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Abstract: Brain-computer interfaces (BCIs), based on motor imagery, are increasingly used in neu-
rorehabilitation. However, some people cannot control BCI, predictors of this are the features of
brain activity and personality traits. It is not known whether the success of BCI control is related
to interhemispheric asymmetry. The study was conducted on 44 BCI-naive subjects and included
one BCI session, EEG-analysis, 16PF Cattell Questionnaire, estimation of latent left-handedness, and
of subjective complexity of real and imagery movements. The success of brain states recognition
during imagination of left hand (LH) movement compared to the rest is higher in reserved, practical,
skeptical, and not very sociable individuals. Extraversion, liveliness, and dominance are significant
for the imagination of right hand (RH) movements in “pure” right-handers, and sensitivity in latent
left-handers. Subjective complexity of real LH and of imagery RH movements correlates with the
success of brain states recognition in the imagination of movement of LH compared to RH and
depends on the level of handedness. Thus, the level of handedness is the factor influencing the
success of BCI control. The data are supposed to be connected with hemispheric differences in motor
control, lateralization of dopamine, and may be important for rehabilitation of patients after a stroke.

Keywords: motor imagery; brain-computer interface; personality traits; psychology; interhemi-
spheric asymmetry; handedness; neurorehabilitation

1. Introduction

The technology of motor imagery-based on BCI has been used as a treatment for
rehabilitation of post stroke and spinal cord injury patients as well as of the individuals with
musculoskeletal disorders [1–17]. Particular attention is paid to training methods [7,12,18],
the use of exoskeletons [9–11] and augmented and virtual reality [19,20]. However, the
use of BCI in rehabilitation is restricted due to BCI-illiteracy phenomenon: about 10–30%
of users cannot control BCI [21]. Finding the predictors of successful BCI control is an
important challenge.

The predictors could be EEG characteristics such as: higher amplitude of sensory-
motor rhythm in the rest state [22–24], theta rhythm in frontal and posterior parietal
cortex, gamma rhythm in prefrontal or frontal-parietal cortex, alpha rhythm in all cortical
areas [25–27].
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Personality traits are also shown to be predictors of ability to control BCI (see re-
view [28]). These include memory size and ability to control attention [29]; the ability to
concentrate attention, assessed by the attitudes towards work (AHA) test [30–32]; degree
of self-reliance (Q2) assessed by the 16PF questionnaire [21]; confidence in ability to control
BCI and lack of fear of failure [33–37], dealing with technology [34]; activity (active learners
tend to perform better than reflexive ones) [21,38]; spatial abilities assessed by the success
of mental rotation of figures [21,28,39]; ability to perform precise hand movements assessed
by two-hand coordination test [29]; good kinesthetic and visual-motor imagination [40];
ability to imagine (abstractedness, M) in opposite of practicality and down-to-earthness [21].
Additionally, factors such as mood [41], motivation [32,33,41], as well as age (over 25 is
better than younger) [42] and gender (women perform better than men) [42] are shown to
be predictors of successful BCI control.

Personality traits are known to be connected with EEG-parameters. Neuroticism,
estimated by Eysenck’s personality inventory (EPI), correlates with EEG-activity [43–45].
According to [43], neuroticism at rest is related to high level of alpha rhythm in the right
posterior regions of the brain, and increased frontal asymmetry variability at the mid-
frontal sites [44]. Calculation of correlation of EEG-parameters and personality traits,
estimated by the Big Five [46,47], demonstrate negative correlation of agreeableness and
beta band [48], and openness to experience, agreeableness and conscientiousness correlate
with alpha, beta1, beta2, delta, and theta rhythms [49].

There is evidence of interhemispheric differences in correlation of EEG parameters
with anxiety [50,51] and with neuroticism [44]. For example, when analyzing the relation-
ship between spectral characteristics of EEG and anxiety (assessed by state-trait anxiety
inventory (STAI) and 16PF questionnaire), interhemispheric differences were revealed [51].
In the right but not in the left hemisphere, there were significant positive correlations
between anxiety and power of beta2 rhythm (at rest with open eyes). In the left hemisphere,
anxiety was negatively correlated with power of alpha rhythm [51].

Thus, there is a lot of information that personality traits correlate with the EEG activity
of different parts of the brain in different frequency ranges, and a number of studies indicate
the lateralization of brain regions whose activity correlates with personality traits. At the
same time, there is no information in BCI studies about how the success of brain state
recognition in persons with different traits is connected with interhemispheric asymmetry.

