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Abstract: Background: Accurate outcome prediction is of great clinical significance in customizing
personalized treatment plans, reducing the situation of poor recovery, and objectively and accurately
evaluating the treatment effect. This study intended to evaluate the performance of clinical text infor-
mation (CTI), radiomics features, and survival features (SurvF) for predicting functional outcomes of
patients with ischemic stroke. Methods: SurvF was constructed based on CTI and mRS radiomics
features (mRSRF) to improve the prediction of the functional outcome in 3 months (90-day mRS). Ten
machine learning models predicted functional outcomes in three situations (2-category, 4-category,
and 7-category) using seven feature groups constructed by CTI, mRSRF, and SurvF. Results: For
2-category, ALL (CTI + mRSRF+ SurvF) performed best, with an mAUC of 0.884, mAcc of 0.864,
mPre of 0.877, mF1 of 0.86, and mRecall of 0.864. For 4-category, ALL also achieved the best mAuc
of 0.787, while CTI + SurvF achieved the best score with mAcc = 0.611, mPre = 0.622, mF1 = 0.595,
and mRe-call = 0.611. For 7-category, CTI + SurvF performed best, with an mAuc of 0.788, mPre of
0.519, mAcc of 0.529, mF1 of 0.495, and mRecall of 0.47. Conclusions: The above results indicate that
mRSRF + CTI can accurately predict functional outcomes in ischemic stroke patients with proper
machine learning models. Moreover, combining SurvF will improve the prediction effect compared
with the original features. However, limited by the small sample size, further validation on larger
and more varied datasets is necessary.

Keywords: ischemic stroke outcome; clinical text information; radiomics features; survival features;
machine learning

1. Introduction

Ischemic stroke is the primary reason for disability and the second leading cause of
death worldwide [1]. Acute ischemia is caused by a sudden occlusion of the arteries in
the brain [2], leading to a penumbra or core infarct in the brain tissue [3]. Thus, surviving
patients are usually accompanied by varying neurological deficits, resulting in impaired
living quality and burdened families and society.
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The primary treatments to salvage damaged tissue are thrombolysis and mechanical
thrombectomy [4]. Appropriate therapeutic strategies will bring the optimal treatment
effect and functional recovery; however, there may be certain risks in the treatment pro-
cess [5]. Therefore, the risks of suffering from poor prognosis are as crucial as the expected
therapeutic effect in designing treatment plans. If the therapeutic effects and outcomes
under different treatments can be predicted before the treatment, the outcome risks will
be effectively reduced. Accurate outcome prediction will assist physicians in customizing
personalized treatment plans, reducing the situation of poor recovery, and objectively and
accurately evaluating the treatment effect [6]. However, patients always display hetero-
geneity and uncertainty of the treatment benefit. Therefore, selecting patients who will
benefit from thrombolysis treatment during the decision-making process is challenging.

Clinically, physicians usually evaluate stroke outcomes based on their experience,
which requires superb professional skills and rich clinical experience. However, due to
limitations affecting the varying professional levels, it is difficult to ensure a high prediction
accuracy, which influences the selection of treatment methods and the management of
rehabilitation plans. Therefore, many scholars and companies are gradually focusing on
researching and developing objective and accurate outcome prediction tools [7,8]. However,
it is difficult to meet clinical needs due to prediction accuracy. The main reason is that
clinical text information (CTI) and imaging information have not been effectively combined
to improve prediction accuracy [9].

Several studies have shown that stroke outcomes correlate with CTI and stroke pa-
rameters computed from images. Lea-Pereira et al. [10] predicted mortality risk scores
during admission for ischemic stroke with CTI such as age, sex, readmission, and neuro-
logical symptoms, and an AUC of 0.742 was obtained with a logistic regression model.
Ref. [11] concluded the correlation between basic patient information in CTI and long-
term stroke recurrence. Xie et al. [12] used patient information (age and gender), clinical
scores (ASPECT, NIHSS, HMACS, NASCET, and TIMI) obtained from multimodal im-
ages (CT, CTP, and CTA), and volumes of lesion tissue obtained from CTP to predict the
modified Rankin score (mRS) in three months. A maximum AUC of 0.873 was achieved.
Moreover, Brugnara et al. [13] combined additional location information for lesions, hy-
pertension, diabetes, dizziness, and physical symptoms and achieved a similar AUC of
0.856. Alaka et al. [14] adopted machine learning models to select prominent features from
CTI for outcome prediction, and the highest AUC was 0.71. Furthermore, some scholars
have carried out relevant studies with medical images to explore the relationship between
outcomes and neuroimaging. Osama et al. [15] applied the parallel multiparametric feature
embedded Siamese network (PMFE-SN) to perform multiclassification prediction using
CBF, CBV, TTP, Tmax, and MTT in the ISLES 2017 datasets [16]. This method obtained
an ACC of 0.64. Choi et al. [17] predicted mRS using three different models (convolu-
tional neural network, logistic regression, and the integration of both) with the ISLES 2016
datasets and obtained a mean absolute error of 1.37 ± 1.00, 1.26 ± 0.81, and 1.10 ± 0.70,
respectively. In addition, some scholars have performed outcome prediction based on
other types of information. For example, Ref. [18] used the neutrophil–lymphocyte ratio to
predict mRS and achieved an AUC of 0.88. Although clinical variables have consistently
been associated with outcomes after ischemic stroke, the usefulness of neuroimaging in
predicting outcomes has not been definitively established [9].

Imaging information is crucial for predicting ischemic stroke outcomes. For imaging
feature extraction, radiomics is an innovative method to quantify high-dimensional features
from medical images. At present, radiomics is widely used in cancer and tumors and has
achieved excellent results. For example, it is used to investigate tumor heterogeneity [19,20]
and in clinical decision support systems to improve treatment decision making and acceler-
ate advancements of clinical decision support systems in cancer medicine [21–26]. However,
in the field of stroke, only a few studies have explored the role of radiomics in diagnosing
ischemic stroke [27], penumbra-based prognosis assessment [28], and functional predic-
tion [29]. For example, Tang et al. [28] used a Lasso model to achieve multiclassification



Diagnostics 2022, 12, 1664 3 of 23

prediction with a maximum AUC of 0.77 by using radiomics features extracted from infarct
and penumbra in CBF and ADC. Although previous researchers have verified the criti-
cal value of DSC-PWI perfusion sequences in stroke diseases, few studies have explored
the relationship between DSC-PWI imaging characteristics in the temporal dimension
and prognosis. However, the correlation between this information and functional recov-
ery is worth further exploration due to sufficient blood flow information. Furthermore,
other information, such as electroencephalography [30] and brainstem auditory evoked
potential [31], has been used to predict neurological recovery in stroke patients.

