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Abstract: Marine sponges continue to attract remarkable attention as one of the richest pools of bioac-
tive metabolites in the marine environment. The genus Smenospongia (order Dictyoceratida, family
Thorectidae) sponges can produce diverse classes of metabolites with unique and unusual chemical
skeletons, including terpenoids (sesqui-, di-, and sesterterpenoids), indole alkaloids, aplysinopsins,
bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, naphthoquinones, and polyketides
that possessed diversified bioactivities. This review provided an overview of the reported metabolites
from Smenospongia sponges, including their biosynthesis, synthesis, and bioactivities in the period
from 1980 to June 2022. The structural characteristics and diverse bioactivities of these metabolites
could attract a great deal of attention from natural-product chemists and pharmaceuticals seeking to
develop these metabolites into medicine for the treatment and prevention of certain health concerns.

Keywords: marine sponges; Smenospongia; indole alkaloids; sesquiterpenoids; biosynthesis; bioactivities

1. Introduction

Marine organisms are renowned as a prosperous pool of diverse metabolites with
unparalleled structural features and prominent bioactivities that display potential advan-
tages as lead candidates for developing new pharmaceuticals [1,2]. The rate of discovery of
marine metabolites has dramatically increased in the last decades [3]. It has been estimated
that, since 2010, more than 15,000 marine natural metabolites have been reported [3,4].

Marine sponges (phylum Porifera) are a substantial part of the benthic biomass and
have many essential ecosystem functions such as food, shelter, or regulation of substrate
settlement [5]. They are sessile invertebrates that developed an efficacious chemical system
based on secondary biometabolite production for communication and defense purposes [6].
In addition, the metabolites produced by sponges and their associated microorganisms are
particularly beneficial to repel their surface colonization by harmful biofouling and to fight
diseases [6,7]. These metabolites displayed not only unique chemical structures but also
interesting bioactivities and made sponges a potential pool of lead compounds for drug
discovery [8–12].

The genus Smenospongia (order Dictyoceratida, family Thorectidae) comprises 19 species [13].
The sponges of this genus have the capacity to produce diverse classes of secondary
metabolites including phenyl alkenes, indole alkaloids, terpenoids (sesqui-, di-, and ses-
terterpenoids), aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, naphtho-
quinones, and polyketides. Many reported metabolites from this genus possess unique and
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unusual chemical skeletons, often having halogen atoms. Several studies are reported on the
isolation, structural characterization, and bioevaluation of Smenospongia sponges’ metabo-
lites. In this current work, the potential of Smenospongia sponges as a natural metabolite
source was highlighted. It provides an overview of the literature records upon Smenospongia
secondary metabolites including their structures, biosynthesis, activities, and synthesis, in
addition to isolation, structural characterization, and structure–activity studies, starting
from 1980 until June 2022. This review could be considered as a comprehensive reference
for future research on Smenospongia sponges and their metabolites. Additionally, the re-
ported data here magnified the relevance of these sponges in the field of marine metabolite
production and their significance in the discovery of naturally derived biometabolites.

2. Methodology

The literature survey for this work was accomplished by collecting the data on the
performed studies on this genus from the websites of various journals and scientific
databases, including Scopus, ACS (American Chemical Society), Google Scholar, PubMed,
MDPI, Thieme, Science-Direct, Wiley Online Library, Bentham, Taylor & Francis, and
Springer Link.

3. Smenospongia Metabolites and Their Bioactivities
3.1. Indole Derivatives

Several studies reported the isolation of a variety of indole alkaloids as well as closely
related brominated derivatives from this genus, which are summarized in the current work
along with their characterization, isolation, and bioactivities.

The cytotoxic activity assessment of compounds 4–10, 15, 16, and 18–20 reported
from Thai Smenospongia sp. versus MOLT-3, HepG2, A549, HuCCA-1, HeLa, HL-60, and
MDA-MB-231 in the MTT assay revealed that 15 possessed cytotoxic capacity (IC50 5.4
and 9.4 µM, respectively) versus MOLT-3 and HeLa cells compared with etoposide (IC50
0.03 µM for MOLT-3) and doxorubicin (IC50 0.38 µM for HeLa) [14]. In addition, 10 and 15
exhibited moderate activity (HeLa, IC50 13.0 µM for 10 and HepG2 and HuCCA-1, IC50
23.1 and 23.6 µM for 15) [14] (Figure 1).

Djura et al. and Tymiak et al. reported the isolation of 5-bromo N,N-dimethyltryptamine
(14) and 5,6-dibromo-N,N-dimethyltryptamine (17) from S. aurea and S. echina from the
EtOH extract by SiO2 CC, prep-GC, as well as crystallization from MeOH that were charac-
terized by NMR and chemical methods [15,16] (Supplementary Materials Table S1). Interest-
ingly, the dibromo derivative had more antimicrobial potential versus B. subtilis, P. atrovenetum,
E. coli, and S. cerevisiae than the mono-bromo analog [16] (Supplementary Materials Table S2).
Furthermore, they were assessed for antidepressant potential utilizing Porsolt FST (forced
swim test) and the chick anxiety-depression continuum model. Compound 17 displayed
a notable antidepressant effect in the rodent FST model, whereas 14 significantly reduced
the locomotor potential, revealing potential sedative influence [17].

Makaluvamine O (24), a new pyrroloiminoquinone, along with 3-carboxylindole (2)
and N,N-dimethyltryptamine (13) were obtained from S. aurea. Makaluvamine O (24) dis-
played moderate antimalarial potential versus P. falciparum (D6 Clone I) (IC50 0.94 µg/mL,
selectivity index > 5.1) [18]. A detailed analysis of the Philippine Smenospongia sp. using
C-18 flash and Sephadex LH-20 column chromatography yielded four new metabolites:
5-bromo-1H-indole-3-carboxylic acid (5), 5-bromo-l-tryptophan (21), 5-bromoabrine (22),
and 5,6-dibromoabrine (23), along with 15 and 24 (Figure 2).
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Their cytotoxic potential was assessed versus a panel of isogenic HCT-116 cell lines
consisting of p21 and p53 knockouts (p21−/− and p53−/−) as well as the parental cell line
of each (p21+/+ and p53+/+) in the MTT assay [19]. A p53 is a tumor suppressor gene that
primarily acts via its downstream p21 protein mediator. The p53 and p21 alterations are the
most known mutations occurring in human tumors. Only 15 possessed potential versus
HCT-116 cell lines [19].