In previous study we demonstrated that the correlation of success of the recognition
of brain states during kinesthetic imagination of hand movements in naive right-handed
users of BCI with different personality traits depends on whether the right or the left-hand
movements are imagined [52].

Different personality traits, which are important for qualitative imagination of the
right or the left hand suggests that the portrait of a successful BCI user can depend
on handedness.

There is evidence that personality traits differ in right- and left-handers. Left-handers
are significantly more agreeable [53] and more emotionally unstable [54], more dominant
and less nurturance [55]. As to extraversion, early study [56] demonstrated that right-
handers are more extraverted compared to left-handers (only women, not men), however,
the results of modern research studies are directly opposite [53]. Another modern study [57]
does not reveal any difference between left- and right-handers but demonstrates that the
left-handers are more extraverted than the right-handers according to self-estimation of
the level of extraversion. The study [57] demonstrates that both left- and right-handers
are more extraverted than ambidextrous people. These differences among the studies
mentioned above are apparently connected with the size and other characteristics of
samples, and with the tests used for handedness estimation. Modern studies suggest that
it is more meaningful to divide humans into strong- versus mixed- handed (consistent-
versus inconsistent (ambidextrous) handed), than to left– and right-handed [58].

Some people are so-called latent left-handers. The term “latent left-handedness” was
used by A.R. Luria for people who were left-handed in the Napoleon’s pose (upper left
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forearm) and finger grip (upper left thumb) tests but used their right hand to write and
hold cutlery [59]. So, latent left-handers demonstrate inconsistent (mixed) handedness. A
modern study carried out on a large group of volunteers (7562 people) showed that the
position of the right forearm and right finger on top prevails in right-handers, vice versa in
left-handers and in mixed type [60].

It is not known how “handedness” (left-handedness, latent left-handedness, consis-
tent/inconsistent handedness) affects the success of BCI control, and how it relates to
personality traits. At the same time, this factor can predict the success of BCI control and
influence the success of neurorehabilitation with BCI, based on the classification of brain
states during kinesthetic imagination of movements.

The aim of this study was to investigate the correlations between personality traits
and accuracy of brain states classification during imagination of the right or the left hand
in naive right-handers with different degrees of handedness (“pure” right-handers and
latent left-handers).

2. Materials and Methods
2.1. Participants

Forty-four healthy BCI-naive subjects took part in the study: 19 men, 25 women, age
range 19–25 years. All volunteers were right-handed [61], 18 from 44 were characterized by
latent left-handedness [59]. Participants were required to have full contractual capability
and no neurological disease.

The study was conducted according to the protocol of motor imagery BCI clinical
evaluation approved by the Ethical Committee of the Research Center of Neurology (#12/14
of 10 December 2014) as a part of clinical trials registered at clinicaltrials.gov (accessed on
18 June 2021) (“iMove,” trial number NCT02325947).

2.2. Measures

All subjects were tested by Sixteen Personality Factor Questionnaire by Cattell
(187 questions) and evaluated the rate of subjective complexity of the right and the left
hand movement on a Likert scale from 1 to 5, where 1—very easy, 2—easy, 3—neutral,
4—difficult, 5—very difficult.

Latent left-handedness was detected using the Bragina-Dobrohotova method [62]
based on [59]. It included three tasks:

Clapping: participants were requested to clap. The preference was determined by the
upper hand.

Hand clasping: participants were requested to clasp their hands with the fingers
interlaced. The preference was determined by the thumb «on-top» position.

Participants were requested to close their eyes and stretch arms out in front of them.
The preference was determined by the arm that is higher.

The hand asymmetry coefficient (AC) (Equation (1)) was calculated as follows:

AC =
R − L

R + L + N
(1)

where R is the number of times the right hand was a preference, L—the left, N—no hand
was a preference. Subjects with a negative AC value were considered latent left-handers,
with positive AC—as “pure” right-handers.

EEG was recorded using a 24 channels SmartBCI wireless electroencephalograph
(produced by Aliot, St. Petersburg, Russia). The electroencephalograph (weight 50 g) was
attached close to point of contact of electrodes with the surface of the head.

2.3. Experimental Procedure

During the experiment session the participants were sitting in a comfortable chair
with arms lying relaxed on knees, approximately 1 m away from a computer screen.

clinicaltrials.gov
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2.3.1. A Session of Control of BCI Based on Kinesthetic Imagination of Hand Movements

The participants were instructed to imagine kinesthetic (not visual) sensations during
lifting and lowering the RH or LH from knee to level of their shoulder. Symbols appeared
in random order on the monitor screen for 10 s, according to which subjects had to imagine
movements of RH or LH or to be at the rest state.

