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Abstract

Mechanism is a widely used concept in biology. In 2017, more than 10% of PubMed

abstracts used the term. Therefore, searching for and reasoning about mechanisms is fun-

damental to much of biomedical research, but until now there has been almost no computa-

tional infrastructure for this purpose. Recent work in the philosophy of science has explored

the central role that the search for mechanistic accounts of biological phenomena plays in

biomedical research, providing a conceptual basis for representing and analyzing biological

mechanism. The foundational categories for components of mechanisms—entities and

activities—guide the development of general, abstract types of biological mechanism parts.

Building on that analysis, we have developed a formal framework for describing and repre-

senting biological mechanism, MecCog, and applied it to describing mechanisms underlying

human genetic disease. Mechanisms are depicted using a graphical notation. Key features

are assignment of mechanism components to stages of biological organization and classes;

visual representation of uncertainty, ignorance, and ambiguity; and tight integration with lit-

erature sources. The MecCog framework facilitates analysis of many aspects of disease

mechanism, including the prioritization of future experiments, probing of gene−drug and

gene−environment interactions, identification of possible new drug targets, personalized

drug choice, analysis of nonlinear interactions between relevant genetic loci, and classifica-

tion of diseases based on mechanism.

Introduction

In the predatabase era, data were scattered throughout the literature, and many projects were

hampered by the difficulties of discovering and tabulating data. Databases have transformed

our ability to retrieve and work with this class of information. A similar, more severe problem

now exists for the retrieval and comprehension of biological facts: over a million papers on

biology are published each year, each recording details about biological systems. How can we
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extract, organize, and represent this knowledge to maximize its accessibility and utilization?

We address this problem using formal concepts of mechanism that have emerged from the

philosophy of biology [1].

Philosophers have characterized mechanisms in terms of entities and activities organized to

produce a phenomenon [1]. The central insight from that work is that, fundamentally, all

mechanisms are composed of activities between two or more entities. In biological systems,

these entities may be molecules, cells, or things at other levels of biological organization. The

activities result in altered entities. For example, an amino acid substitution in a protein entity

may result in an activity of a weaker intramolecular interaction, thus perturbing the protein’s

abundance; a protease entity may have the activity of cleaving the polypeptide backbone of

another protein entity, thus altering it; a cell entity may emit a cytokine that binds to a receptor

on another cell entity, thus altering the latter’s transcriptional profile. In the MecCog frame-

work, altered entities are termed substate perturbations (SSPs) and activities or groups of enti-

ties and activities, are termed mechanism modules (MMs). Biological mechanisms may be

described by a series of steps in which at each step the activity of an entity alters the state of

another entity. A key feature is the inclusion of specific activities that drive the changes from

step to step. This viewpoint—asking at each step of a mechanism what are the entities and

activities—guides and constrains the search for a mechanism’s salient features.

In contrast to biological pathway representations (e.g., Kyoto Encyclopedia of Genes and

Genomes [KEGG; 2], Reactome [3], WikiPathways [4]), which describe relationships between

system components, MecCog is built around the productive MMs that drive system changes.

MecCog focuses on the perturbations of biological systems that lead to a disease outcome,

rather than the extensive systems’ description used in Aetionomy [5], the Parkinson’s Disease

Map [6], and the Systems Biology Markup Language (SBML) pathway project Payao [7]. Mec-

Cog makes a clear distinction between MMs and biological entities, in contrast to other emerg-

ing mechanism-oriented representation projects such as Noctua (http://noctua.berkeleybop.

org/). MecCog’s causal chain-related approach is shared by the Collaborative Adverse Out-

come Pathway Wiki (AOP-Wiki) [8] initiative, a crowdsourced representation of toxicology

pathways that integrates perturbed entity information from molecular to cellular to organ bio-

logical scales, although AOP does not explicitly represent mechanism. MecCog extends repre-

sentation of evidence for mechanism components such as that provided by the Evidence and

Conclusion Ontology (ECO) [9] to include levels of confidence in mechanism components,

ambiguities in mechanism schemas, and different types of ignorance.