In 2002, McKay et al. purified a symmetric bisindole dimer: 1,2-Bis(1H-indol-3-
yl)ethane-1,2-dione (25), in addition to 1, 6, and 12 from Smenospongia sp. MeOH extract
using DIOL-bonded SiO2 CC (i-PrOH:hexane) and HPLC [20]. Compound 25 featured
a conjugated diketo group that is related to hyrotisin B previously isolated from Hyrtios
erecta [21]. Compounds 8 and 11 had antibacterial potential (MICs 6.25 and 50 µg/mL,
respectively) versus S. epidermidis ATCC12228 in the microbroth dilution test [22].

3.2. Aplysinopsin Derivatives

Aplysinopsins are tryptophan-derived metabolites that vary in the indole moiety
bromination pattern and variation in the C ring structure, including the position and
number of N-methyl, oxidation state, absence and presence of the C-1′–C-8 double bond,
and stereochemistry [23].

Two new aplysinopsin derivatives, 6-bromo-aplysinopsin (27) and 6-bromo-4′-N-
demethylaplysinopsin (28), were purified from the Caribbean S. aurea extract (toluene:
MeOH 1:3) using SiO2 CC and crystallization from MeOH: H2O and elucidated using
NMR, MS, and chemical synthesis (Supplementary Materials Table S3) [16]. In addition,
aplysinopsins 27–35 separated from S. aurea were assessed for their in vitro antimycobacte-
rial and antimalarial activity, as well as human 5-HT2 receptor binding antagonists in FP
and FRET assays [18] (Figure 3).

Molecules 2022, 27, x FOR PEER REVIEW 5 of 29 
 

 

 
Figure 3. Chemical structures of aplysinopsin (26–37) derivatives reported from Smenospongia 
species. 

5-HT2C organizes food intake in mammals, whereas the 5-HT2A receptor displays a 
role in depression’s pathophysiology. Hence, these receptors’ modulators could be 
potential antiobesity and antidepressant agents, respectively. Only 27 exhibited 
antimalarial activity at endpoint 0.34 μg/mL with a selectivity index of 14, whereas 31 and 
33 were moderately active (conc. 0.97 and 1.1 μg/mL, respectively, with selectivity indexes 
of >4.9 and >4.3, respectively). Compounds 27, 33, and 35 displaced high-affinity [3H] 
antagonist binding from cloned 5-HT2C receptors, whereas 27 and 35 also displaced high-
affinity [3H] antagonist binding from the 5-HT2A receptor subtype, and 33 had only partial 
displacement at the highest concentration at the 5-HT2A subtype. None of the others (31, 
33, and 34) had displacement effectiveness at the highest concentration tested. Among the 
tested metabolites, 27 had the highest overall affinity, which was like that of endogenous 
serotonin at the 5-HT2C receptor subtype, while 33 and 35 had a 5- to 27-fold lower affinity 
than serotonin. The structure–activity study revealed the role of functional groups at C-6, 
C-2′, and C-3′, in the binding to 5-HT2 human serotonin receptors. The C-3′ alkyl chain 
length displayed a substantial role in binding to the 5-HT receptors, and the presence of 
the ethyl group (as in 35) enhanced the binding potential compared with the methyl group 
(as in 34). Additionally, the Br atom at C-6 in the absence of C-3′-ethyl increased the 

Figure 3. Chemical structures of aplysinopsin (26–37) derivatives reported from Smenospongia species.



Molecules 2022, 27, 5969 5 of 28

5-HT2C organizes food intake in mammals, whereas the 5-HT2A receptor displays
a role in depression’s pathophysiology. Hence, these receptors’ modulators could be
potential antiobesity and antidepressant agents, respectively. Only 27 exhibited antimalarial
activity at endpoint 0.34 µg/mL with a selectivity index of 14, whereas 31 and 33 were
moderately active (conc. 0.97 and 1.1 µg/mL, respectively, with selectivity indexes of >4.9
and >4.3, respectively). Compounds 27, 33, and 35 displaced high-affinity [3H] antagonist
binding from cloned 5-HT2C receptors, whereas 27 and 35 also displaced high-affinity [3H]
antagonist binding from the 5-HT2A receptor subtype, and 33 had only partial displacement
at the highest concentration at the 5-HT2A subtype. None of the others (31, 33, and 34)
had displacement effectiveness at the highest concentration tested. Among the tested
metabolites, 27 had the highest overall affinity, which was like that of endogenous serotonin
at the 5-HT2C receptor subtype, while 33 and 35 had a 5- to 27-fold lower affinity than
serotonin. The structure–activity study revealed the role of functional groups at C-6, C-2′,
and C-3′, in the binding to 5-HT2 human serotonin receptors. The C-3′ alkyl chain length
displayed a substantial role in binding to the 5-HT receptors, and the presence of the ethyl
group (as in 35) enhanced the binding potential compared with the methyl group (as in 34).
Additionally, the Br atom at C-6 in the absence of C-3′-ethyl increased the binding affinity
(as in 27 and 33 versus 32) and selectivity to the 5-HT2C receptor subtype over the 5-HT2A
receptor subtype. Additionally, C-2′-methylation facilitated the binding to the 5-HT2A
receptor subtype (as in 27 versus 33) [20]. Chemical investigation of Smenospongia sp.
CH2Cl2 fraction by SiO2 CC and HPLC yielded brominated alkaloids derivatives 26 and
30 that revealed antibacterial capacity (MICs 25 and 12.5 µg/mL) versus S. epidermidis
ATCC12228 compared with vancomycin (MIC 0.625 µg/mL) in the microbroth dilution
assay [22].

3.3. Bisspiroimidazolidinone Alkaloids

Imidazolidinones are a class of heterocyclic metabolites characterized by a nitrogen-
containing five-membered ring that have received remarkable attention from medicinal
chemists, as many derivatives of this scaffold class possessed variable bioactivities and are
used as chiral catalysts by organic chemists [24].