Based on previous research, there are still some deficiencies in predicting stroke outcomes:

(A) Accurate multilevel prediction methods are expected. Most proposed risk prediction
models only perform prediction of two situations, good outcome (mRS ≤ 2) and
poor outcome (mRS > 2). Compared with the prediction of two situations, multilevel
prediction of outcomes scores (mRS ranging from 0 to 6) will undoubtedly provide
more targeted assistance to the clinic, such as formulating appropriate therapeutic
strategies and predicting the achieved recovery.

(B) The value of CTI and image features in prognostic prediction needs to be further
explored. Previous studies used CTI from clinical records or image information from
medical images to predict patient recovery. However, it is difficult to fully express
patients’ overall state and disease development tendency using single-dimensional
information. Therefore, exploring the combined role of CTI and imaging information
in stroke prognosis is necessary. In addition, it is also of great significance in develop-
ing powerful features associated with functional recovery generated by the fusion of
the two.

(C) An analysis method based on cerebral blood flow dynamic characteristics is also
lacking. Previous studies used CBF, CBV, Tmax, MTT, and TTP images computed
from perfusion sequence for outcome prediction. However, these images could only
obtain static parameters, making it difficult to reflect the dynamic information in
blood flow transmission. Moreover, missing information may be precisely hidden in
the perfusion sequence. Therefore, an analysis method should be proposed based on
cerebral blood flow dynamic characteristics.

This study provides a prediction method of stroke outcome to make up for the above
deficiencies. Detailed outcome scores were predicted by combining CTI and dynamic blood
flow characteristics in DSC-PWI. It may provide a scientific research foundation and clinical
assistance for precision medicine.

2. Materials and Methods

Detailed materials and methods are introduced in the following subsections. The
methods in this study include: (1) preprocessing DSC-PWI datasets and making regions of
interest (ROIs), (2) calculating radiomics features, (3) selecting outstanding features and
selecting the excellent feature selection method, and (4) multidimensional feature fusion
and predicting ischemic stroke outcomes.

2.1. Materials

This retrospective study was approved by the Institutional Review Boards of Shanghai
Fourth People’s Hospital Affiliated to Tongji University School of Medicine and exempted
from informed consent. The datasets in our study were collected by the neurology de-
partment of Shanghai Fourth People’s Hospital Affiliated to Tongji University School of
Medicine, China, from 2013 to 2016. A total of 80 DSC-PWI images from 56 patients with
ischemic stroke were retrospectively reviewed and included. All patients were imaged
within 24 h of symptom onset, and 22 patients were screened at least twice during pretreat-
ment and post-treatment. The primary clinical information recorded as CTI includes the
age, sex, income NHISS, outcome NHISS, right limbs weakness, left limbs weakness, lisp
out, confusion, hypertension, diabetes, atrial fibrillation, and volumes of stroke lesions. The
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DSC-PWI image for each patient was scanned on a 1.5T MR scanner (Siemens, Germany),
and Table 1 shows the details.

Table 1. Patient information and scanning parameters of DSC-PWI datasets.

Patient Information Scanning Parameters of DSC-PWI Images

Numbers of patients 56 TE/TR 32/1590 ms
Datasets (sets) 80 Matrix 256 × 256

Numbers of Female (%) 15 (26.79%) FOV 230 × 230 mm2

Age (Mean ± Std) 71.362 ± 10.91 Thickness 5 mm
Volumes of lesions (Mean ± Std, mL) 95.583 ± 72.304 Number of measurements 50

Income NHISS (Mean ± Std) 9.919 ± 6.747 Spacing between slices 6.5 mm
Outcome NHISS (Mean ± Std) 6.275 ± 6.875 Pixel bandwidth 1347 Hz/pixel

Right limbs weakness (%) 38 (47.5%) Number of slices 20
Left limbs weakness (%) 36 (45%)

Lisp out (%) 59 (73.75%)
Confused (%) 10 (12.5%)

Hypertension (%) 59 (73.75%)
Diabetes (%) 26 (32.5%)

Atrial fibrillation (%) 28 (35%)
Intra-arterial thrombectomy (%) 22 (27.5%)

90-day mRS 2.525 ± 2.326

2.2. Methods

Figure 1 shows a flowchart of this study’s methods. Specifically, the proposed method
in this study includes four steps: preprocessing datasets and making ROIs, calculating
radiomics features, selecting outstanding features and excellent feature selection method,
multidimensional feature fusion, and predicting ischemic stroke outcomes. The following
process is a detailed description of the methods.



Diagnostics 2022, 12, 1664 5 of 23Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 23 
 

 

(a) Preprocessing datasets

(c) Selecting outstanding lesions features
 and feature selection method

Registration and 
smoothing

Making ROIs

Based on significance

Based on multi-strategy

Based on models

Deepsurv model

Outstanding lesions features and excellent 
feature selection method

Clinical text 
information

SurvF

Feature fusion

Learning models
SVM RF DT Ada NN

KNN LR DA GBDT
 90-day mRS (0-6)

NB

(b) Calculating radiomics features

(e) Predicting  ischemic stroke outcomes

mRS Radiomics 
features

(d) Multi-dimensional feature fusion

 
Figure 1. Flowchart of this study. (a) Process of the preprocessing of DSC-PWI datasets and making 
ROIs; (b) Calculating radiomics features, where the value of the feature is represented by color; (c–
e) The process of feature selection, feature fusion, and stroke outcome prediction. 

2.2.1. Preprocessing DSC-PWI Datasets and Making ROIs 
Preprocessing of datasets is intended to reduce noise and position deviation impacts. 

First, this study corrected DSC-PWI datasets for potential patient motion by registering 
all the volumes in the time series with the multiplicative intrinsic component optimization 
algorithm [31,32]. Then, data smoothing filtering was performed to decrease the noise 
interference generated by the equipment and other factors in the DSC-PWI images. In 
detail, the triple moving average filter was selected to smooth the data voxel-by-voxel 
with a 1 × 3 filtering kernel. As a result, in the DSC-PWI datasets, the intensity of each 
pixel in the time dimension formed a time–intensity sequence I(t), which was used in the 
subsequent analysis. 

In addition, the necessary condition for comparative analysis of normal and 
abnormal cerebral blood flow is to detect both locations accurately. This study used a fully 
automated Rapid Processing of Perfusion and Diffusion (RAPID) software (iSchemaView, 
Menlo Park, CA, USA) [33] to segment the lesion tissue (LT) of ischemic stroke with the 
condition of Tmax > 6 s [34]. In contrast with the LT, the non-lesion tissue in the 
symmetrical region of LT was defined as normal tissue (NT). Finally, 80 sets of ROIs for 
LT and NT were generated from the DSC-PWI datasets. 