MecCog focuses on the relationship between genetic variation and disease phenotypes but

also includes mechanisms arising from a drug intervention or an environmental change. Mec-

Cog can be used to represent all types of human disease with a genetic component, including

rare monogenic disease, cancer, and common complex-trait disease. In most respects, the

requirements for building a mechanism schema are the same across these disease types, and so

only a single disease mechanism framework is required. In common with most pathway and

disease mechanism representations, MecCog schemas are compiled manually. To this end, the

infrastructure has been designed to maximize ease of input and evidence recording.

Representation of disease mechanism

Each disease mechanism schema begins with a genetic variant, a drug intervention, or an envi-

ronmental change. Here, we focus on genetic perturbations. For monogenic diseases these are

mutations that have been shown to be causative (i.e., are “pathogenic”); for cancer, driver

mutations; and for complex trait disease, SNPs associated with a disease phenotype, typically

derived from a genome-wide association study (GWAS) [10].
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For all types of disease, each such situation signals the presence of a biological mechanism

linking the perturbation at the DNA stage (e.g., an altered base) to a perturbation at the dis-

ease-phenotype stage (e.g., altered disease risk) (Fig 1).

Multiple mechanism steps link a genetic variant and a disease phenotype. Each step in the

mechanism schema consists of a triplet of an input SSP, an MM, and an output substate per-

turbation (SSP-MM-SSP) (Fig 2)—a special case of a subject-predicate-object triplet, where

the predicate is an active verb. The output SSP of a step forms the input SSP to the next step.

Possible and existing sites of drug intervention are depicted by octagons and environmental

changes by a cloud symbol.

Schema steps and stages

The MM in a step describes the activity or mechanism (composed of entities and activities) by

which the input SSP produces the output SSP. For example, an amino acid substitution in a

protein (an SSP) may result in lower abundance of protein complex (a resulting SSP) through

the MM of weaker interactions (the activity) between the two proteins (the entities). Each per-

turbation occurs at one of a small number of organizational stages: DNA, RNA, Protein, Mac-

romolecular complex, Organelle, Cell, Tissue, Organ, or Organism phenotype. For example, a

DNA variant may result in a lower transcription rate for a gene resulting in less messenger

RNA, in turn resulting in less protein product, and as a consequence less of a protein complex

involved in signaling the presence of bacteria, resulting in an altered immune cell response,

and so on. There may be more than one step in a given stage (e.g., multiple protein perturba-

tion steps) or no steps at a specific stage (e.g., an RNA molecule directly affects a cell state,

without the involvement of a protein). The schema formalism permits telescoping of sets of

steps into a single MM, so that well-established submechanisms need not be spelled out in

detail—e.g., “protein synthesis”—again increasing focus on the disease-related perturbations.

Fig 1. Disease mechanism. Every relationship between the presence of a genetic perturbation and a disease phenotype

signals the presence of an underlying mechanism. Without further information, that mechanism is unknown—a

“black box.” GWAS, genome-wide association study; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pcbi.1006540.g001

Fig 2. Mechanism schema steps. A mechanism schema consists of a series of steps. Each step has an input SSP, an

MM, and an output SSP. MM, mechanism module; SSP, substate perturbation.

https://doi.org/10.1371/journal.pcbi.1006540.g002
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Mechanism component classes

At each stage there is a small number of likely classes of perturbation. For example, at the

DNA stage, there are four perturbation classes: single nucleotide variant (SNV), insertion or

deletion (IN/DEL), copy number variation (CNV), and chromosomal rearrangement. Simi-

larly, within a stage or between a pair of stages, there are a small number of likely MM classes.

For example, a perturbation at the RNA stage may lead to the next perturbation through one

of five MMs: altered intra-RNA interactions, altered RNA/RNA interactions, altered RNA/

protein interactions, altered RNA/splicing factor interactions, and altered RNA editing.