Two new bisspiroimidazolidinone alkaloids, dictazolines A (38) and B (39), along with
related metabolites tubastrindoles A (40) and B (41) were obtained from S. cerebriformis
using Sephadex LH20/SiO2 flash column and HPLC and elucidated by NMR analyses
(Supplementary Materials Table S4). Only 40 and 41 were evaluated for the inhibition of the
serine and threonine kinase PKC. Initially, 41 displayed weak inhibition of PKCδ, whereas
40 and 41 were inactive at reducing the β-secretase-proteolytic cleavage of the amyloid
precursor protein, an assay of Alzheimer’s disease treatment [25] (Figure 4).

3.4. Polyketides

Smenamides A (42) and B (43) are hybrid polyketide–peptide metabolites having
dolapyrrolidinone, N-methylacetamide, and chlorovinyl moieties that were separated
from Caribbean S. aurea and assigned using HRESIMS/MS and NMR experiments. They
demonstrated no notable cytotoxic potential (conc. 30 nM) on Calu-1 in the MTT assay
after 27 h of treatment; however, they (conc. 50 nM) had remarkable effectiveness (IC50
48 nM for 42 and 49 nM for 43) (Figure 5). Compound 42 exerted its powerful cytotoxic
potential via a proapoptotic mechanism with increasing apoptotic cells and no or little
necrotic cells, whereas in 43, the apoptotic cells’ percentage was much less, and the necrotic
cells’ percentage was high (47%, conc. 100 nM) in the Annexin-V PI/FITC kit assays.
These different mechanisms could be attributed to the difference in the C13–C15 double-
bond configuration.
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These metabolites could be promising leads for designing antitumor agents [26].
Caso et al. reported the synthesis of ent-smenamide (I) and 16-epi-smenamide A (II) and
established smenamide A’s 16-R configuration. The carboxylic acid moiety was created
starting from S-citronellene via a Grignard process and two Wittig reactions. Furthermore,
the Andrus protocol was used for carboxylic acid moiety coupling with either (R)- or
(S)-dolapyrrolidinone [27]. In 2018, Caso et al. attempted to study if the C-16 configuration
influenced the bioactivities. They synthesized 16-epi-smenamide A and eight analogs of the
16-epi-series that were tested for antiproliferative capacity versus MM (multiple myeloma)
cell lines. It was found that the C-16 configuration had a slight influence on the activity
since the 16-epi-analogs were active at nanomolar concentrations [28]. Interestingly, 44 and
46 revealed moderate neurotoxicity versus neuro-2A cells, whereas 45, the geometric isomer
of 44, had no potential [29]. Using a molecular-networking dereplication strategy, two
new members of smenamides, 47 and 48, were separated through Rp-HPLC separations
and elucidated by NMR, ECD, and Marfey’s analyses (Supplementary Materials Table S5).
Compound 47 was a hydrated analog of 42 with 8S/13S/15S/16R/20Z-configuration [30],
whereas 48 is a C-8-epimer of 47 having 8S/13S/15S/16R/20Z-configuration. Their cyto-
toxic potential versus MCF-7, MDA-MB-231, and MG-63 was estimated in the xCELLIgence
assays. It is noteworthy that they exerted (conc. 5 µM) a moderate selective antiprolifer-
ative capacity on MDA-MB-231 and MCF-7; however, they had no effectiveness versus
MG-63. It was found that the dolapyrrolinone C-8 absolute configuration did not affect the
activity [30]. From the same Caribbean S. aurea using RP-18 CC and HPLC, smenothiazoles
A (49) and B (50), which are hybrid peptide–polyketide compounds, were separated; these
are biogenetically related and structurally vary from smenamides (Figure 6).
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They were tested versus Calu-1, LC31, A2780, and MCF7 in the MTT assay. These
metabolites displayed a potent cytotoxic potential at low nanomolar concentrations with
selectivity versus ovarian cancer cells. They showed a comparable effect on LC31, Calu-1,
and A2780 cell lines and a lower effect on MCF7 in the MTT assay, whereas in Annexin-
V FITC/PI assays, smenothiazoles showed a strong apoptotic effect on A2780 (ovarian
cancer cells) that is accompanied with an S phase decrease resulting in blocking the cellular
cell-cycle G0G1 phase [31].

Four chlorinated polyketides, smenolactones A–D (51–54), and trichophycin B (55)
were separated from S. aurea and characterized by NMR, ECD, and Mosher analyses. The
cytotoxic capacity of 51 and 53–55 was evaluated versus MCF-7, PANC-1, and BxPC-3
tumor cell lines using the MTS assay and an xCELLigence System Real-Time Cell Analyzer
(RTCA). They displayed cytotoxic activity at low- or submicromolar concentrations [32].
Smenolactones were found (conc. 250 and 500 nM and 1 and 2 µM for 48 h) to reduce the
cell viability and increase the tumor cell doubling time, revealing their antiproliferative
potential on MCF-7 cells. Notably, 53 (conc. 1 and 2 µM) was the most potent one (IC50
918 and 652 nM, respectively); however, 51 and 54 (conc. 2 µM) caused less notable MCF-7
growth inhibition. For in vitro antiproliferative selectivity assessment, PANC-1 experienced
induced or unaffected proliferation with 51 and 54 (conc. 500 nM and 1 µM, 48 h), while
BXPC-3 displayed a delayed growth at 1 µM. The results demonstrated that the polyketide
chain length and flexibility influence the activity as in 53, which had no double bonds, and
a longer chain was the most bioactive. Furthermore, lactone moiety C-5R configuration led
to strong activity as in 51 versus 54 with C-5-S stereochemistry that had a weaker inhibition,
whereas chlorovinylidene configuration had no dramatic influence on the activity [32].

Phytochemical investigation of the Caribbean S. conulosa led to the separation of
two new chlorinated thiazole-involving metabolites, conulothiazoles A (56) and B (57),
along with 42, 43, 49, and 50 that were elucidated by NMR and MS analyses, and their
absolute configuration was assigned by chemical degradation and Marfy’s and HRLCM
analyses [33]. These metabolites possessed molecular features of several cyanobacterial
metabolites, including a terminal thiazole ring as in barbamide and middle vinyl chloride
as in jamaicamides [33].