Figure 1. Flowchart of this study. (a) Process of the preprocessing of DSC-PWI datasets and making
ROIs; (b) Calculating radiomics features, where the value of the feature is represented by color;
(c–e) The process of feature selection, feature fusion, and stroke outcome prediction.

2.2.1. Preprocessing DSC-PWI Datasets and Making ROIs

Preprocessing of datasets is intended to reduce noise and position deviation impacts.
First, this study corrected DSC-PWI datasets for potential patient motion by registering all
the volumes in the time series with the multiplicative intrinsic component optimization
algorithm [31,32]. Then, data smoothing filtering was performed to decrease the noise
interference generated by the equipment and other factors in the DSC-PWI images. In
detail, the triple moving average filter was selected to smooth the data voxel-by-voxel
with a 1 × 3 filtering kernel. As a result, in the DSC-PWI datasets, the intensity of each
pixel in the time dimension formed a time–intensity sequence I(t), which was used in the
subsequent analysis.

In addition, the necessary condition for comparative analysis of normal and abnormal
cerebral blood flow is to detect both locations accurately. This study used a fully automated
Rapid Processing of Perfusion and Diffusion (RAPID) software (iSchemaView, Menlo Park,
CA, USA) [33] to segment the lesion tissue (LT) of ischemic stroke with the condition of
Tmax >6 s [34]. In contrast with the LT, the non-lesion tissue in the symmetrical region of LT
was defined as normal tissue (NT). Finally, 80 sets of ROIs for LT and NT were generated
from the DSC-PWI datasets.
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2.2.2. Calculating Radiomics Features

Some studies [35–38] have shown that the time–intensity curve of LT in DSC-PWI
images with ischemic stroke has a much smaller brightness decrease than the curve of NT.
Therefore, the data of DSC-PWI in the time dimension are correlated with the blood flow
state of the brain tissue to a certain extent. This study used radiomics technology to com-
pute high-dimensional image features based on the LT ROIs and NT ROIs in the DSC-PWI
images. In detail, the DSC-PWI datasets are four-dimensional (4D) images composed of
N three-dimensional (3D) images with a size of S × H ×W, where N is the total number
of 3D images in the temporal dimension, and S, H, and W represent the slice, height, and
width of the 3D images, respectively. First, by decomposing the 4D images into N (50 in
this study) single 3D images, the radiomics features for 3D images could be computed sep-
arately at each time. Then, 65,800 radiomics features (50 3D images × 1316 features) could
be calculated from each DSC-PWI image. These radiomics features were divided into nine
groups: (1) Shape-based (Shape, 14 features × 50 = 700 features), (2) First-Order Statistics
(First-order, 18 features × 50 = 900 features), (3) Gray-Level Co-Occurrence Matrix (GLCM,
24 features × 50 = 1200 features), (4) Gray-Level Run-Length Matrix (GLRLM, 16 features
× 50 = 800 features), (5) Gray-Level Size-Zone Matrix (GLSZM, 16 features × 50 = 800 fea-
tures), (6) Neighboring Gray-Tone Difference Matrix (NGTDM, 5 features × 50 = 250 fea-
tures), (7) Gray-Level Dependence Matrix (GLDM, 14 features × 50 = 700 features), (8) Log-
Sigma (Log-Sigma, 465 features × 50 = 23,250 features), and (9) Wavelet-based (Wavelet,
744 features × 50 = 37,200 features). Radiomics feature calculation was automatically
performed using the PyRadiomics package implemented in Python [39,40]. In this study,
each 3D image in the DSC-PWI data was defined as S(n), n∈[0, 49], and the DSC-PWI
image was represented as set {S(0), S(1), . . . , S(49)}. Moreover, the calculated features
were renamed by connecting their original name and the n-value of the 3D image S(n).
For example, “log-sigma-1-0-mm-3D_firstorder_Skewness_17” represents the radiomics
feature “log-sigma-1-0-mm-3D_firstorder_Skewness” of S(17), which is the 17th 3D image
in DSC-PWI data, and this feature belongs to the Log-Sigma group.

2.2.3. Selecting Outstanding Lesions Features and Excellent Feature Selection Method

First, this study applied multilevel selection strategies to obtain outstanding temporal
features representing stroke lesions. Then, the optimal feature selection method was
determined based on the score of selected features on multiple learning models. Finally,
the selected method and lesion features were combined with CTI to predict ischemic
stroke outcomes.

(A) Selecting Significant Features

A t-test analysis was performed to screen the significant features between LT and NT.
First, a normalization operation was centered on the mean and scaled to unit variance
according to Equation (1).

F∗i = (Fi − Fi)/(Fimax − Fimin) (1)

where F∗i is the normalized feature of the ith feature Fi, and the variables Fi, Fimax, and Fimin
are the mean, maximum, and minimum of Fi, respectively.

Before the t-test analysis, a homogeneity of variance test was performed to detect
homogeneity of variance between the LT and NT features. When the feature had homo-
geneity of variance, the t-test was performed directly. However, if the feature did not have
homogeneity of variance, the parameter equal_val = False needed to be added during the
t-test analysis (seen in Figure 2). The homogeneity of variance test method used was the
Levene test. Finally, the significant features with values of p < 0.05 in the t-test analysis
remained to complete subsequent feature selection processing.
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(B) Selecting Feature Sets Based On Multiple Feature Selection Methods

Feature selection aims to find the most compelling feature representing the target
variable and compress the feature space. This study used 13 feature selection methods
based on diversity principles to select features from significant features. These 13 methods
perform feature extraction from mutual information, information entropy, cluster statistics,
sparse feature, linear relation, and other aspects, respectively (seen in Table 2). In detail,
the feature selection methods contain four types: the first type is based on theoretical
information (TI), including conditional mutual information maximization (CMIM), joint
mutual information (JMI), mutual information feature selection (MIFS), mutual informa-
tion maximization (MIM), and minimal redundancy maximum relevance (MRMR); the
second type is based on similarity features (SIF), including Fisher score (Fisher), Lap score
(LS), and ReliefF); the third type is based on statistical features (STF), including F-score
(FS) and T-score (TS); and the final type is based on steaming and sparse learning (SSL),
including multicluster feature selection (MCFS), Alpha investing (Alpha), and the least
absolute shrinkage and selection operator (Lasso). The above methods were introduced in
Refs. [41–46] and implemented in Python 3.6.

