

u
n

fo
ld

e
d

p
ro

te
in

s
th

at
e

ac
h

u
n

it
o

f
ce

ll
m

ac
h

in
e

ry
fo

ld
s

in
it

s
lif

e
ti

m
e

U
n

fo
ld

e
d

p
ro

te
in

s
U

n
fo

ld
e

d
p

ro
te

in
s

1
h

ty
p

ic
al

g
e

n
e

ra
ti

o
n

ti
m

e
4

h
{

1
In

fe
rr

e
d

[3
9

]
6

0
,0

0
0

[3
9

]
2

0
0

,0
0

0
[4

7
]

C
al

ci
u

m
b

lo
o

d
co

n
ce

n
tr

at
io

n
in

d
ai

ry
co

w
s

Fl
u

x
o

f
ca

lc
iu

m
fo

r
m

ilk
p

ro
d

u
ct

io
n

Fl
u

x
o

f
ca

lc
iu

m
to

th
e

co
w

fr
o

m
b

o
n

e
an

d
in

te
st

in
e

Fl
u

x
o

f
ca

lc
iu

m
fo

r
vi

ta
l

o
rg

an
s

g
/d

ay
3

d
ay

s
[5

4
]

0
:6

6
d

a
y

{
1

[3
5

]
6
+

2
[5

5
]

1
8

[5
4

]

D
N

A
SO

S
R

e
p

ai
r

sy
st

e
m

A
m

o
u

n
t

o
f

D
N

A
d

am
ag

e
in

fl
ic

te
d

A
m

o
u

n
t

o
f

D
N

A
d

am
ag

e
fi

xe
d

b
y

th
e

sy
st

e
m

T
h

e
am

o
u

n
t

o
f

D
N

A
d

am
ag

e
re

m
ai

n
in

g
D

o
u

b
le

st
ra

n
d

e
d

b
re

ak
s

1
h

ty
p

ic
al

g
e

n
e

ra
ti

o
n

ti
m

e
0
:0

3
4

m
in

{
1
[3

8
,4

9
]

0
.1

7
[5

0
]

0
.4

4
-

Fi
tt

e
d

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
1

6
3

.t
0

0
1

Tradeoffs in Biological Homeostasis Systems

PLOS Computational Biology | www.ploscompbiol.org 11 August 2013 | Volume 9 | Issue 8 | e1003163



LP1 k,y0ð Þ
Lk

LP1 k,y0ð Þ
Ly0

LP2 k,y0ð Þ
Lk

LP2 k,y0ð Þ
Ly0

��������

��������
~0: ð13Þ

Externally tangent points must further fulfill

~++P1 k,y0ð Þ:~++P2 k,y0ð Þv0 ð14Þ

More tests are needed in case where the tangent contours

intersect at points away from the tangency point (this does not

occur for the case T=tww1).

We isolate y0 to obtain an expression for the Pareto front:

y0~
ek k{4ð Þz 8z4kð Þ{ 4z5kz2k2

� �
4 ek{1{kð ÞkT

uf z

ek{e{k 1z2kð Þ
4 ek{1{kð Þ u0

ð15Þ

The solution corresponds to externally-tangent contours only in

the region confined between the following contours in parameter

space:

y0~
e{k{1
� �

uf {u0

� �
k 1zTð Þ ,y0~

e{k{1
� �

uf {u0

� �
k 1zTð Þ z

uf zTu0

1zT
ð16Þ

When input changes are rare, T is large (T=tww1), and the

limiting Pareto front is

y0~
ek{e{k 1z2kð Þ

4 ek{1{kð Þ u0 ð17Þ

and is confined to the region between y0~0 and y0~u0. Equation

15 is confined entirely in this region.

Please note that the contours of the performance in the limiting

case of T~? are all parallel to the k-axes and to each other, and

thus their tangency points cannot be calculated. To calculate the

Pareto front in this limit, we calculated the front at finite T and

then took the limit T??.

