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Inactive ovaries (IOs) affect the estrus cycle and timed artificial insemination (TAI)

efficiency in dairy cows during early lactation. The objective of the experiment was to

determine metabolic changes in the serum and milk whey of dairy cows with IO and

estrus. Twenty-eight healthy postpartum Holstein cows in similar age, milk production,

and body condition were selected at 30 days postpartum for tracking to 70 days

postpartum, and estrus performance was recorded through Afi Farm® software. The

ovarian status and follicular diameter of dairy cows were examined by an experienced

breeder through B-ultrasound and rectal examination. Fourteen normal estrus cows

were allocated to control group A and 14 cows with IO to group B, all at 30–70

days postpartum. The serum and milk whey in the two groups of cows at 70 days

postpartum were used for non-targeted nuclear magnetic resonance (1H-NMR) analysis

to measure the different metabolites of cows with IO. In group B compared with group

A at 70 days postpartum, there was an increase in the milk whey of six different

metabolites including succinate, creatine phosphate, glycine, myo-inositol, glycolate,

and orotate and a decrease in the milk whey of seven metabolites, including alanine,

creatinine, o-phosphorylcholine, lactose, taurine, galactose, and glucose-1-phosphate.

There was an increase in the serum of group B cows of four differential metabolites,

including 3-hydroxybutyrate, acetate, glutamine, and glycine and a decrease in the

serum of nine differential metabolites, including alanine, succinate, citrate, creatinine,

o-phosphocholine, glucose, myo-inositol, tyrosine, and histidine compared with group

A. Group B cows with IO had decreased glucose metabolism and impaired tricarboxylic

acid cycle, increased lipid mobilization, and abnormal amino acid metabolism. The study

provides a potential prevention strategy for IO in dairy cows in future.

Keywords: dairy cows, inactive ovaries, differential metabolites, serum, milk whey

INTRODUCTION

At present, there is a poor reproduction in dairy cows with high milk yield in intensive cattle
farms in many countries (1). The genetic selection of high-yield dairy cows leads to the diversion
of available nutrients toward milk synthesis and less to fertility and physiological processes (2).
As a result, the reproductive efficiency of dairy cows is reduced after birth, and the days to first
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ovulation and conception after delivery are prolonged (3). In the
past decades, the first insemination and conception rates of dairy
cows in the United Kingdom and the United States declined at
an annual rate of 0.5 (4) and 1% (5). Postpartum reproductive
disorders in dairy cows seriously affect the economical profit
of dairy farms, becoming a limiting factor restricting the
development of the dairy industry worldwide. Inactive ovaries
(IO) are a type of postpartum anestrus in dairy cows caused
by the temporary disturbance of ovarian function and a lack
of periodic follicular activity (6), with an incidence of 26.3–
50% of anestrus in dairy cows (7, 8). Matthew (2011) proposed
that body metabolism affects follicular growth, especially the
metabolism of estradiol, growth hormone, insulin-like growth
factor-I, insulin,alanine, and glutamine (9). Previous studies
showed that postpartum IO in dairy cows was mainly due to
the imbalance of nutrient distribution caused by high lactation
and negative energy balance (NEB) after calving. The current
research of IO in dairy cows is mainly focused on the effects of
certain substances on follicular growth or ovarian activity (10–
13). Our previous research found that, compared with estrus
cows, serum metabolic profiles of IO cows may be altered in
postpartum energy metabolism to affect follicular growth (14–
16). In dairy cows, milk whey is more readily available than
serum and can also reflect the metabolic changes, so these disease
biomarkers would be more suitable for detecting a dairy cow’s
health. Currently, there is a lack of research on the changes in
the overall metabolites of the serum and whey in IO and healthy
cows. This study hypothesizes that whey metabolism may be
similar to serum metabolism of dairy cows with IO.