When performing feature selection, the target variables were defined as 0 and 1 to
represent NT and LT. Then, the 13 methods were applied to select the matched features
from the significant features. Moreover, during the implementation, while Lasso selected
features with coefficients more prominent than 0.02 to control the number of features within
the set maximum feature length of 20, the others obtained features whose score exceeded
0.9, and the total number was less than 20. Moreover, the features extracted from them were
regarded as feature set Fmethod, where method represents the name of the feature selection
method (CMIM, JMI, MIFS, MIM, MRMR, Fisher, LS, ReliefF, MCFS, Alpha, Lasso, FS, TS).
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Table 2. Descriptions of the 13 feature selection methods in this study.

Type Method Description Equation

FITI

MIM Evaluates features by correlation between features and classes measured by mutual information MIM( fi) = I( fi; C)

MIFS/MRMR Evaluates features by correlation between features and classes and redundancy among features

MIFS( fi) = I( fi; C)− β ∑
sj∈S

I( fi; fS)

MRMR( fi) = I( fi; C)− 1
S ∑

sj∈S
I( fi; fS)

JMI/CMIM Evaluates features by correlation between features and classes and redundancy among features
measured by conditional mutual information

JMI( fi) = I( fi; C)− 1
|S| ∑

sj∈S
[I( fi; C)− I( fi; C| fS) ]

CMIM( fi) = min
fs∈S

I( fi; C| fs)

SIF
Fisher/LS Compares features with their ratios of variance between classes and variance within classes Fisher(k) = R(k)

B

R(k)
w

LS( fi) =
∑
ab
( fra− frb)

2Wij

Var( fr)

ReliefF Compares features with correlation between features and classes computed from ability of features to
distinguish between close samples Relie f F( fi, R1, R2) = |R1(A)−R2(A)|

max(A)−min(A)

STF

FS Obtains feature score with ability to distinguish positive classes and negative classes computed by
average of both classes

FS(i) = ( f i
(+)− f i)

2
+( f i

(−)− f i)
2

1
n+−1

n+
∑

k=1
( fk,i

(+)− f i
(+)

)
2
+ 1

n−−1

n−
∑

k=1
( fk,i

(−)− f i
(−)

)
2

TS Computes feature score with average and variance of features TS(i) = ( f i
(+)− f i

(−)
)

1
n+−1

n+
∑

k=1
( fk,i

(+)− f i
(+)

)
2
+ 1

n−−1

n−
∑

k=1
( fk,i

(−)− f i
(−)

)
2

SSL

MCFS Combines cluster with feature coefficients of combinatorial classes to compute feature score MCFS(i) = max
k

∣∣ fk,i
∣∣

Alpha Evaluates features by dynamically adjusting threshold on error reduction to obtain selection results E(Ni)/E(Mi) < α∆/(1− α∆)

Lasso
Uses L1 regularization to make weight of some learned features equal 0, to achieve purpose of sparse
and feature selection Lasso(

∧
β) = arg min

 n
∑

i=1

(
yi − β0 −

p
∑

j=1
β jx∗ij

)2

+ λ
p
∑

j=0

∣∣∣β j

∣∣∣

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(C) Selecting Outstanding Lesion Features and the Best Feature Selection Method

Given that the same features may perform differently on various models, this study
applied ten supervised machine learning models to rank the 13 Fmethod to find the best
feature selection method. In detail, the composite score (CS) defined as Equation (2) was
applied to evaluate the classification ability and robustness. The CS was obtained from
five indexes, including the area under the curve score (Auc), accuracy (Acc), precision
(Pre), F1-score (F1), and Recall of the machine learning model. The CS of the feature set
was the average of the five indexes on the ten models. The ten machine learning models
include support vector machine (SVM), decision tree (DT), Adaboost classifier (Ada), neural
network (NN), random forest (RF), k-nearest neighbors (KNN), logistic regression (LR),
linear discriminant analysis (DA), gradient boosting classifier (GBDT), and GaussianNB
(NB) (seen in Table 3).

Table 3. Descriptions of the 10 models in this study.

No. Model Definition in Python 3.6

1 SVM sklearn.svm.SVC(kernel = ‘rbf’,probability = True)

2 DT sklearn.tree. DecisionTreeClassifier()

3 Ada sklearn.ensemble.AdaBoostClassifier()

4 NN sklearn.neural_network. MLPClassifier (hidden_layer_sizes = (400, 100),
alpha = 0.01, max_iter = 10000)

5 RF sklearn.ensemble.RandomForestClassifier(n_estimators = 200)

6 KNN sklearn.neighbors. sklearn.neighbors()

7 LR sklearn.linear_model.logisticRegressionCV(max_iter = 100,000,
solver = “liblinear”)

8 DA sklearn.discriminant_analysis.()

9 GBDT sklearn.ensemble.GradientBoostingClassifier()

10 NB sklearn.naive_bayes. GaussianNB()

This study used the 13 Fmethod to perform tenfold cross-validation on the ten learning
models for computing the Pre, Acc, Auc, F1, and Recall. Then, the average of the five
indexes on the ten learning models was defined as the CS. The CS value not only reflects
the average result of five tenfold cross-validation of each feature set on the same model
but also reflects the overall ability of the feature set on the ten models. Therefore, this
study defined the features extracted from the 13 methods as the outstanding lesion features.
Moreover, the method that extracts the feature set with the best CS was regarded as the
most prominent feature selection method (best_method).

CS(Fmethod) =
1

KM ∑
k,m

index(k, model(m, Fmethod)) (2)

where K and M are the total indexes and learning models, respectively. K = 5, M = 10,
k∈{Pre, Acc, Auc, F1, Recall}, m∈{SVM, DT, Ada, NN, RF, KNN, LR, DA, GBDT, NB}. index
(k, model(m, Fmethod)) represents the kth index of the mth model fitted by Fmethod.

Depending on the 13 Fmethod and ten models, 130 (13 × 10) classifiers were obtained.
These classifiers were defined by combining the learning machine model and the feature
selection method. For example, CSVM_MIM represents the classifier fitted by SVM and
feature sets FMIM.