3.5. Terpenoids

Terpenoids of variable carbon skeletons have been reported from this genus, including
sesqui-, sester-, and diterpenoids (Supplementary Materials Table S6). These metabolites
along with their reported bioactivities and synthesis were summarized here.

3.5.1. Hydroquinone and Quinone Sesquiterpenoids

Compounds 58 and 63 were purified from the less-polar fraction of S. aurea and
characterized by NMR and chemical interconversion. The 5S/8S/9R/10S configuration
of 58 was established based on X-ray analysis [15]. In addition, the EtOH extract of the
Jamaican S. aurea afforded sesquiterpenes 58, 59, and 61 using SiO2 and Sephadex LH-20
(Figure 7).

Additionally, two derivatives, aureol N,N-dimethyl thiocarbamate (I) and 5′-O-methyl-
aureol (II), were semisynthesized from aureol (58) (Figure 8). Aureol N,N-dimethyl thiocar-
bamate (I) exhibited in vitro antimalarial potential versus the P. falciparum D6 clone with a
selectivity index of 55, whereas it had no in vivo activity. Compounds I and 58 (MIC < 6.25
and >6.25 µg/mL with 100% and 31% inhibition, respectively) displayed in vitro potential
versus M. tuberculosis H37Rv, indicating that thiocarbamate moiety highly improved the
antimycobacterial activity [18]. Moreover, the EtOAc extract of S. aurea collected from the
San Salvador Island coasts afforded 58, 59, and 61. Compounds 58 and 59 were assessed
for their antibacterial potential versus B. subtilis 6633ATCC, B. cereus var. microides 213PCI,
Staph. aureus 6538ATCC, S. epidermidis 12228ATCC, S. subflava 7468ATCC, S. faecalis, E. coli,
and S. typhi 19430ATCC. They showed antibacterial capacity with MICs ranging from
0.0008 to 0.125 for 58 and 0.5 to 0.008 mg/mL for 59 toward the tested strain [34].
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Additionally, aureol (58) was separated by Shen et al. from the Smenospongia sp.
nonpolar extract [36]. Its methylation yielded II, whereas the acylation using different
acid chlorides or acetic anhydride produced I and III–X (Figure 8) [36]. These derivatives
were evaluated in vitro for cytotoxic capacities versus VGH/Hepa59T, KB, and Hela cell
lines in the MTT assay. Compound 58 had cytotoxic effectiveness (IC50 values of 5.77,
4.94, and 7.65 µg/mL, respectively) versus the three tested cancer cell lines compared
with mitomycin (IC50 0.1, 0.1, and 0.11 µg/mL, respectively). Derivatives I, III, IX, and
X revealed a cytotoxic potential (IC50s ranging from 3.08 to 10.93 µg/mL), where X (IC50
3.08, 3.73, and 4.15 µg/mL, respectively) was the most potent compound. The inactivity
of II and IV–VIII indicated that 5-OHmethylation of aureol or its acylation with benzoyl,
nicotinoyl, or other derivatives abolished the activity [36]. Additionally, Wang et al. re-
ported a concise synthesis of 58 in six steps, including a BF3 (boron trifluoride)-catalyzed
1,2-methyl and domino 1,2-H shifts and a Ni+2 (nickel II)-catalyzed cross-coupling between
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an aryl Grignard reagent and alkyl iodide as key steps [37]. From the EtOAc-soluble
fraction of Smenospongia sp. using SiO2 and HPLC, 58–62 were separated. Compound 60
represented the first report of iodo-sesquiterpene hydroquinone. Only 58 had moderate
and weak cytotoxic (IC50 14.6 and 76.4 µM, respectively) potential versus LH-60 and A549,
respectively [14].

Smenospongine (82) is a drimane sesquiterpene-aminoquinone that was isolated as
red crystals from the Smenospongia sp. CH2Cl2 fraction of the MeOH extract using SiO2
and Sephadex LH20 and characterized using NMR and CD analyses. It displayed cytotoxic
potential versus L1210 (leukemia cells, LD50 1.0 µg/mL) by prohibiting DNA synthesis
and antibacterial capacity versus Staph. aureus (MIC < 5 µg/mL) and P. aeruginosa (strains:
PYO9 and 8203S, MIC 25 µg/mL), but weak activity against E. coli (MIC 70 µg/mL) [38].

Various sesquiterpenoids, 65, 72–76, 82, and 84–86, were separated from the Snenospongia sp.
obtained from the Gulf of Aden, Red Sea, near Djibouti. The CH2Cl2 fraction utilizing
SiO2/Sephadex LH-20 CC and preparative TLC was established by various spectral analy-
ses (Figure 9).
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Compounds 65, 72, 75, and 82 revealed a significant potential versus Staph. aureus
(MICs 2, 10, 25, and 7 µg/mL respectively); additionally, 82 (MIC 25 µg/mL) had a potential
on antibiotic-resistant P. morganii [38]. Furthermore, 72, 76, and 82 were the most powerful
compounds (LD50 1.5, 2.5, and 1.5 µg/mL, respectively), whereas 65, 75, and 85 had an
LD50 of 4 µg/mL versus L1210 cells by assessing the inhibition of DNA synthesis estimated
by 3H thymidine incorporation [39].

From Snenospongia sp., smenoqualone (78) was purified, which is structurally related
to strongylin A separated from Strongylophora hartmani [40]. It had no antimicrobial and
cytotoxic potential, suggesting that the free OH group on the quinone ring is substantial
for the activity [41].

Do et al. reported that the 75 pretreatment remarkably boosted TRAIL-produced
apoptosis in HCT-116 cells and stimulated TRAIL-caused apoptosis on colon cancer cells
via increased caspase-8 and -3 activation, DNA damage, and PARP cleavage. It also less-
ened Bcl-xL and Bcl2 cell survival proteins, while it strongly upregulated death receptors’
DR4 and DR5 expression through the upregulation of CCAAT/CHOP (enhancer-binding
protein homologous protein). The DR4, CHOP, and DR5 expression upregulation had
occurred through the activation of ERK (extracellular-signal-regulated kinase) and p38
MAPK (mitogen-activated protein kinase) signaling pathways, as well as ROS generation.
Therefore, 75 boosted the human colon cancer cells’ sensitivity to TRAIL-caused apoptosis
via the ERK-ROS/CHOP-p38 MAPK–mediated upregulation of DR4 and DR5 expression,
indicating that 75 could be developed into a chemotherapeutic agent [42].