It has been known that metabolites are the most direct and
comprehensive reflection of the metabolic state of an organism
(17). Metabolomics has been widely used to quantitatively
study all compounds or metabolites produced by cells and
tissues under normal and diseased conditions (18). Nuclear
magnetic resonance (1H-NMR) is a metabolomics technology
that has advantages of simple sample pretreatment, no sample
deviation, and no damage in the analysis process (19). The use of
1H-NMR and liquid chromatography quadruple time-of-flight
mass spectrometry (LC/MS) or gas chromatography/mass
spectrometry (GC/MS) have different advantages and
disadvantages. Because the data set obtained by 1H-NMR
is large, it also contains a lot of interference and noise and other
information. The 1H-NMR raw data require preprocessing,
including noise filtering, peak matching, normalization, and
standardization to make it a data form suitable for multivariate
statistical analysis (20), so most other analytical techniques are
inherently more sensitive than 1H-NMR, with lower limits of
detection typically being 10–100 times better (21). However,
1H-NMR technology requires less pretreatment of the sample for
analysis and has a high level of reproducibility and quantitative
ability and is useful in identifying unknown metabolites (18). In
the analysis of body fluids, the supernatant is usually centrifuged,
and only buffer or water is added to control the pH and
viscosity (22).

Plasma metabolic profiles of dairy cows based on 1H-
NMR have been used to obtain biomarkers or to explore the
metabolic mechanism of ketosis, mastitis, inactive ovaries, and

other diseases (23–26). Wei Xu used 1H-NMR to identify 14
compounds in whey (27). TimothyDWused 1H-NMR to identify
15 differential metabolites in 707 cows serum (28), and we
have previously used 1H-NMR to identify 32 compounds in
the serum of ovarian quiescence cows (1). Milk should be used
to screen biomarker or metabolic alteration of ovary diseases
because of its convenience (29). To date, no comparison has
been found between the serum and milk whey metabolic profile
of postpartum IO in dairy cows. In this study, non-targeted
metabolomics with the assistance of 1H-NMR was used to detect
milk whey and serum metabolomics of dairy cows with IO
to further explore the pathogenesis and potential prevention
strategy for IO in dairy cows.

MATERIALS AND METHODS

Animals
The study was administrated in strict accordance with the
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. All experiments on animals were
carried out according to the standards approved by the Animal
Welfare and Research Ethics Committee at Heilongjiang Bayi
Agricultural University.

The experiment was carried out in an intensive dairy farm
with 1,500 Holstein dairy cows. The total mixed ration of tested
dairy cows complied with the Nutrient Requirements of Dairy
Cattle (NRC) 2001 feeding standard of dairy cows and consisted
of 55.60% dry matter (DM), 16% crude protein, 5.60% fat, 180 g
calcium (Ca), 116 g phosphorus (P), 39.10% neutral detergent
fiber, 20.30% acidic detergent fiber, and 1.75 mcal/DM lactation
net energy.

Twenty-eight healthy postpartum Holstein cows aged 3–4
years with a body condition score of 3.0–3.50 and a daily milk
production of 33–35 kg/day were selected at 30 days postpartum
for tracking to 70 days postpartum, and cow background
information and estrus performance were recorded using Afi
Farm R© software. It is ensured that there is no difference in body
condition score (BCS), BCS loss, daily milk production between
the two groups of cows within 30–70 days after delivery, and
there are no other diseases. The ovarian status and follicular
development of dairy cows were examined by an experienced
breeder using B-ultrasound and rectal examination. Fourteen
normal estrus cows were allocated to control group A, and 14
cows with IO were in group B at 70 days postpartum. Selection
criteria for group A cows were spontaneous estrus with obvious
estrus symptoms, normal uterus, and 15–20mm ovarian follicles
at ovulation. Selection criteria for group B cows with IOwere lack
of follicular development on either ovary and the follicle diameter
was <8mm, follicle diameter increase of <2mm in 2 days, and
there was no corpus lutea on the ovaries (14, 15).