2.2.4. Multidimensional Feature Fusion

After obtaining the 13 Fmethod that could characterize normal and abnormal tissues
in DSC-PWI images, this study used the established optimal feature selection method
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best_method to select mRS radiomics features (mRSRF) matching 90-day mRS. Furthermore,
based on CTI and mRSRF, survival features (SurvF) expressing patient survivability were
constructed by the Deepsurv model [47]. In detail, CTI and mRSRF can be nonlinearly fused
to obtain SurvF, which is the factor describing the 90-day mRS of patients (seen in Figure 3).
This study used the Deepsurv model to implement feature fusion. The feature “Age” in
CTI can be regarded as event time, while the ground truth “90-day mRS” represents the
observed event. The epoch was set as 4000, the batch size was 20, and the concordance
index (C-index) was used to evaluate the performance in training. The outputs were
normalized according to Equation (1) to reduce the difference in features. Then, SurvF,
CTI, and mRSRF were combined to obtain four types of fusion features, including CTI and
mRSRF (CTI + mRSRF), CTI and SurvF (CTI + SurvF), mRSRF and SurvF (mRSRF + SurvF),
and the fusion of ALL three (ALL). In this study, three groups of single features and four
fusion features constitute seven.
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Figure 3. Flowchart of multidimensional feature fusion.

Moreover, as seen in Table 4, to thoroughly verify the performance in various predict-
ing conditions, we designed 90-day mRS into three situations, namely, 7-category (mRS_7),
4-category (mRS_4), and 2-category (mRS_2). The 90-day mRS 0–6 in the 7-category were
scored by two experienced clinicians. The other two situations were assigned based on the
number of samples and the functional outcomes indicated by mRS. In general, a higher
90-day mRS means a poorer outcome. For example, 90-day mRS 0 represents no symptoms,
6 illustrates death, and 1–5 indicates mild to severe symptoms in the 7-categories [48].
Similarly, 90-day mRS 0, 1–2, 3–4, and 5–6 indicate no symptoms and mild, moderate, and
severe outcomes in the 4-category. Moreover, 90-day mRS 0–2 and 3–6 represent good and
poor outcomes in the 2-category, respectively.

Table 4. Distributions of 90-day mRS in the three situations.

90-Day mRS 0 1 2 3 4 5 6

7-category counts 25 11 9 4 8 9 14
4-category counts 25 20 12 23 - - -
2-category counts 45 35 - - - -
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2.2.5. Predicting Ischemic Stroke Outcome

This study used the ten machine learning models introduced in Section 2.2.3 to evalu-
ate the performance of features. The seven groups of features, including three single types
of features and four fusion features, were divided into training datasets and testing datasets
with a 7:3 ratio to predict ischemic stroke outcomes. Moreover, three experiments were
conducted depending on the 90-day mRS, and the Auc, Pre, Acc, F1, and Recall were the
five evaluation indexes.

3. Results

The results are provided in four sections, including extracted significant radiomics
features, selected outstanding features and best method, multidimensional fusion features,
and predicting stroke outcomes. The details are shown in the following.

3.1. Extracted Significant Radiomics Features

In the 65,800 features computed by radiomics technology, the features with p < 0.05 were
extracted with the t-test operation. As a result, 19,857 (30.2%) features with p = 0.009± 0.0135
were extracted from the original 65,800 features. In the 19,857 features, the radiomics
features in the Shape group disappeared since all the features in the Shape group were
insignificant (p > 0.05). After filtering the results of the other groups of radiomics features,
Wavelet and Log-Sigma contained the most significant features of 11,612 and 5551, respec-
tively, with p = 0.0091 ± 0.013 (mean ± std) and 0.01 ± 0.0138. The NGTDM group had
minor significant features of 139, with p = 0.009 ± 0.0107. As for the other groups, there
were 619, 555, 526, 436, and 419 features extracted from the GLCM, First-order, GLSZM,
GLRLM, and GLDM groups, with p = 0.006 ± 0.0014, 0.005 ± 0.0105, 0.0066 ± 0.0104,
0.0068 ± 0.0118, and 0.006 ± 0.0114 (seen in Figure 4 and Table 5).
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Table 5. Statistics of p-values of significant features in each radiomics group.

Groups Numbers Mean Std Min Medium Max

First-order 555 0.005 0.0105 <0.0001 <0.0001 0.0497
GLDM 419 0.006 0.0104 <0.0001 <0.0001 0.0497
GLCM 619 0.006 0.0114 <0.0001 <0.0001 0.0499
GLRLM 436 0.0068 0.0118 <0.0001 <0.0001 0.0498
GLSZM 526 0.0066 0.0104 <0.0001 <0.0001 0.0496
Log-Sigma 5551 0.01 0.0138 <0.0001 0.0027 0.05
NGTDM 139 0.009 0.0107 <0.0001 0.0063 0.0449
Wavelet 11612 0.0091 0.013 <0.0001 0.0022 0.05
Shape

3.2. Selected Outstanding Features from Multiple Feature Selection Methods

With the 13 feature selection methods, 128 outstanding features were selected and
renamed by combining the letter “F” and serial number from 1 to 128 (see Supplementary
Material). Of all the 128 features, there were 70 Wavelet features, 2 GLDM features,
16 GLCM features, 12 First-order features, and 28 Log-Sigma features.

In the methods based on TI (seen in Table 6), 64 excellent features with p = 0.009 ± 0.014
were selected, where CMIM, MIM, and JMI selected 20 features, and MRMR and MIFS
selected 18 features, respectively. Moreover, these five feature sets had high repeatability
and consistency. For SIF, 18 features were selected, where only four came from FFisher, and
FLS and FReliefF contributed 6 and 16 features, respectively. In contrast with FTI, the features
in FSIF had lower p-values. In the methods based on STF, 11 features were selected, which
is the lowest. These 11 features were all in FTS, and only six were included in FFS, with
p < 0.0001. In the methods based on SSL, there were 47 selected features. The three feature
sets (FMCFS, FLasso, and FAlpha) were scattered and independent. FMCFS screened 20 features
independent of FLasso and FAlpha, while FLasso and FAlpha shared a few.

Table 6. Statistics of extracted features from the 13 methods.