Aerobic glycolysis is preferred more in cancer cells than the oxidative phosphorylation
for ATP production. In different cancers, the upregulation of PDK1 (pyruvate dehydroge-
nase kinase 1) minimizes the PDH (pyruvate dehydrogenase) activity via the induction of
its E1α subunit (PDHA1) phosphorylation and, subsequently, turns the energy metabolism
from oxidative phosphorylation to aerobic glycolysis [43]. Therefore, PDK1 is regarded
as a target for anticancer therapy. Compound 75 decreased the viability of A549, DLD-1,
RKO, HEK293T, Detroit-551, and LLC cells (GI50 10.5, 8.61, 50.16, 37.30, and >100 µM
respectively) in the MTT sassy. It reduced the PDHA1 phosphorylation in the A549 cells
by suppressing the PDK activity. It also increased oxygen consumption and decreased
secretory lactate levels. Thus, it increased the oxidative phosphorylation and PDH activity
while subsequently reducing cell viability via the suppression of the PDK activity. It could
be a candidate for anticancer agents that acted via the PDK1 activity inhibition [44].

nAMD (neovascular age-related macular degeneration) is a common reason for irre-
versible vision loss in the elderly. Son et al. stated that 75 topical and oral administrations
in mice and rabbits caused the inhibition and regression of laser-induced CNV (choroidal
neovascularization) by β-catenin downregulation in RPE (retinal pigment epithelial) cells
((hTERT-RPE1 and ARPE-19), and it prohibited p53-mediated apoptosis induction in HU-
VECs (human umbilical vein endothelial cells). It repressed the expression of inflammatory
and angiogenic factors and restored the E-cadherin expression in RPE cells by prohibiting
the Wnt–β-catenin pathway. Therefore, it functioned through the p53–Wnt–β-catenin
pathway regulation with advantages over the available cytokine-targeted anti-angiogenic
therapies. It has a unique mechanism by suppressing the expression of proinflammatory
and angiogenic factors and prohibiting the growth of vascular endothelial cells; it could
be administered more safely, cost-effectively, and conveniently in the form of eye drops or
oral drugs to patients than the currently used intravitreal drugs [45].

From S. aurea and S. cerebriformis, 77, 87–90, and 97–99 were purified and assigned
based on various NMR data (Figure 10). Compounds 89 and 90 have an unprecedented 2,2-
dimethylbenzo[d]oxazol-6(2H)-one moiety. GIAO (gauge-invariant atomic orbital) NMR
chemical shift calculations along with the application of CP3 and DP4 advanced statistics
were utilized for stereochemistry determination.
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reported from Smenospongia species.

The downregulation of β-catenin expression has been considered a promising ap-
proach for cytotoxic drug formulation. Compounds 77 and 88 and the mixture of 89 and
90 suppressed CRT (β-catenin response transcription) via degrading β-catenin and exhib-
ited cytotoxic potential versus colon cancer cells through their anti-CRT potential using a
CellTiter-Glo assay kit [46]. Compounds 88 and 89/90 mixture started to produce antipro-
liferative potential (conc. > 20 µM), whereas 77 began to inhibit tumor growth (conc. 1.5
and 0.75 µM) versus HCT-116 cells (IC50 2.95 µM) and SW4 (IC50 3.24 µM), revealing that
77 had more potent cytotoxic potential than the other compounds [46]. It was reported
that a competitive intramolecular Michael addition might be involved in these metabolites’
formation. The intramolecular addition of enolate II onto the C-20 carbonyl would result
in the generation of 97 and 99 or 98, relying on si- or re-face addition (path I). Alternatively,
the addition of enolate onto the C-21 carbonyl group and tautomerization followed by trans-
etherification would result in 77 formation (path II). Additionally, reductive amination
of IV followed by Schiff’s base formation with acetone or acetaldehyde and consecutive
isomerization generates VI and VII, respectively (Scheme 1). Lastly, the oxidation of these
two intermediates leads to the formation of benzoxazole moieties in 87–90 [46].
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New sesquiterpenes, 66, 67, 91, 100, and 101, along with 68–70, 71, and 75 were
separated from S. cerebriformis and assigned using NMR, MS, and ECD spectra. Compounds
100 and 101 featured cyclopentenone and 4,9-friedodrim-4(11)-ene sesquiterpene skeleton
with 16R/20R and 16S/20R, respectively. Compound 91 had C-15 benzoxazole moiety
instead of cyclopentenone in 100 and 101; however, 67 was structurally similar to 70 and
69 with a different C-8-configuration. Their inhibitory potential versus NO production
in BV2 microglia cells stimulated with LPS in the immune-fluorescence assay using the
Griess reaction was estimated [47]. Compounds 67, 69, 70, 75, 100, and 101 (conc. 10, 20,
and 40 µM) noticeably prohibited (IC50 ranged from 10.40 to 30.43 µM) LPS-induced NO
production in BV2 cells, whereas 75 had a significant activity (IC50 10.40 µM) compared
with L-NMMA (IC50 22.1 µM). The structure–activity study suggested that the C-14-OH
group had an important role in the NO production inhibition. Thus, 75 could be a marked
anti-inflammation constituent of S. cerebriformis [47].

Smenohaimien F (83), a new sesquiterpene with dialkoxy-1,4-benzoquinone moiety, in
addition to 79–81 were reported from S. cerebriformis collected from Vietnam. Compound
80 showed significant cytotoxic activities on LU-1, HL-60, SK-Mel-2, HepG-2, and MCF-7
(IC50 ranging from 0.7 to 1.6 µg/mL) compared with ellipticine (IC50 0.4 to 0.6 µg/mL),
while 79 and 83 (IC50 ranging from 10.0 to 63.1 µg/mL) were moderately active and 81 had
a weak potential in the MTT assay [48].