The subjects were asked to perform motor imagery with LH or RH or be at the rest
according to the instructions appearing on the screen. An icon then highlighted on the left
or right side of the screen for 10 s to instruct the subjects to use their LH or RH to perform
motor imagery. When none of the icons were highlighted, the subjects were instructed to
be at rest. The order of highlighting of the left or right icons or its absence was randomized.
Motor imagery included imagining kinesthetic (not visual) sensations when raising and
lowering RH or LH from knee to level of their shoulder.

2.3.2. Motor Test

The motor test included real and imagery lifting and lowering RH or LH from knee to
level of shoulder for 3 min for each hand. Real hand movements were carried out according
to the vertical motion of the arrow on screen, imagery movement at the same pace without
visual stimuli.

After each stage of the motor test, participants evaluated the rate of subjective com-
plexity of the stage on a Likert scale from 1 to 5, where 1—very easy, 2—easy, 3—neutral,
4—difficult, 5—very difficult.

2.4. EEG Analysis

EEG signals were analyzed to classify states for the pairwise asynchronous BCI based
on desynchronization of the sensorimotor rhythm and to estimate accuracy of classification
of brain signals when imagining movements occurred. Three brain states: imagery of LH
movement (1), imagery of RH movement (2), at the rest (3) were analyzed in pairs: 1 vs. 2,
1 vs. 3, and 2 vs. 3. Classification accuracy was assessed by cross-validation, i.e., iterative
partitioning of each pair of states into the training and testing sets, with the classifier
trained using the training set (the duration of training the classifier was about 3 min) and
the testing set being used to evaluate classification quality (offline). The accuracy of the
classification was evaluated by the probability of recognizing exactly the mental state
that was specified by the instruction. In case of random recognition of two states, this
probability is equal to 0.5. Thus, the classification accuracy of brain states was assessed
during imagination of the right hand (RH) in comparison with the rest state (ARH), the
left hand (LH) in comparison with the rest state (ALH) and of RH in comparison with LH
(ARLH).

2.5. Statistical Analysis

The dependence accuracy of brain states recognition on personality traits (as well as
on the subjective complexity) was performed by methods of correlation and factor analysis.
The nonparametric Mann–Whitney test was used to assess the reliability of differences
between subgroups of subjects with high and low values of each of personality traits. Since
the samples were not very big, and not all distributions were normal, the Spearman rank
correlation coefficient (nonparametric) was calculated during the correlation analysis, and
in addition, the data were analyzed using the parametric Pearson test.

3. Results
3.1. Differences between Accuracy of Classification of Brain Activity during Imagination of RH or
LH Movements Depending on Personality Traits without Taking into Account Latent
Left-Handedness

The average classification accuracy of brain states was 65.6% ± 8.3% (m ± SD). The
classification accuracy of brain states during imagination of the right or the left hand in
comparison with the rest state (ARH, ALH) was significantly (p < 0.05) higher, then one of
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the right hand in comparison with the left hand (ARLH) (66.2% ± 9.1%, 67.7% ± 8%, and
62.9% ± 7%, respectively). The minimum classification accuracy was 49.5%, which does
not exceed the chance-level performance (1 case from total 132), the maximum one was
90%.

Significant correlations between the personality traits and ARH or ALH are shown in
Table 1, Appendix A, and Figure 1A.

Table 1. Correlations between personality traits and the accuracy of classification of brain states during imagination of hand
movements comparative to the rest (data of all 44 participants).

Personality Trait
(Cattell)

Accuracy of Classification of Brain States in
Imagining Left Hand Movements and in Rest

State (ALH)

Accuracy of Classification of Brain States in
Imagining Right Hand Movements and in

Rest State (ARH)

PCC NCC PCC NCC

Liveliness (F) - - +0.346 * +0.304 *
Extraversion (F2) - - +0.315 * +0.255 (p = 0.095)

Sensitivity (I) - - +0.347 * +0.337 *
Abstractedness (M) −0.270 (p = 0,076) −0.355 * - -

Rule-
consciousness (G) −0.362 * −0.337 * - -

Openness to change (Q1) +0.318 * +0.260 (p = 0.088) - -

PCC—the value of the parametric correlation coefficient (Pearson), NCC—nonparametric one (Spearman). Significant correlations (p < 0.05)
are marked with an asterisk (*), p-value is indicated in parenthesis in a case of trend.