Type Method Counts of Features p-Value

TI

CMIM 20 0.004 ± 0.011
MIM 20 0.008 ± 0.015
JMI 20 0.014 ± 0.016

MRMR 18 0.009 ± 0.01
MIFS 18 0.006 ± 0.009

SIF
Fisher 4 <0.0001
ReliefF 12 <0.0001

LS 6 0.013 ± 0.018

STF
FS 7 <0.0001
TS 11 <0.0001

SSL
Alpha 11 0.006 ± 0.014
Lasso 16 <0.0001
MCFS 20 0.011 ± 0.012

3.3. Feature Sets Selected from Ten Models

Based on the tenfold cross-validation results of the ten models, the CS of the 13 Fmethod
could be computed. For the five indexes, the mean Acc (mAcc), mean Pre (mPre), mean
Auc (mAuc), mean F1 (mF1), and mean Recall (mRecall) of all feature sets are 0.849, 0.851,
0.893, 0.853, and 0.872, respectively. The mAcc of each feature set on the ten models ranges
from 0.71 to 0.933, while mPre, mAuc, mF1, and mRecall are from 0.706 to 0.946, from 0.768
to 0.982, from 0.724 to 0.959, and from 0.776 to 0.961. According to the average performance
of feature sets in the ten models, the minimum CS is 0.738, and the maximum is 0.964
(seen in Figure 5). Specifically, taking CS as a reference, the best is FLasso (CS = 0.964),
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and FAlpha achieves a comparable CS of 0.942. In contrast, FMRMR, FJMI, and FMIFS in FFI
perform relatively poorly, with CS at nearly 0.740. The other feature sets scores at different
levels, ranging from 0.798 to 0.938. As a result, the feature selection method Lasso is the
best_method due to having the best CS.
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3.4. Multidimensional Fusion Features

This section will introduce the obtained mRS radiomics features under the three
situations, the performance of Deepsurv models, and the stroke outcome prediction based
on the obtained seven groups of features.

3.4.1. Selected 90-Day mRS Radiomics Features from Fmethod and Generated
Survival Features

For the 90-day mRS (7-category, 4-category, and 2-category), 14, 14, and 15 features
with nonzero coefficients were extracted from 128 features in Fmethod by the Best_method
Lasso (seen in Figure 6a). Then, the combination of CTI and mRSRF was treated as input
to train the Deepsurv model, and SurvF could be obtained after training. The C-index of
the training model in the three situations is about 0.95 (seen in Figure 6b). The obtained
SurvF is relatively concentrated, and the Pearson correlation coefficient (r-value) and p-
value were computed and are shown in Figure 6c–e. According to the results, p > 0.05 for
SurvF in mRS_4 and mRS_2 and mRS_7. SurvF between the other situations is statistically
significant. Finally, seven feature groups were constructed by CTI, mRSRF, and SurvF for
each case.
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Figure 6. Selected mRSRF and statistics in mRS_2, mRS_4, and mRS_7. (a) mRSRF in three situations,
and green color represents selected items from 128 outstanding features in Fmethod. (b) Box plot
among the three groups of mRSRF. (c) C-index of the Deepsurv model in training. (d,e) Pearson
correlation coefficients and p-values among the three groups of mRSRF.

3.4.2. Performance of Predicting Ischemic Stroke Outcomes

This study evaluated the predicting performance of CTI, mRSRF, SurvF, and their
combination in the three classification situations. For mRS_2 (seen in Figure 7), the best Auc,
Pre, Acc, F1, and Recall are 0.949, 0.969, 0.964, 0.962, and 0.964, respectively. Depending on
the average of the five indexes on all the ten models, the performance of the seven feature
groups from high to low is ALL, CTI + SurvF, CTI, CTI + mRSRF, mRSRF + SurvF, mRSRF,
and SurvF. The combination of ALL achieves the highest mAUC of 0.884, mAcc of 0.864,
mPre of 0.877, mF1 of 0.86, and mRecall of 0.864. Moreover, for a single-index Auc, the
best score of mRSRF is 0.862, while for mRSRF + SurvF, it is 0.944. Similarly, CTI achieves
a score of 0.928, while CTI + SurvF achieves a better score of 0.949. For the other four
indexes, the seven groups show similar performance patterns such that adding SurvF will
improve the outcome prediction. Furthermore, the performance of CTI + mRSRF is not
stable. In detail, they are superior to CTI in models SVM, RF, NN, LR, NB, and GBDT, but
the opposite results were obtained in other models.
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Recall on the ten models. (f) ROC curves of seven feature groups on the RF model.

For mRS_4 (seen in Figure 8), the best Auc, Pre, Acc, F1, and Recall are 0.908, 0.858,
0.821, 0.802 and 0.815, respectively. ALL achieves the best mAuc of 0.787, while CTI + SurvF
performs best with mAcc = 0.611, mPre = 0.622, mF1 = 0.595, and mRecall = 0.611. The
results that SurvF will improve the outcome prediction and clinical performance better
than mRSRF are similar to their performance in mRs_2. Moreover, the combination of
CTI + mRSRF performs better than CTI in models LR, NB, and DA.

For mRS_7 (seen in Figure 9), the best Auc, Pre, Acc, F1, and Recall are 0.902, 0.821,
0.75, 0.739, and 0.739, respectively. From the mean of the five indexes, CTI + SurvF performs
best with mAuc of 0.788, mPre of 0.519, mAcc of 0.529, mF1 of 0.495, and mRecall of 0.47,
followed by CTI, ALL, CTI + mRSRF, SurvF, mRSRF + SurvF, and mRSRF. For a single-index
Auc, the best score of mRSRF is 0.644, while mRSRF + SurvF is 0.668. Similarly, CTI achieves
a score of 0.891, while CTI + SurvF achieves a better score of 0.902. CTI + mRSRF achieves
an Auc score of 0.843, and All achieves 0.889. The seven groups show similar performance
patterns in the other four indexes such that the additional SurvF will improve the outcome
prediction. In this experiment group, CTI performs better than CTI + mRSRF in all the
ten models.
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Figure 8. Performance of seven feature groups in the situation of mRS_4. (a–e) Auc, Pre, Acc, F1, 
and Recall on the ten models. (f) ROC curves of seven feature groups on the RF model. 

For mRS_7 (seen in Figure 9), the best Auc, Pre, Acc, F1, and Recall are 0.902, 0.821, 
0.75, 0.739, and 0.739, respectively. From the mean of the five indexes, CTI + SurvF 
performs best with mAuc of 0.788, mPre of 0.519, mAcc of 0.529, mF1 of 0.495, and mRecall 
of 0.47, followed by CTI, ALL, CTI + mRSRF, SurvF, mRSRF + SurvF, and mRSRF. For a 
single-index Auc, the best score of mRSRF is 0.644, while mRSRF + SurvF is 0.668. 
Similarly, CTI achieves a score of 0.891, while CTI + SurvF achieves a better score of 0.902. 
CTI + mRSRF achieves an Auc score of 0.843, and All achieves 0.889. The seven groups 
show similar performance patterns in the other four indexes such that the additional 
SurvF will improve the outcome prediction. In this experiment group, CTI performs better 
than CTI + mRSRF in all the ten models. 

Moreover, for the ten models, RF, LR, NN, Ada, and GBDT achieve better 
performance than the others in all three classification situations. Overall, RF performs 
relatively stable, achieving good scores in all three situations. Although the survival 
features SurvF can improve the prediction of stroke outcomes in the three situations 
(mRS_2, mRS_4, and mRS_7) to varying degrees, due to the limitation of the small sample 
size, it is necessary to verify the methods further. 