If the equal-performance contours of the performance functions

are convex, the tangency point between them is on the Pareto

front. However, in the case of finite T , some of the contours are

not convex. This results in a region where contours intersect each

other and change their curvature before touching each other.

Hence, the resulting tangency points, that when looking locally

seem like external tangency points, are actually internal tangency

points. Such tangency point are dominated by other points in trait

space and are not Pareto optimal. This leads to a situation where

the above region that lies on the curve connecting the archetypes is

not Pareto optimal. We denoted such points by red dashed lines in

Fig. 6. [13].

Another section marked in Fig. 6 in cyan describes points that

lie on externally tangent contours, but the contours intersect each

other in a different region of the parameter space, resulting in a

dominance of points in the intersection region between the

contours over the tangency points. Such points are said to be

‘‘locally Pareto optimal’’, and the region were they lie is termed

‘‘local Pareto front’’..

In order to test our analytic results, we performed simulations

on a population of points evenly distributed in the parameter space

[75–78]. For each point we calculated the two performances, and

eliminated all the points that were dominated (outperformed in

both tasks) by another point. We added some noise to the

remaining points and repeated the comparison; we repeated this

cycle several times. This helped us to overcome the effects of finite

number of sampling points. The simulations were in excellent

accordance with the analytical results. (Fig. S4).

Model for calcium system
In the calcium system, the dynamics are somewhat different

than in the heat shock system. The sign of y (level of calcium in

blood) is negative, because when u rises (calcium demand) y gets

smaller and x (calcium flux into the blood cycle) restore the level of

y back to normal, resulting in the following model:

y(t)~x(t){u(t) ð18Þ

dx(t)

dt
~{k y tð Þ{y0ð Þ ð19Þ

The Pareto front for this model is identical to that of the model

above.

Supporting Information

Figure S1 The basic monotonic shape of the Pareto
front is robust to the value of the integrands’ power of
the two tasks. The gray line represent the original

{n,m} = {2,2} tasks used throughout the paper, the label above

each graph represent the power of the integrand of the economy

and effectiveness tasks n and m, respectively,

(TIF)

Figure S2 When taking both integrands’ powers togeth-
er toward infinity, the Pareto front converges. The Pareto

front for any n = m always begins from 0, u0ð Þ and reaches the

value in the graph as k goes to infinity.

(TIF)

Figure S3 The Pareto front for a case of nonlinear
integral feedback with no separation of time scales. We

extend the model in the main text by adding a time dependent

ODE for y tð Þ. In natural systems, the approximation that y tð Þ is

much faster than x tð Þ is reasonable. We also added nonlinearity in

which y tð Þ decay is multiplicative in x tð Þ, at rate a. This is a

reasonable model of damage repair systems in which the repair

proteins x tð Þ interact by mass action kinetics with the damage

y tð Þ. This results in
Lx

Lt
~kx tð Þ y tð Þ{y0ð Þ, Ly

Lt
~a u tð Þ{x tð Þy tð Þ½ �.

Performance contours are in red and blue. Black lines are lines

where performance contours are externally tangent. Green dots

are the Pareto front according to simulations (see Fig. 4s for

details). The qualitative conclusions of the main text remain valid:

Pareto front is a curve that connects the economy and efficiency

archetypes.

(TIF)

Figure S4 Simulations concur with the analytical re-
sults. Simulated data falls on the stable branches of the
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analytical solution for the Pareto front. Here,

u0~1, uf ~2, T~0:4, t~1, n~m~2 . Simulation used an initial

population of N~106 randomly and uniformly distributed points.

Points dominated in both tasks by other points were removed.

Surviving points were perturbed by small noise (+0:01), and the

process was repeated for 60 iterations, reducing the amplitude of

the noise gradually to (+0:0001). For comparison to Pareto

simulation approaches see [75–78].

(TIF)
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