ARH significantly positively correlates with F2 (extraversion), F (liveliness) and I
(sensitivity). The mean values ARH for subgroups with higher and lower values of factors
F2 and I, significantly differ (according to Mann–Whitney test)—classification accuracy is
higher in subgroups with higher values of these features. Consequently, imagination of
movements of RH is more successful in extroverts than in introverts; in people who are more
reckless, spontaneous, and expressive than those who are reserved, serious, self-absorbed;
in more sensitive and intuitive people than in tough, self-confident, serious utilitarian.

Besides for Factor I (sensitivity) it was shown significant negative correlation (r = −0.332)
with ARLH. This means that in more sensitive individuals brain states in imagining LH and
RH movements differ less than in less sensitive individuals, although, as mentioned above,
sensitivity is positively associated with ARH.

ALH does not depend significantly on the factors mentioned above, but it is signifi-
cantly negatively correlated with factors M (abstractedness) and G (rule-consciousness).
This means that imagination of LH movements is more successful in practical realists than
in people who are prone to abstract thinking; in rule-ignoring non-conformists and skep-
tics than in conscientious obedient moralists and conservatives. There is also a tendency
(p = 0.069) of significance of differences between subgroups with higher and lower values
of factor G according to Mann–Whitney test.

As well as factor G (rule-consciousness) factor Q1 (openness to change) revealed
a significant correlation with ALH, as well as significant difference between ARH in
the subgroups with higher and lower values of this trait according to Mann–Whitney
test (p < 0.05). This means that the individuals open to change, inclined to experiment,
analysis, criticism, liberalism, free thinking, and flexibility better imagine both RH and LH
movements than traditionalists and conservatives.

To clarify “portraits” of users who are able to more successfully control BCI based
on imagery movements of RH and LH, a factor analysis of personality traits of subjects
was carried out. The result of the analysis 7 factors was revealed that explain 71% of
the variance.
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(A) 

(B)

Figure 1. Nonparametric (Spearman’s) correlation coefficients between personality traits and the accuracy of classification
of brain signals when imagining movements of the right (ARH, green columns) and left hand (ALH, red columns) in
comparison to the rest. (A)—data of all participants (“pure” right-handers and latent left-handers together), (B)—data of
“pure” right-handers (RHs) and latent left-handers (LHs) separately. Significant correlations are marked with an asterisk (*)
(p < 0.05) or two asterisks (**) (for p < 0.01), p-value is indicated in a case of trend. Significant (p < 0.05) differences between
subgroups with a high and low value of the factor according to Mann–Whitney test are marked with M-W.

New variables were obtained corresponding to the values of these new factors. These
new variables were correlated with classification accuracy parameters. Correlation analysis
revealed a significant (p < 0.01) negative relationship of one of the factors with ALH. This
factor includes the following traits estimated by Cattell Questionnaire (factor loading and
its sign are indicated in parentheses): abstractedness (M; −0.752) (grounded, practical,
prosaic, solution oriented, steady, conventional), privateness (N; +0.670) (private, discreet,
non-disclosing, shrewd, polished, worldly, astute, diplomatic) and warmth (A; −0.403) (im-
personal, distant, cool, reserved, detached, formal, aloof). It means that ALH (but not ARH)
is higher in practical, private, low social (the latter with a lower factor load) individuals.

It should be noted that, since samples were not very large, data obtained using
factor analysis are less reliable than paired correlations, but they do not contradict results
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of correlation analysis and allow us to clarify the “portrait” of a successful BCI user
performing a task for the first time.

Thus, the results of testing of all the participants (“pure” right-handed and latent left-
handed individuals together) shows that practical, reserved, skeptical and not very sociable
people are more successful in imagining LH movements (brain state differ higher from
the rest), expressive sensitive extroverts are more successful in imagining RH movements,
opened to change individuals—in imagination of movement of both RH and of LH.

3.2. Differences between Accuracy of Classification of Brain Activity during Imagination of RH or
LH Movements Depending on Personality Traits Taking into Account Latent Left-Handedness

The average classification accuracy of states for “pure” right-handers is 66 ± 8.2%,
for latent left-handers—65 ± 8.5% (Table 2). There are no significant differences in ARH,
ALH and ARLH between the “pure” right-handers and latent left-handers groups. The
minimum classification accuracy in “pure” right-handers group is 49.5%, which does not
exceed the chance-level performance (1 case from 54 total), the maximum one is 90%; in
the group of latent left-handers—52.1% (which exceeds the chance-level performance) and
89.1%, respectively. ARH is significantly higher than ARLH within the group of “pure”
right-handers only.