Where possible, class names are taken from existing ontologies, currently gene ontology (GO)

[11], Sequence Ontology [12], Variation Ontology [13], National Cancer Institute Thesaurus

(NCIT) [14], and Medical Subject Headings (MeSH) [15], with the addition of the modifiers

“increased,” “decreased,” “no,” “altered,” “sooner,” and “later.” The delineation of a set of orga-

nization stages in a mechanism and the classes of possible mechanism components at each

stage is a powerful aid to schema construction.

Representation of ignorance, uncertainty, and evidence

A key feature is the representation of ignorance, alternatives, ambiguities, and uncertainty,

linked to supporting evidence (Fig 3). Unknown mechanisms linking two SSPs are depicted as

black MMs. Where there is uncertainty as to whether such a link exists, the black MM contains

a question mark. Ambiguities or alternatives in a schema are shown as AND, OR, or AND/OR

branches, and the level of uncertainty is color coded.

For each symbol, pop-up boxes give access to more detailed information and link to fuller

entries that provide a brief commentary on the mechanism feature, a summary of the evidence

and the evidence sources, links to the relevant literature and data, and a confidence value (1 to

5). These conventions are consistent with but extend beyond the emerging confidence infor-

mation ontology [16], particularly in the use of branching within the schema to represent

“and/or” uncertainty and the explicit representation of mechanism ignorance.

Disease mechanism graphs

For complex trait disease and for cancer, multiple genetic perturbations at multiple loci con-

tribute to a disease, and each such relationship is represented by a mechanism schema. For a

particular disease, there are also schemas representing how each drug affects disease pheno-

types. There may also be schemas for environmental effects. For example, in Crohn disease,

there are contributions to disease risk and other disease-related phenotypes from variations in

microbiome composition [17]. Schemas for different loci may have SSP in common; for

Fig 3. Representation of ignorance, ambiguity, and uncertainty. Unknown mechanism components are represented

by black ovals; ambiguity by branching in the schema; and uncertainty of evidence by element color (green for high

confidence, orange for medium confidence, and red for low confidence). Blue octagons represent sites of possible

therapeutic intervention. MM, mechanism module; SSP, substate perturbation.

https://doi.org/10.1371/journal.pcbi.1006540.g003
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example, the “innate immune response” SSP in the MSP locus schema (see below) is shared by

multiple other loci, such as NOD2 [18] and ATG16L1 [19]. Thus, the full set of schemas for a

disease form a disease-mechanism graph. As discussed below, these graphs enable a number of

applications.

Expert sourcing

Eventually, we anticipate that mechanism schemas will be populated directly from mining the

literature and by identification of subject-object-predicate triplets corresponding to the

SSP-MM-SSP triplets of schemas. The current state of the art for this kind of text mining, as

reflected by objective testing in the BioCreative community challenges [20], is such that this is

not yet practical. Therefore, we have optimized the MecCog resource for human interaction,

with an intuitive graphical language, and extensive tools to facilitate construction, including

pull-down menus of possible classes for each mechanism stage.

Evaluation of content quality

Three primary means of evaluating and improving schema quality are used: (i) schema cura-

tors: each schema is assigned a curator, with responsibility for reviewing content and soliciting

additional input if needed. (ii) When possible, schemas are built by two independent contribu-

tors, and the results are compared for consistency. (iii) Registered users are encouraged to

comment on schema content, completeness, and accuracy.

Computational infrastructure

MecCog is implemented on Node.js, a JavaScript runtime built on Chrome’s V8 JavaScript

engine. Node.js uses an event-driven nonblocking input/output (I/O) model and thus is light-

weight and efficient. The web application is built using Sails.js, which provides a web framework

to build custom enterprise-grade Node.js applications. Sails also has an object-relational map-

ping (ORM), Waterline, providing a simple data access layer for different types of backend data-

base. The MecCog implementation uses the MySQL relational database management system to

store data on users and mechanism schemas. All the database transactions use representational

state transfer application programming interfaces (REST APIs) and are secured by the cross-site

request forgery (CSRF) protection feature in Sails. The interface to build, edit, and view mecha-

nism schemas is powered by the Rappid Diagramming Framework (https://www.jointjs.com/),

written in JavaScript. Rappid’s feature of communicating with databases via Asynchronus Java-

Script and XML (AJAX) and JavaScript Object Notation (JSON) makes it compatible with the

database access layer provided by Waterline in Sails.js. The aesthetics of the website is supported

by the open-source front-end library Bootstrap.js. As the project progresses, all mechanism

schemas will be encoded by the network modeling language—Biological Expression Language

(BEL, http://openbel.org)—in order to represent the schemas in a computable form.