3.5.2. Tetronic Acid and Cyclopentenone Sesquiterpenoids

In 1999, Bourguet-Kondracki and Guyot reported the characterization of smenotronic
acid (92) from Smenospongia sp. collected from the Red Sea using NMR, IR, and UV
tools [49]. It featured a rearranged drimane core with tetronic acid moiety. During storage
in C5D5N, the epimerization of this compound took place to produce a mixture (1:1) of two
C19 epimers that are the isomers of a dactyltronic acid, the previously reported Dactylospon-
gia elegans [50]. Dactylospongenones A–D (93–96) were isolated from the S. cerebriformis
CH2Cl2 fraction. They are sesquiterpene cyclopentenones that were formerly separated
from D. elegans [2] (Figure 11). They were assigned by NMR analyses, and cyclopentenone’s
C-16 and C-17 configuration was assigned by X-ray and CD analyses as 16R/17S, 16S/17R,
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16R/17R, and 16S/17S, respectively. In the MTT assay, they revealed mild or no effective-
ness against LU-1, HepG-2, HL-60, MCF-7, and SK-Mel-2 [51].
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3.5.3. Diterpenoids

Compounds 103 and 104 are diterpenoids reported from Vietnamese S. cerebriformis
that had a weak cytotoxic potential versus LU-1, HL-60, SK-Mel-2, HepG-2, and MCF-7 in
the MTT assay [48].

3.5.4. Sesterterpenoids

Four terpenoids 104–108 were separated using SiO2/Sephadex LH-20 CC and HPLC
from the EtOAc extract of Smenospongia sp. (Figure 12). The metabolites showed an
antifouling potential but no toxicity against the barnacle Balamis Amphitrite cypris larvae
(EC50 0.24, 0.80, 0.53, and 2.7 µg/mL, respectively) in the 24-well polystyrene plates
assay [52]. Furthermore, two new linear furanosesterterpenes, 110 and 111, and three new
scalaranes, 116, 117, and 120, were purified from Smenospongia sp. obtained from Gagu-Do,
Korea, using RP-flash chromatography and HPLC and were characterized by NMR spectral
data; 108 configuration was assigned using Mosher’s method. These metabolites revealed
a cytotoxic potential (LC50 31.6, 3.0, 4.9, 11.2, and 0.02 µg/mL, respectively) versus K562
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(human leukemia cell line). It is noteworthy that the changes in scalarane-sesterterpenoid
functional groups led to marked differences in the activity [35].
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A new scalarane sesterterpenoid, 124, and formerly reported 116, 120, 121, 126, and
128 were separated from the Korean Smenospongia sp. by reversed-phase HPLC (Figure 13).

Their activation of AMPK (5′ adenosine monophosphate-activated protein kinase) in
L6 myoblast cells was tested utilizing an AMPK phosphorylation assay. Only 128 displayed
a dark band that indicated the creation of phosphorylated AMPK at a concentration of
10 mM [53].

Ten new sesterterpenoids, 118, 119, 121–123, and 125–129, and known metabolites 110,
112–117, and 120 were biosynthesized by Smenospongia sp. obtained from Korean coastal
waters and assigned by spectroscopic analyses. Compounds 123 and 127 featured unprece-
dented 23-aldehyde and 20-carboxylic acid, respectively, among scalarane sesterterpenoids.
The isolated metabolites were evaluated for their antibacterial activity toward Staph. au-
reus (ATCC65389), B. subtilis (ATCC6633), M. leuteus (IFC12708), P. vulgaris (ATCC3851),
S. typhimurium (ATCC14028), and E. coli (ATCC25922) in the microdilution assay, and also
for the cytotoxic activity in the SRB assay against the K562 cell line and the inhibitory
activity against isocitrate lyase in the colorimetric assay [54]. Compounds 112–115 and 129
were active versus Staph. aureus (MICs ranging from 25.0 to 6.25 µM), whereas 110, 112–115,
117, 118, 120, 122, 125, 126, and 129 had a potential versus B. subtilis (MICs 0.78–6.25 µM)
compared with ampicillin (MIC 1.56 µM). On the other side, 112–115, 118, 125, and 129
were effective versus M. leuteus (MICs ranging from 12.5 to 3.12 µM), whereas 110 and
112–115 had activity versus P. vulgaris (MICs 3.12–6.25 µM) compared with ampicillin (MIC
3.12 µM). In the cytotoxic assay, these metabolites showed potent cytotoxic effectiveness
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versus the K562 cell line (LC50s ranging from 0.11 to 43.7 µM) compared with doxoru-
bicin (LC50 4.9 µM). Moreover, 112–116, 119, 125, and 129 had inhibition capacity (IC50
ranged from 24.1 to 67.2 µM) toward microbial enzyme ICL (isocitrate lyase) compared
with 3-nitropropinate (IC50 6.05 µM) [54].
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3.6. Chromene Derivatives

Unusual macrocyclic chromenes, smenochromenes A–D (130–133), were purified from
the Smenospongia sp. EtOAc fraction by Sephadex LH-20 and HPLC and characterized by
NMR and X-ray tools [55] (Supplementary Materials Table S7). Compound 130 was a race-
mate, whereas 131–133 were optically active. These metabolites possessed a chromene core
fused to a 14-membered ring system that could be derived from farnesyl hydroquinone I
(Scheme 2) that undergoes dehydrogenation to produce II. Subsequently, the oxa-6π electro-
cyclization of II affords chromene III featuring the hydroxy-chromene core. Furthermore,



Molecules 2022, 27, 5969 18 of 28

an allylic cation IV is formed by the terminal allylic position oxidation that undergoes
various cyclizations between C1 and C14 giving the 14-membered carbocyclic 130 after that
∆6,7-double-bond isomerization produces 131. On the other side, the formation of a bond
between C1 and the phenolic oxygen yields 132’s and 133′s 16-membered heterocyclic
system (Scheme 2).
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Rosa et al. reported the synthesis of 131 via a 133 unusual rearrangement with
concomitant double-bond isomerization and ring contraction (Scheme 3) [56].
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3.7. γ-Pyrone Derivatives

The Caribbean S. aurea MeOH/CHCl3 extract afforded 134 by RP-18 CC and HPLC
that featured a γ-pyrone polypropionate framework. It was assigned by NMR, MS, and
ECD [57]. It is noteworthy that pyrone polypropionates are uncommon in sponges; how-
ever, they are commonly encountered in marine mollusks and bacteria [58,59].