Sample Collection
A 10-ml blood sample at 70 days postpartum was collected from
the coccygeal vein in two groups of cows in the early morning
before feeding and immediately centrifuged at 3,000 rpm for
10min and then at 12,000 rpm for 10min, with the serum being
placed in a 1.5-ml tube, frozen in liquid nitrogen, and then

Frontiers in Veterinary Science | www.frontiersin.org 2 January 2021 | Volume 7 | Article 609391

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Zhao et al. Dairy Cows With Inactive Ovaries

stored in−80◦C for 1H-NMR testing. Milk sample collection was
performed at the same time of blood sample collection in two
groups of cows. The samples were then stored at −80◦C for the
1H-NMR test.

1H-NMR Analysis
The sample handling was consistent with the 1H-NMR sample
handling method reported earlier (1, 24, 27). Serum samples
were adjusted to 99.8% (v/v) D2O phosphate buffer solution
containing 0.05% (w/v) total suspended particulate (TSP matter:
0.2M Na2HPO, 0.2M NaH2PO4, NaH2PO4) at pH of 7.0 and
centrifuged at 12,000 × g for 20min at 4◦C, and the supernatant
was collected into a 5-mm nuclear magnetic tube for testing. Milk
whey samples from two groups of cows at 70 days postpartum
were prepared using 2ml of whey in each tube in a 10-mL
centrifuge tube. Two milliliters of methanol and 2ml acetonitrile
were added to each sample, mixed and allowed to stand at−20◦C
for 20min to separate fully. The remaining steps were the same
as for serum samples (22, 30, 31).

For 1H-NMR analysis, the above processed serum and milk
whey samples were performed on a 500-MHzNMR spectrometer
(AVANCE III, Bruker, Switzerland). The test temperature was
298K, and D2O and TSP are used for field locked and chemical
shift reference (1H, 0.00 ppm), respectively. The pulse sequence
used a transversely relaxed Carr–Purcell Meiboom–Gill (CPMG)
sequence [90 (τ -180–τ ) n-acquisition] and a total spin echo delay
of 10ms (2 nτ ). The number of 1H-NMR acquisition scans (NS)
was 32, the number of sampling points (TD) was 32 k, and the
spectral width was 10,000 Hz.

All 1H-NMR data for serum and milk whey samples was
corrected for zero, phase, and baseline in the Topspin software,
and the peak position of the internal reference TSP was adjusted
to zero displacement. The processed spectra were imported into
the R software and again corrected for zero, baseline, and phase.
For serum sample spectra, 0.015 ppm units for uniform interval
integration was used within the 0.8–8.5 ppm chemical shift
interval to reduce the number of data points while removing the
water peak and resonance in the affected region from 4.5 to 5.18
ppm signal. For whey samples, the integration range was 0.75–
8.4 ppm, and the water peak, and its affected area, was 4.4–5.175
ppm. All spectrum data were normalized by probability quotient
normalization (PQN), followed by Pareto averaged centering
and scaling.

The compounds were identified using Chenomx software
(Chenomx, Canada) to fit and compare the peaks, select
compounds with good peak shape matches, and combine
the Human Metabolome Database (HMDB) and the Madison
Metabolomics Consortium Database (MMCD). These were
then analyzed with statistical total correlation spectroscopy
(STOCSY). Method auxiliary identification of peak metabolites
was performed on 1H-NMR spectra. All integrated data were
normalized and integrated to perform multivariate statistical
analysis as described by Zhang et al. (1) and Hongyou et al. (32).

Multivariate Statistical Analysis
SIMCA-P10.0 (Sweden, Umetrics AB, Umeå) was used to
perform multivariate statistical analysis on the data, including

partial least squares discriminant analysis (PLS-DA) and
orthogonal signal correction (OSC-PLS-DA). Principal
component analysis of plasma metabolite 1H-NMR signals,
analysis and comparison of the overall presentation of sample
distributions, judgment of differences between groups, and
determination of the principal components were conducted.
Through OSC-PLS-DA analysis of the correlation coefficient
of each metabolite, statistically significant metabolites were
further summarized.