Figure 8. Performance of seven feature groups in the situation of mRS_4. (a–e) Auc, Pre, Acc, F1, and
Recall on the ten models. (f) ROC curves of seven feature groups on the RF model.
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Figure 9. Performance of seven feature groups in the situation of mRS_7. (a–e) Auc, Pre, Acc, F1, 
and Recall on the ten models. (f) ROC curves of seven feature groups on the RF model. 

4. Discussion 
Previous studies mainly used limited CTI or medical images to predict stroke 

outcome. Since radiomics technology can extract high-dimensional features from medical 
images, this study used multiple strategies to extract the outstanding temporal radiomics 
features of stroke lesions in DSC-PWI, used to extract the mRSRF influencing the 90-day 
mRS. Then, the ability of seven feature groups constructed by CTI, mRSRF, and nonlinear 
SurvF in the prognosis of ischemic stroke was examined by the ten learning models. Our 
analyses reveal that the performance of CTI is superior to mRSRF and SurvF. 
Furthermore, a direct combination of CTI and mRSRF can improve predictive 
performance on appropriate models, so model selection is needed. However, the 
nonlinear fusion feature SurvF improves when combined with other feature groups. For 
example, for mRS_2, mAuc increases from 0.874 to 0.88 when SurvF is combined with CTI. 
It increases from 0.872 to 0.884 when fused to CTI + mRSRF, and from 0.798 to 0.872 when 
fused to mRSRF. For mRS_4 and mRS_7, the same pattern can be obtained. With the 
survival features SurvF, this study could provide a potential clinical tool for detailed 
clinical predictions in ischemic stroke patients before treatment. 

Although the parameter Tmax obtained from DSC-PWI images has been commonly 
used to distinguish between LT and NT, few studies have explored the value of temporal 
features among DSC-PWI images in predicting stroke outcomes, leaving a gap in 
knowledge. It has been shown that the time–intensity curve of LT in the DSC-PWI images 
has a much smaller brightness decrease than the curve of NT [36–38]. Therefore, these 
temporal features are correlated with the blood flow state of brain tissues to a certain 
extent. This study successfully extracted outstanding radiomics features to represent LT 
and NT with multilevel feature selection methods. The time values of the selected 
outstanding features were mainly concentrated at the initial moment (0–3) and the time 
the contrast agent passed through (17–22). In contrast, a few features were located at the 
end of the reaction (time greater than 30) (seen in the Supplementary Material). The results 
show that the features extracted in this study can fully express the initial state of the brain 
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Recall on the ten models. (f) ROC curves of seven feature groups on the RF model.
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Moreover, for the ten models, RF, LR, NN, Ada, and GBDT achieve better performance
than the others in all three classification situations. Overall, RF performs relatively stable,
achieving good scores in all three situations. Although the survival features SurvF can
improve the prediction of stroke outcomes in the three situations (mRS_2, mRS_4, and
mRS_7) to varying degrees, due to the limitation of the small sample size, it is necessary to
verify the methods further.

4. Discussion

Previous studies mainly used limited CTI or medical images to predict stroke outcome.
Since radiomics technology can extract high-dimensional features from medical images,
this study used multiple strategies to extract the outstanding temporal radiomics features
of stroke lesions in DSC-PWI, used to extract the mRSRF influencing the 90-day mRS. Then,
the ability of seven feature groups constructed by CTI, mRSRF, and nonlinear SurvF in
the prognosis of ischemic stroke was examined by the ten learning models. Our analyses
reveal that the performance of CTI is superior to mRSRF and SurvF. Furthermore, a direct
combination of CTI and mRSRF can improve predictive performance on appropriate mod-
els, so model selection is needed. However, the nonlinear fusion feature SurvF improves
when combined with other feature groups. For example, for mRS_2, mAuc increases from
0.874 to 0.88 when SurvF is combined with CTI. It increases from 0.872 to 0.884 when
fused to CTI + mRSRF, and from 0.798 to 0.872 when fused to mRSRF. For mRS_4 and
mRS_7, the same pattern can be obtained. With the survival features SurvF, this study
could provide a potential clinical tool for detailed clinical predictions in ischemic stroke
patients before treatment.

Although the parameter Tmax obtained from DSC-PWI images has been commonly
used to distinguish between LT and NT, few studies have explored the value of temporal
features among DSC-PWI images in predicting stroke outcomes, leaving a gap in knowl-
edge. It has been shown that the time–intensity curve of LT in the DSC-PWI images has
a much smaller brightness decrease than the curve of NT [36–38]. Therefore, these temporal
features are correlated with the blood flow state of brain tissues to a certain extent. This
study successfully extracted outstanding radiomics features to represent LT and NT with
multilevel feature selection methods. The time values of the selected outstanding features
were mainly concentrated at the initial moment (0–3) and the time the contrast agent passed
through (17–22). In contrast, a few features were located at the end of the reaction (time
greater than 30) (seen in the Supplementary Material). The results show that the features
extracted in this study can fully express the initial state of the brain tissue, the degree
of the change, and the time of the change, which are the main features for identifying
abnormal blood flow in stroke patients. As a result, 128 features were selected, and their
CS ranged from 0.738 to 0.964. The best_method Lasso achieved mAcc = 0.958, mPre = 0.96,
mAuc = 0.982, mF1 = 0.959, and mRecall = 0.961 on the ten learning models. The current
results prove that with the radiomics technique, the essential temporal features of the
impaired tissues could be captured. It is challenging to estimate clinical outcomes only
by considering the radiomics features of lesions [29]. Multiple factors are associated with
the functional outcome, as well as the features of the lesion itself. Previous reports have
systematically assessed ischemic stroke over 3 months and concluded that age, prior stroke,
initial neurological deficit, NHISS, and lesion location are highly correlated with functional
outcome [12–14,49]. However, few studies have performed the prediction by combining all
these features. This study developed the research to compare the ability of CTI, mRSRF,
and CTI+mRSRF to predict 90-day mRS. The current results show that the performance
of combination features CTI + mRSRF is different among the ten models. For mRS_2 and
mRS_4, it is better than single-feature CTI and mRSRF in some models, such as LR, NB, etc.,
but it is slightly worse than CTI in other models. Therefore, model selection is necessary
when CTI + mRSRF is used to perform predictions in mRS_2 and mRS_4. Moreover, in the
case of mRS_7, single-feature CTI performs better than CTI + mRSRF in almost all the ten
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models. The difference in the results of mRS_7 may be due to the small sample size, which
requires follow-up verification.