3.8. Phenyl Alkenes

From Florida sponges S. aurea and S. cerebriformi, a novel phenyl alkene, 135, with
unprecedented linear phenyl alkene skeleton was separated (Supplementary Materials
Table S8). Its 4R absolute configuration was established by a modified Mosher’s method. It
showed in vitro cytotoxic activity versus HL-60 (IC50 8.1 µM). The molecular docking study
suggested that 135 produced its cytotoxic potential through the inhibition of microtubule
activity [60].
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3.9. Naphthoquinones

Huyen et al. purified new naphthoquinones, smenocerones A (137) and B (138), from
the CH2Cl2 fraction of S. cerebriformis obtained from the Eastern Sea of Vietnam by SiO2
and RP-18 CC (Figure 14). Compound 138 (Conc. 20 µg/mL) significantly produced over
80% death of HepG-2, LU-1, MCF-7, HL-60, and SK-Mel-2 in the MTT assay with IC50
ranging from 3.2 to 5.7 µg/mL compared with ellipticine (IC50 0.4–0.6 µg/mL) [51].
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3.10. Fatty Acids, Sterols, and Phthalates

The chemical investigation of Caribbean sponge S. aurea revealed the separation
of six novel branched α-hydroxy fatty acids, 139–144, with an anteiso or iso terminal
methyl, along with a sterols mixture consisting of 147 (61%), 149 (10%), 150 (5%), 151 (2%),
and 152 (22%) [61]. They were characterized by NMR, GC-MS and retention times, and
chemical degradation. Additionally, from the Smenospongia sp. CH2Cl2–MeOH extract
collected from El-Gouna–Hurghada-coasts–Red Sea–Egypt, 145, 147, 148, 153, and 154 were
separated by SiO2 CC that were identified by NMR and GCMS analyses [62] (Figure 15,
Supplementary Materials Table S9).
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4. Biological Activity of Extracts
4.1. Antimicrobial Activity

Smenospongia sp. extracts were found to exhibit noticeable antimicrobial capacity. The
CH2Cl2 extract appeared the most active versus Staph. aureus and E. coli (inhibition zone
diameters (IZDs) 23 and 11 mm, respectively at conc. 500 µg/disk), whereas the MeOH
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extract had weaker activity (IZD 20 mm/disk versus Staph. aureus), and the aqueous extract
displayed no activity [39].

4.2. Cytotoxic Activity

The CH2Cl2 extract of Smenospongia sp. was cytotoxic (LD50 3 µg/mL) versus the
L1210 cell line, whereas the MeOH and aqueous extracts were not cytotoxic toward L1210
leukemia cells until 8 µg/mL [38]; the MeOH, on the other hand, exhibited moderate cyto-
toxic (LC50 47 µg/mL versus K562 cell line) and brine shrimp lethality (LC50 160 ppm) [35].

5. Conclusions

Marine sponges are a wealth of biometabolites with chemical diversity that have been
proven to be beneficial sources for novel drug target discovery. Among the marine sponges,
Smenospongia sponges have been reported as a reservoir of diverse biometabolites. In the
current work, Smenospongia, one of the most interesting sponge genera, was highlighted.
The species of this genus have been collected from various regions (Figure 16). The bigger
number of metabolites has been reported from the Smenospongia species obtained from
Thailand (21 compounds), whereas the least number (4 compounds) was isolated from
sponge samples that were collected from both the Milne Bay region, Papua New Guinea,
and the Ninamijima and Nichinan-oshima Islands.
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Figure 16. Number of reported metabolites and geographical distribution of Smenospongia species.
The darker blue color indicated large number of metabolites reported from sponge species collected
from this region; 4–21 is the range of metabolites.

A total of 154 metabolites have been purified and characterized from various Smenospongia
species over the last 42 years from four species: S. aurea (56 compounds), S. cerebriformis
(42 compounds), S. echina (3 compounds), and S. conulosa (2 compounds), as well as
unidentified Smenospongia species (76 compounds) (Figure 17).

Molecules 2022, 27, x FOR PEER REVIEW 24 of 29 
 

 

 
Figure 17. Metabolites reported from various Smenospongia species (% and number). 

The results revealed that sesqui- and sesterterpenoids and indole derivatives are the 
major metabolites of this genus. Additionally, few studies reported the isolation of 
aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, 
naphthoquinones, polyketides, fatty acids, sterols, and phthalates (Figure 18). 

 
Figure 18. Various chemical classes of metabolites reported from various Smenospongia species. IAs: 
indole alkaloids; PKs: polyketides; APs: aplysinopsins; SQTs: sesquiterpenoids; SSTs: 
sesterterpenoids; STs: sterols; FAs: fatty acids; CDs: chromene derivatives; BSIs: 
bisspiroimidazolidinones; NQs: naphthoquinones; PHs: phthalates; DTs: diterpenoids; γ-PD: γ-
pyrone derivatives; PADs: phenyl alkene derivatives; Phe: phenolics. 

These metabolites have been assessed for diverse bioactivities, including antimalarial, 
antimicrobial, cytotoxic, 5-HT2 receptor antagonistic, antifouling, and anti-inflammation. 
Some metabolites displayed moderated to potent cytotoxic, anti-inflammation, and 
antimicrobial capacities (Figure 19). Among these metabolites, 80, 117, 119, 120, 126, and 
128 exhibited more potent cytotoxic capacity than standard anticancer drugs, whereas 114, 
115, 117, 118, 122, 126, and 129 demonstrated marked antimicrobial activity versus some 
microbial strains. 

Figure 17. Metabolites reported from various Smenospongia species (% and number).



Molecules 2022, 27, 5969 23 of 28

The results revealed that sesqui- and sesterterpenoids and indole derivatives are
the major metabolites of this genus. Additionally, few studies reported the isolation of
aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, naphtho-
quinones, polyketides, fatty acids, sterols, and phthalates (Figure 18).
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Figure 18. Various chemical classes of metabolites reported from various Smenospongia species. IAs:
indole alkaloids; PKs: polyketides; APs: aplysinopsins; SQTs: sesquiterpenoids; SSTs: sesterter-
penoids; STs: sterols; FAs: fatty acids; CDs: chromene derivatives; BSIs: bisspiroimidazolidinones;
NQs: naphthoquinones; PHs: phthalates; DTs: diterpenoids; γ-PD: γ-pyrone derivatives; PADs:
phenyl alkene derivatives; Phe: phenolics.