Combined with a one-way analysis of variance (ANOVA),
0.05 was set as the threshold for screening differentially expressed
metabolites. Differential metabolites causing differences between
groups were obtained. The KEGG (https://www.kegg.jp)
database was used to search the metabolic pathways related to
the differential metabolites.

RESULTS

Identification of Differential Metabolites
In Figures 1A,B are typical 1H-NMR spectra of the milk whey
and serum from the two groups. All the signal peaks were in the
range of 0.5–8.5 ppm, excluding the 4.4–5.175 ppm water peak
and its affected area. The 5.175–8.5 ppm in the low field area was
expanded 200 and 10 times for the observation of milk whey and
serum, and 29 and 26 compounds from the milk whey and serum
were identified, respectively between the two groups.

The OSC-PLS-DA analysis charts of the milk whey and
serum 1H-NMR data of groups A and B are shown in
Figures 2, 3 by multivariate statistical analysis. In the OSC-
PLS-DA score plot in Figures 2A, 3B, the two groups of
cows were significantly separated on the left (red square) and
right sides (black dot), which were not overlapped between
the groups. For the first principal component (PC1) in the
score map, the corresponding color S-plot in Figures 2C,
3C and the color loadings plot in Figures 2B,D, 3B,D were
obtained to reveal the differential metabolites in the milk
whey and serum of group B. By combining the OSC-PLS-DA
score plot, color S-plot, and color loadings plot, 10 different
metabolites in the milk whey were obtained in groups A and
B. Compared with group A, the elevated metabolites in the
milk whey samples of group B were glycolate, inositol, glycine,
creatine phosphate, and orotate, and the decreased metabolites
were lactose, taurine, creatinine, galactose, and phosphocholine.
Methanol differences due to unclean volatilization during
sample processing was excluded. Similarly, combining the OSC-
PLS-DA score plot, color S-plot, and color loadings plot,
seven different metabolites were determined in the serum of
groups A and B. Compared with group A, an increase in β-
hydroxybutyric acid (BHBA), inositol, and glutamine, glucose,
alanine and creatinine, and a decrease in tyrosine in the serum
of group B.

In Table 1, metabolites in the milk whey and serum of groups
A and B were analyzed using multivariate statistical analysis and
univariate analysis. Thirteen different metabolites were identified
in milk whey. Compared with group A, milk whey, succinate,
creatine phosphate, glycine, inositol, glycolate, and orotate in
group B were significantly increased, while in group B, alanine,
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FIGURE 1 | Typical 1H-NMR spectra (500Hz) of milk whey and serum from groups A and B. (A) Estrus group ( ); (B) inactive ovaries group ( ). (A) The typical
1H-NMR spectra of milk whey. 1, 3-hydroxybutyrate; 2, lactate; 3, alanine; 4, acetate; 5, acetamide; 6, N-acetyl carbohydrates; 7, acetylcholine; 8: succinate; 9,

2-oxoglutarate; 10, citrate; 11, creatine; 12, creatine phosphate; 13, creatinine; 14, choline; 15, O-phosphocholine; 16, glycerophosphocholine; 17, lactose; 18,

methanol; 19, taurine; 20, glycine; 21, myo-Inositol; 22, glycolate; 23, galactose; 24, maltose; 25, allantoin; 26, glucose-1-phosphate; 27, orotate; 28, fumarate; 29,

hippurate. (B) The typical serum 1H-NMR spectra. 1, Isoleucine; 2, leucine; 3, valine; 4, 3-hydroxybutyrate; 5, lactate; 6, alanine; 7, acetate; 8, glutamate; 9,

glutamine; 10, pyruvate; 11, succinate; 12, citrate; 13, creatinine; 14, creatine; 15, creatine phosphate; 16, phosphocholine; 17, glucose; 18, methanol; 19, glycine;

20, myo-inositol; 21, allantoin; 22, tyrosine; 23, phenylalanine; 24, hippurate; 25, histidine; and 26, formate.