Example mechanism schema for a complex trait disease locus

As noted earlier, the mechanism schema framework can be used to describe and analyze the

relationship between genetic variation and disease phenotypes for all types of genetic disease.

Examples are available on the MecCog website (www.meccog.org). Here, we describe one case

of a locus implicated in risk of a complex trait disease. GWASs have now revealed over 160

loci scattered throughout the genome where the presence of an SNP is associated with

increased risk of Crohn disease [21]. For some loci, the corresponding mechanisms have been

extensively studied, for example [18, 19]. For others, little or nothing is yet known. Fig 4 shows
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an example of a mechanism schema for a moderately well understood Crohn disease locus—

the relationship between the presence of a GWAS marker SNP (rs3197999) associated with

increased risk of the disease [22] via a mechanism affecting the activity of Macrophage Stimu-

lating Protein (MSP). The mechanism begins at the perturbed DNA substate (the presence of a

missense SNP), and then protein, protein−protein complex, cell signaling, inflammatory

response, and the gut wall steps to the final effect on disease risk.

This schema contains two unknown MMs (black ovals). For one of these, experiment has

shown a lower serum abundance of the MSP in the presence of the disease risk marker SNP,

but the mechanism for that is unknown (is it decreased expression, lower protein stability,

altered degradation properties, for instance). In the other, altered macrophage activation

results in an increased inflammatory response, but the exact mechanism is unclear. Confi-

dence in the schema steps varies—high (green), medium (orange), and low (red). There are

also two major mechanism ambiguities, represented by the two branched sections of the

schema. The first branching reflects the facts that one study [23] has reported that the presence

of mechanism SNP results in a weaker protein−protein interaction between MSP and a cell

surface receptor, RON (Macrophage-stimulating protein receptor), whereas another study

[24] reports that the SNP affects the level of MSP protein in serum but not the binding affinity

between MSP and RON. The two branches lead to the same outcome—a lower concentration

of the MSP-RON protein complex. The second branch in the schema (the parallel paths in the

right-hand segment) represents uncertainty as to whether the lower intracellular signaling

resulting from reduced abundance of the MSP-RON complex most affects macrophage activity

and, consequently, innate immunity, or whether it affects wound healing activities of epithelial

cells, thus primarily altering barrier integrity, or both.

Many schemas, for example, that of variants in NOD2 [18] (accessible on the MecCog site), are

substantially more complicated. All schemas examined exhibit knowledge gaps and ambiguities.

Applications of disease mechanism schemas

In addition to providing an integrative framework for describing what is and is not known about

a disease mechanism, the schemas have a number of further applications, described below.

Fig 4. A disease mechanism schema, relating the presence of a missense SNP in MSP to increased risk of Crohn disease. HET, heterozygous; HOM, homozygous;

MSP, macrophage-stimulating protein; SNV, single nucleotide variant.

https://doi.org/10.1371/journal.pcbi.1006540.g004
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Prioritizing future experiments

Identification of gaps and uncertainty in knowledge allows a more objective evaluation of

which experiments are most critical. For example, of the two major ambiguities in the MSP

schema, the first—whether the mechanism SNP results in less MSP protein or a weaker

MSP-RON complex or both—has no major implications for the disease mechanism because

subsequent steps in the schema are unaffected. But the second ambiguity—whether it is innate

immune cell activation or wound healing, or both, that is affected—is important for under-

standing how this risk factor fits into the overall picture of the disease and suggests that further

experiments to resolve the ambiguity are warranted.