These metabolites have been assessed for diverse bioactivities, including antimalarial,
antimicrobial, cytotoxic, 5-HT2 receptor antagonistic, antifouling, and anti-inflammation.
Some metabolites displayed moderated to potent cytotoxic, anti-inflammation, and an-
timicrobial capacities (Figure 19). Among these metabolites, 80, 117, 119, 120, 126, and
128 exhibited more potent cytotoxic capacity than standard anticancer drugs, whereas 114,
115, 117, 118, 122, 126, and 129 demonstrated marked antimicrobial activity versus some
microbial strains.
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conulothiazoles, that shared chlorovinylidene, dolapyrrolidone ring, and terminal alkyne
that are characteristics of cyanobacterial metabolites. Some of these compounds possessed
potential antitumor capacity that could be promising leads for antitumor drug design.
Structure–activity assessments of some reported metabolites from this genus revealed that
the chemical skeletons’ nature of these metabolites and substituent patterns greatly affected
the bioactivities. In addition, reported synthetic work established that the modifications of
structures and replacement by some functional groups resulted in more potential and useful
tags for further functionalization through click chemistry, which is a new area for drug-like
molecule synthesis that can boost the drug discovery process. Unfortunately, the bioassays
of some reported metabolites demonstrated no notable effectiveness, suggesting a more
potential for searching and running other bioevaluations. For enriching the metabolite
discovery from this genus, advanced techniques, including LC–MS–NMR, metabolomics,
and UPLC–MS, could be utilized. This work aimed to be beneficial for the Smenospongia
genus’s bioprospecting process and to bring attention to the chemical diversity of their
metabolites. Finally, we think that the genus and its metabolites still warrant considerable
research attention.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27185969/s1, Tables S1 and S3–S9: List of reported metabolites
from genus Smenospongia (source and place), Table S2: Biological activity of reported metabolites from
genus Smenospongia. References [14–20,22,25,26,30–35,37,38,40,43,45–48,50–55,57,60–64] are cited in the
Supplementary Materials.

Author Contributions: Conceptualization, S.R.M.I., H.M.A. and G.A.M.; resources, S.A.F., H.A.F.
and R.H.H.; data curation, S.A.F., H.A.F. and R.H.H.; writing—original draft preparation, S.R.M.I.,
H.M.A. and G.A.M.; writing—review and editing, S.A.F., H.A.F., R.H.H., S.R.M.I. and G.A.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

A549 Human lung adenocarcinoma epithelial cell line
A2780 Human ovarian cancer cells line
AMPK AMP-Activated protein kinase
ARPE-19 Retinal pigment epithelial cell line
ATR Adenosine triphosphate
BV2 Microglia cells
BxPC-3 Human pancreas adenocarcinoma cell line
Calu-1 Human nonsmall-cell lung cancer cell line
CD Circular dichroism
CH2Cl2 Dichloromethane
CHCl3 Chloroform
CHOP, CCAAT Enhancer-binding protein homologous protein
CNV Choroidal neovascularization
CRT β-catenin response transcription
DLD-1 Human colorectal cancer cell line
DR4 Death receptor 4
DR5 Death receptor 5
DPPH 1,1-Diphenyl-2-picrylhydrazyl
EC50 Half-maximal effective concentration
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ERK Extracellular signal-regulated kinase
EtOH Ethanol
EtOAc Ethyl acetate
FST Porsolt forced swim test
FRET Fluorescence resonance energy transfer
FP Fluorescence polarization
GCMS Gas chromatography mass spectrometry
GIAO Gauge-invariant atomic orbital
GI50 The concentration for 50% of maximal inhibition of cell
HCT-116 Human colon cancer cell line
HEK293 Human embryonic kidney cell
HepG2 Human liver cancer cell line
Hepa59T/VGH Human liver carcinoma cell line
HeLa Human cervical epitheloid carcinoma cell line
HL-60 Human promyelocytic leukemia cell line
HPLC High-performance liquid chromatography
HT-29 Human colon cancer cell line
hTERT-RPE1 Retinal pigment epithelial cell lines
HuCCA-1 Human cholangiocarcinoma cell line
HUVECs Human umbilical vein endothelial cell line
HUVSMCs Human umbilical vein smooth muscle cells line
IC50 Half-maximal inhibitory concentration
ICL Microbial enzyme isocitrate lyase
K562 Human immortalized myelogenous leukemia cell line
KB Human oral epidermoid carcinoma cell line
L1210 Mouse lymphocytic leukemia cell line
LC31 Human lung squamous adenocarcinoma cell line
LC50 Lethal concentration 50
LC–MS–NMR Liquid chromatography–mass spectrometry–nuclear magnetic resonance
LD50 Half maximal lethal concentration
LPS Lipopolysaccharide
LLC Murine Lewis lung carcinoma
L-NMMA Nitric oxide synthase inhibitor NG-monomethyl-L-arginine
LU-1 Human lung carcinoma cell line
MCF-7 Human breast cancer cell line
MDA-MB-231 Human breast cancer cell line
MeOH Methanol
MG-63 Human osteosarcoma cell line
MIC Minimum inhibitory concentration
MOLT-3 Human T lymphoblast cell line

MTS
(3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)
-2H-tetrazoliuminner salt)

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
nAMD Neovascular age-related macular degeneration
n-BuOH n-Butanol
NMR Nuclear magnetic resonance
NO Nitric oxide
p38 MAPK p38 Mitogen-activated protein kinase
P 388 Human leukemia cell line
PANC-1 Human pancreas ductal carcinoma cell line
PARP Poly-AD Pribose polymerase
PDK1 Pyruvate dehydrogenase kinase 1
PDHA1 Phosphorylation of its E1α subunit
RKO Human colon cancer cell line
ROS Reactive oxygen species
RTCA xCELLigence system real-time cell analyzer
RP-18 Reversed phase-18
SRB Sulforhodamine B
SiO2 CC Silica gel column chromatography
SK-MEL-2 Human melanoma cell line
SRB Sulforhodamine B



Molecules 2022, 27, 5969 26 of 28

SW480 Human colorectal cancer cell line
TLC Thin layer chromatography
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
UPLC–MS Ultra performance liquid chromatography–tandem mass spectrometer
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