creatinine, phosphorylcholine, lactose, taurine, galactose, and
glucose-1-phosphate were significantly reduced. There were 13
differential metabolites in the serum between group A and B.
The levels of β-hydroxybutyric acid, acetate, glutamine, and
glycine were significantly increased in the serum of group B, and
alanine, succinate, citrate, creatinine, phosphorylcholine, glucose,
inositol, tyrosine, and histidine were significantly decreased in
the serum of group B. It is worth noting that alanine, creatinine,
and O-phosphocholine were decreased in the serum and whey
of group B and glycine was elevated, while succinate showed
opposite results in the serum and whey of group B.

Differential Metabolite Pathway Analysis
In Figure 4A, the differential metabolites in the milk whey of
group B cows were mainly involved in the metabolism of taurine
and hypotaurine, galactose metabolism, and primary bile acid
biosynthesis. In Figure 4B, the differential metabolites in the
milk whey of group B cows were mainly involved in alanine,
aspartate, and glutamate metabolism, glyoxylate and dicarboxylic
acid metabolism, citric acid cycle, and phenylalanine, tyrosine,
and tryptophan organism synthesis. Both milk whey and serum
have a common glucose metabolism pathway, while serum is
primarily an amino acid metabolic pathway.
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FIGURE 2 | Orthogonal signal correction partial least squares discriminant analysis (OSC-PLS-DA) of milk whey 1H-NMR data from groups A and B. (A) Score plot in

which one point represents one sample and one ellipse represents a confidence interval of 95%. A: estrus group ( ); B: inactive ovaries group (•). (B,D)

Corresponding loadings plot (0.5–4.4 ppm, 5.175–8.5 ppm) where the significance is from highest in red to lowest in blue. Metabolites above the baseline are more

abundant in group B, while under the baseline are more abundant in group A. (C) S-plot in which different metabolites are distinguished by different colors and

shapes. The different metabolites are in the upper right or lower left, and the metabolite is more significantly different if it is farther away from the origin.

DISCUSSION

From the database search results of metabolites in Kyoto
Encyclopedia of Genes and Genomes (KEGG), linking the
differential metabolites in milk with the differential metabolites
in blood, a metabolic interaction network diagram (Figure 5)
was developed to clearly reveal the relationship between
differential metabolites and inactive ovaries. The main metabolic
alteration in the milk whey and serum of dairy cows
with IO was the weakening of the glucose metabolism
process and the trichloroacetic acid (TCA) process and
the enhancement of lipid mobilization and abnormal amino
acid metabolism.

The Effect of Glucose Metabolism on
Group B Cows
First of all, the experiment found that the serum level of
glucose, tyrosine, histidine, alanine, succinate, and citrate was
decreased in dairy cows with IO. It has been reported that
tyrosine, histidine, and alanine as glycogenic amino acids
usually supply energy directly by TCA in mammals (33)
and can also be converted into glucose (Glu) for energy
supply by gluconeogenesis in the liver of dairy cows under
negative energy balance (34). Succinate and citrate are the

main members of TCA that maintain energy supply by
β-oxidation in animals (35). In addition, glucose is an
important energy source for follicular development (36).
When the energy supply through TCA was reduced by the
lower serum succinate and citrate level in dairy cows, the
follicles could not be provided with sufficient energy, making
the nicotinamide adenine dinucleotide phosphate (NADPH)
hydrogen donor insufficient and resulting in reduced sex
hormone synthesis leading to poor follicular development
(37). This study indicated that dairy cows with IO had
insufficient energy due to the weak gluconeogenesis of glycogenic
amino acids and the decreased TCA function of succinate
and citrate.