Previous studies [50–52] have shown a close association between radiomics and sur-
vival in patients with tumors, chronic obstructive pulmonary disease, and cancers. The
patient outcome in this study is a manifestation of survival. Therefore, it is possible to
combine survival features with clinical information to verify the effect of survival fea-
tures on the prognosis prediction of stroke patients. Several studies have shown that the
complex and nonlinear features outputted from the Deepsurv model are superior in pre-
dicting personalized treatment recommendations compared to the state-of-the-art survival
method [47,53]. Thus, this study used the Deepsurv model to generate survival features
(SurvF) and verified its prediction ability by combining it with other features. The results
show that SurvF improves the predictive value compared with the situation without it.
By combining SurvF with CTI, the maximum increase of Auc is about 0.05 in the three
situations, mRS_2, mRS_4, and mRS_7. Moreover, when fusing SurvF with mRSRF, the
maximum increase of Auc is 0.08; when fusing SurvF with CTI + mRSRF, the maximum
increase of Auc is about 0.09. The above study and the current results prove that early
clinical information, the selected radiomics features, and the survival features can antici-
pate the clinical outcome. Although only a slight improvement, this study provides new
implications for the risk assessment of stroke prognosis and the prediction of functional
prognosis. In-depth research and improvement can be carried out on this basis. In addition,
the improvement in the mRS_2 is better than in mRS_4 and mRS_7, which may cause by the
small sample size. Due to the small samples, the number of samples under each category
will decrease when categories increase, leading to insufficient training. If there is enough
sample size in the future, we will verify them further.

Furthermore, we would like to discuss the outcome prediction ability of CTI, mRSRF,
and SurvF. For CTI and mRSRF, the information in CTI includes basic patient information,
symptoms, treatment strategies, clinical score, and lesion size. mRSRF includes the dynamic
blood flow state information extracted from the DSC-PWI image. When comparing CTI
and mRSRF separately, CTI performs better than mRSRF due to the comprehensive overall
features of the patient, while mRSRF is only a single image feature. This result has been
proved in previous research and this study. However, when combining CTI and mRSRF,
a linear or nonlinear relationship can be established between the clinical characteristics,
blood flow state features, and functional recovery of patients, which will improve the
outcome prediction. However, as shown in Figures 7–9, the prediction ability of the
combination of CTI and mRSRF is relatively unstable. Therefore, a new survival feature
SurvF generated from a widely used survival model Deepsurv is proposed. To some extent,
SurvF can represent the survival probability of patients under the condition of age based on
the CTI and mRSRF. Thus, the outcome prediction ability can be improved when the feature
SurvF, which can represent survivability, is added to CTI, mRSRF, and their combination.

There are some limitations of this study. First, the size of the datasets is relatively
small, and all data came from a single hospital, which may have led to biased results and
a lack of generalizability. To address the limitation, we segmented LT from the DSC-PWI
images and defined the normal tissue in the symmetrical areas of LT as NT. This way, one
group of LT and NT could be generated from one patient. The double samples (160) could
be obtained from 80 DSC-PWI images, and the positive and negative sample sizes were
equal. The expanded balanced samples will help select the accurate radiomics features and
reduce the sample imbalance. When evaluating the performance of the selected feature
sets, the tenfold cross-validation was performed to reduce the influence of sample size. In
addition, ten machine learning models were used to compute the composite scores (CS) to
obtain reliable results. Then, the most outstanding lesion radiomics features and the best
feature selection method could be selected. For CTI, mRSRF, SurvF, and their combination
in the ability of outcome prediction, limited by the small sample size, this study compared
the average results of five indicators, Auc, Pre, Acc, F1, and Recall, to obtain a relatively
fair result. Moreover, although the results showed that CTI + mRSRF and the fusion of
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SurvF with other features can improve the prediction value, further optimization of the
models can be regarded as one future work. Furthermore, although several methods in our
study were used to address the limitation listed, further verification is still needed. We will
validate our improved method with the larger and more varied datasets before applying it
to clinical trials in future work.

Finally, the results in this study do not mean that the models can be used alone for
stroke treatment decision making. Instead, this study should be considered a support tool
in stroke treatment guidance.

5. Conclusions

In conclusion, this study provides new insights into prognosis prediction in ischemic
stroke. First, the results indicate that the selected radiomics features from DSC-PWI
can accurately distinguish between normal and stroke tissues. Second, compared with
radiomics features of stroke lesions, the clinical text information could better predict the
neurological recovery of stroke patients. However, combining radiomics features and
clinical text information can improve predictive performance on appropriate models, so
model selection is needed. Moreover, the additional survival features generated from
clinical text features and radiomics features will improve the prediction effect compared
with the original features. This study could provide a potential clinical tool for detailed
clinical predictions in ischemic stroke patients before treatment. However, limited by the
small sample size, further validation on the larger and more varied datasets is necessary.
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Abbreviations

ASPECTS Alberta Stroke Program Early CT Score
NIHSS National Institute of Health stroke scale
NASCET North American Symptomatic Carotid Endarterectomy Trial
TIMI Thrombolysis in myocardial infarction
CT Computed tomography
CTP Computed tomography perfusion
CTA Computed tomography angiography
DSC-PWI Dynamic susceptibility contrast perfusion weighted imaging
CBF Cerebral blood flow
CBV Cerebral blood volume
Tmax Time to maximum plasma concentration
MTT Mean transit time
TTP Time to peak
CTI Clinical text information
mRS Modified Rankin score
LT Lesion tissue
NT Normal tissue
TI Theoretical information
SIF Similarity features
STF Statistical features
SSL Steaming and sparse learning
CMIM Conditional mutual information maximization
JMI Joint mutual information
MIFS Mutual information feature selection
MIM Mutual information maximization
MRMR Minimal redundancy maximum relevance
Fisher Fisher score
LS Lap score
FS F-score
TS T-score
MCFS Multicluster feature selection
Alpha Alpha investing
Lasso Least absolute shrinkage and selection operator
SVM Support vector machines
DT Decision tree
Ada Adaboost classifier
NN Neural network
RF Random forest
KNN K-nearest neighbors
LR Logistic regression
DA Linear discriminant analysis
GBDT Gradient boosting classifier
NB GaussianNB
mRSRF mRS radiomics features
SurvF Survival features
C-index Concordance index
mRS_7 7-category in 90-day mRS
mRS_4 4-category in 90-day mRS
mRS_2 2-category in 90-day mRS
mAcc Mean accuracy
mPre Mean precision
mF1 Mean F1
mRecall Mean Recall
mAuc Mean area under the curve score
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