Identifying possible new sites of therapeutic intervention

Schemas also allow identification of potential sites of therapeutic intervention. For example, in

spite of the uncertainties and ambiguities in the MSP schema, the central role of the MSP-RON

complex is clear, and that suggests a possible therapeutic intervention: an appropriate com-

pound (a conventional small-molecule drug or an antibody) that bridges the structural inter-

face between RON and MSP [23] could restore wild-type signaling strength. Of course, there

are many reasons why this may turn out not to be a useful target, but the mechanism schemas

do provide a means of systematically identifying such possibilities.

Epistatic (nonadditive) effects

Nonadditive contributions from pairs or higher-order combinations of variants contributing

to complex trait disease are widely expected to play a major role in disease mechanisms [25].

In cancer, identification of such interactions has provided the basis of a treatment strategy

[26], and a similar strategy may be possible for complex-trait disease if the interactions can be

found. In principle, GWAS data can be analyzed to discover nonadditive relationships between

genetic variants. In practice, the large number of possible combinations drowns any potential

signal (a study looking at N variants implies N2 statistical tests), and very large studies will be

needed to overcome that. The mechanism graph for a disease, formed by combining all rele-

vant schemas, facilitates the generation of specific hypotheses that can be tested against GWAS

data with minimal multitesting issues. For example, in Crohn disease, the combined graph for

loci relevant to bacterial penetration of the gut-lining mucosal layer emphasizes a number of

possible nonlinear effects between mucin gene variants affecting mucosal-layer integrity [27]

(MUC1, MUC2), variants affecting the unfolded protein response [28] (XBP1, ORMDL3), and

variants affecting autophagy [29] (NOD2, ATG16L1, LRRK2, IRGM).

Precision medicine

For complex trait diseases and for cancer, each affected individual has contributing variants

that affect only a subset of disease-mechanism-related genes. For instance, an individual diag-

nosed with Crohn disease typically has no risk alleles in about a third of the relevant loci [30].

Therefore, for each patient, only part of the full disease-mechanism graph is relevant, and the

extent and nature of the overlap of that subgraph with the schemas for available drugs provides

a potential means of prioritizing drug choice. For example, an antisense inhibitor of SMAD7
expression, Mongersen, is an effective treatment for about 65% of Crohn patients [31]. Mon-

gersen acts by modulating a negative feedback loop by which SMAD7 reduces the anti-inflam-

matory response to TGFβ1 [31]. The mechanism schema for this drug suggests that the

effectiveness of Mongersen is modulated by Crohn-associated SNPs in the Toll-like receptor 4

(TLR4) and αvβ8 integrin loci, as well as the more obvious relationship to the SMAD7 marker
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SNP. In principle, association studies of the relationship between drug efficacy and marker

SNPs can also provide this information, for instance [32], but because of the large number of

possible associations that must be tested, there are often insufficient data to provide robust

associations (e.g., [33]). Restricting tests of statistical significance to drug/variant hypotheses

generated by schema analysis offers a means of mitigating multitesting correction effects, thus

increasing the power of the association studies.

Disease classification

Historically, diseases have been classified on a number of criteria: the location of the disease

(anatomical), the cause of the disease (etiology), or the symptoms of the disease [34]. The dis-

ease ontology [35] utilizes these criteria as well as others. It has also been proposed that a dis-

ease taxonomy should be based on molecular mechanisms [36] so that patient subgroups can

be characterized by their shared molecular etiology. The set of classes for each stage of mecha-

nism schemas provides a basis for a mechanism-based comparison of genetic diseases. For

example, which disease mechanisms involve lower abundance of a protein? Where that occurs,

is it produced by lower expression, shorter half-life, or impaired folding? Where the latter is

the case, is it mediated by altered ubiquitination rate? Which disease mechanisms include

altered protein-protein interactions, which include altered cell-cell signaling, and so on. In

addition to providing increased insight into the mechanistic basis of disease, this classification

may also help delineate therapeutic strategies that may be applicable in each case.
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