Second, the milk whey levels of lactose, galactose, and glucose-
1-phosphate were significantly decreased in dairy cows with IO,
consistent with that in the serum and indicating that cows with
IOwere in NEB due to the lack of glucose and other disaccharides
in the serum or milk whey. Lactose is the main sugar in milk of
dairy cows. Studies have shown that about 80% of glucose in the
mammary gland is used for lactose synthesis (38, 39). Compared
with other organs, the uptake of glucose in the mammary gland
is not affected by insulin but flows to the mammary gland
by reducing insulin sensitivity in skeletal muscle and adipose
tissue (40).
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FIGURE 3 | Orthogonal signal correction partial least squares discriminant analysis (OSC-PLS-DA) of serum 1H-NMR data from groups A and B. (A) Score plot in

which one point represents one sample and one ellipse represents a confidence interval of 95. A: estrus group ( ); B: inactive ovaries group (•). (B,D) Corresponding

loadings plot (0.5–4.4 ppm, 5.175–8.5 ppm) where the significance is from highest in red to lowest in blue. Metabolites above the baseline are more abundant in

group B, while under the baseline are more abundant in group A. (C) S-plot in which different metabolites are distinguished by different colors and shapes. The

different metabolites are in the upper right or lower left, and the metabolite is more significantly different if it is farther away from the origin.

Finally, the results showed somemetabolic alteration of amino
acid in the milk whey of dairy cows with IO. Alanine is a sugar-
producing amino acid that may indirectly supply energy (41). Its
decrease in themilk whey of dairy cows with IO indicated that the
ability of alanine to supply the energy demand is limited. Glycine
is a simple non-essential amino acid that also is a glycogenic
amino acid (42). Its increase in the whey of dairy cows with IO
is beneficial to alleviate the energy status of dairy cows with IO
through gluconeogenesis.

The metabolomics of the serum and whey suggested that
glucose metabolism plays a key role in the development of
ovarian follicles or inactive ovaries in dairy cows during
early lactation. This is consistent with the experimental results
of Saumel et al. (43) supplementing glucose in hamster
ovary cells.

Effect of Lipid Metabolism on Dairy Cows
With IO
Taurine is mainly synthesized by the cysteine sulfinate pathway
to promote the removal of cholesterol in the liver (44). It
may reduce the secretion of apolipoprotein B100 and lipids,
such as very low-density lipoprotein (VLDL) and low-density
lipoprotein (LDL) (45). It is known that VLDL is an important

transporter in the liver of dairy cows and has the function
of transferring triglycerides. The reduction in taurine in the
milk whey of dairy cows with IO may hinder VLDL synthesis
to make triglycerides deposition in the liver, which causes
gluconeogenesis to worsen the negative energy balance and the
postpartum estrus in dairy cows. The combination of acetic
acid with coenzyme A into acetyl CoA is essential for the
metabolism of carbohydrates and fats (46). The BHBA is an
incomplete metabolic product of fatty acids in the liver (47).
When the blood glucose is too low to supply energy, fat
mobilization is enhanced to produce more ketone bodies (48).
In this experiment, both acetic acid and BHBA increased in the
serum of dairy cows with IO, suggesting that the cows’ lipid
metabolism was mobilized to meet lactation energy demand

due to the lack of glucose. Therefore, high BHBA and low
glucose in dairy cows with IO affect the development of follicles

due to abnormal amino acid metabolism. Increased levels of

BHBA in dairy cow serum indicate that dairy cows may suffer
from ketosis or subclinical ketosis. Studies have confirmed that
cows suffering from ketosis have an increased probability of
anestrus (49).

Inositol is an important component of certain lipids (50).
It can combine with choline to form phosphatidylinositol and

Frontiers in Veterinary Science | www.frontiersin.org 6 January 2021 | Volume 7 | Article 609391

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Zhao et al. Dairy Cows With Inactive Ovaries

TABLE 1 | Metabolites in the milk whey and serum of dairy cows with inactive ovaries (IO) and estrus.

Whey metabolites log2(FC) P Serum metabolites log2(FC) P

Galactose −0.74 *** 3-Hydroxybutyrate 1.01 ***

Alanine −0.45 * Alanine −0.35 ***

Succinate 0.59 ** Acetate 0.34 *

Creatine phosphate 0.23 * Glutamine 0.34 **

Creatinine −0.47 ** Succinate −0.33 *

O-Phosphocholine −1.03 * Citrate −0.26 *

Lactose −0.63 ** Creatinine −0.18 **

Taurine −1.50 *** O-Phosphocholine −0.38 *

Glycine 0.35 *** Glucose −0.26 **

myo-Inositol 0.16 * Glycine 0.18 *

Glycolate 0.25 * myo-Inositol −1.18 **

Orotate 0.24 * Tyrosine −0.15 *

Glucose-1-phosphate −0.88 * Histidine −0.29 **

If log2(FC) is a negative number, it means that the compound is downregulated in group B compared to group A. If log2(FC) is a positive number, it means that the compound is

upregulated in group B compared to group A.

*P < 0.05.

**P < 0.01.

***P < 0.001.

FIGURE 4 | Pathway analysis of the differential metabolites in the milk whey and serum of group B cows. Bubble area is proportional to the impact of each pathway,

with color denoting the significance from highest in red to lowest in white. (A) Pathway analysis of the differential metabolites in the milk whey. (B) Pathway analysis of

the differential metabolites in the serum.

reduce blood cholesterol (51). Studies have shown that, in
follicular membranes and granulosa cells, inositol may maintain
steroid production activity and sex hormones during the ovarian
cycle by regulating the dynamics of the cytoskeleton structure

(52). Inositol is mainly produced from glucose in the muscle
(53). The decreased glucose level in the serum of dairy cows with

IO reduces the synthesis of inositol, affecting the synthesis of

sex hormones.

Similarities and Differences of Whey
Metabolites and Serum Metabolites
The metabolites in milk whey result from the de novo synthesis
of the serum and mammary glands and are affected by the
metabolic state in mammary glands of lactating cows (54). The
small molecular metabolites in the milk whey of the mammary
glands are composed of precursors in the blood (55, 56). The
serum and milk whey components of dairy cows are affected
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FIGURE 5 | Network interaction diagram of differential metabolites in whey and serum. “↑” and “↓” denote an increase and decrease, respectively. Solid arrows

indicate changes in milk whey, and dashed arrows indicate changes in serum glucose metabolism, trichloroacetic acid (TCA) cycle, and lipid metabolism.

by nutritional intake, disease state, and lactation period, and the
specific metabolic relationship between them is limited (25). Ilves
et al. found that there seems to be little correlation between the
molecular composition of plasma andmilk. Compared withmilk,
blood is more dependent on individual animals, and citrate and
lactose have the greatest impact because they are more abundant
in milk (57). Maher et al. reported that milk is a unique metabolic
system, and its metabolite composition is largely unaffected
by plasma composition under normal conditions. However,
trimethylamine and dimethyl sulfone are highly correlated in
the plasma and milk, and plasma valine levels are related to
differences in amino acid catabolism in the mammary gland
(25). Our studies also confirmed the inconsistent changes in the
differential metabolites in the serum andmilk whey of dairy cows
with IO. Succinic acid is an intermediate of TCA and plays a
key role in ATP production in mitochondria, is an important
intermediate of several metabolic pathways, and is involved in
the formation and elimination of reactive oxygen species (58).
Succinic acid content in the serum of dairy cows with IO is
reduced but is increased in the milk whey. The content of inositol
level is the same as succinic acid in the serum and milk whey. It
is unclear if there may be a special need of the mammary gland
in dairy cows with IO during early lactation, which need to be
further confirmed in the future.

In summary, this study explored the differences between
the serum and milk whey of dairy cows with inactive ovaries
postpartum 70 days and found that inactive ovaries in dairy
cows are closely associated with decreased glucose metabolism,
impaired tricarboxylic acid cycle, increased lipid mobilization,
and abnormal amino acid metabolism. More research will
be needed to further demonstrate how these differential
metabolisms affect postpartum inactive ovaries in dairy cows.
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