Table 2. The average classification accuracy for latent, “pure” right-handers and all participants
together (m ± SD).

“Pure”
Right-Handers

Latent
Left-Handers

All
Participants

Accuracy of classification
of the LH movements

imagination comparative to
rest (ALH)

66.9 ± 8.5% 66.5 ± 10.4% 66.2 ± 9.1%

Accuracy of classification
of the RH movements

imagination comparative to
rest (ARH)

68.7 ± 8% 65.6 ± 8.1% 67.7 ± 8%

Accuracy of classification
of the imagination of RH

movements comparative to
LH (ARLH)

62.4 ± 7.1% 63 ± 6.9% 62.9 ± 7%

Mean 66 ± 8.2% 65 ± 8.5% 65.6 ± 8.3%

Data (Table 3, Figure 1B) shows that liveliness (F) and extraversion (F2) significantly
positively correlate with ARH in “pure” right-handers, but not in latent left-handers.
The correlation coefficients are about twice as high in “pure” right-handers compared to
the group of all the subjects. Two factors—dominance (E) and rule-consciousness (G),
also demonstrate significant correlation with ARH in “pure” right-handers, but not in
latent left-handers (Table 3). Although values of rule-consciousness (G) does not correlate
significantly with ARH in the group of all subjects (see Table 1), there is a tendency of
differences between ARH in subgroups with higher and lower values of this factor. Now it
can be realized that in “pure” right-handers there are significant correlations both ARH,
and ALH with values of rule-consciousness (G).
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Table 3. Correlations between personality traits and the accuracy of classification of brain states during imagination of hand
movements (of the left hand (LH) or of the right hand (RH)) comparative to the rest taking into account latent handedness.

Personality Trait
(Cattell)

Accuracy of Classification of Brain States in
Imagining Left Hand Movements and in Rest

State (ALH)

Accuracy of Classification of Brain States in
Imagining Right Hand Movements and in Rest

State (ARH)

PCC NCC PCC NCC

Liveliness (F)
- - All +0.346 * All +0.304 *
- - RHs +0.656 * RHs +0.687 **
- - - -

Extraversion (F2)
- - All +0.315 * All +0.255 (p = 0.095)
- - RHs +0.420 * RHs +0.489 *
- - - -

Dominance (E)
- - - -
- - - -
- - - RHs +0.442 *

Sensitivity (I)
- - All +0.347 * All +0.337 *
- - - -
- - LHs +0.518 * LHs +0.502 *

Abstractedness (M)
All −0.270 (p = 0.076) All −0.355 * - -

- - - -
- - - -

Rule-
consciousness (G)

All −0.362 *
RHs −0.478 *

-

All −0.337 *
RHs −0.360

(p = 0.1)
-

-
RHs −0.433 *

-

-
RHs −0.430 *

-

Openness to
change (Q1)

All +0.318 *
-
-

All +0.260 (p = 0.088)
-

LHs 0.413
(p = 0.1)

-
-
-

-
-
-

All—the correlation coefficient for the group of all of the subjects, RHs—for right-handers, LHs—for left-handers. PCC—the value of the
parametric correlation coefficient (Pearson), NCC—nonparametric correlation coefficient (Spearman). Significant correlations are marked
with an asterisk (*) (p < 0.05) or two asterisks (**) (for p < 0.01), p-value is indicated in parenthesis in a case of trend.

Correlations of factors abstractedness (M) and openness to change (Q1) do not depend
on latent left-handedness. The factor I (sensitivity) significantly positive correlates with
ARH in latent left-handers, but not in “pure” right-handers. The correlation coefficient
is higher in latent left-handers (+0.502) compared to the group of all the subjects (+0.337)
(Table 3).

Furthermore, Factor I (sensitivity) demonstrates negative significant correlation with
the ARLH (r = −0.615) in latent left-handers (the correlation is also significant, but less in
the group of all the subjects (r = −0.332), and it is not significant in “pure” right-handers).
Other personality traits do not correlate significantly with ARLH.

Factor analysis of personality traits was carried out in groups of “pure” right-handers
and latent left-handers. New variables were obtained that correspond to the values of new
factors identified as a result of the factor analysis. These new variables were correlated
with the values of classification accuracy. This correlation analysis revealed the following
significant (p < 0.01) correlations (correlation coefficients, factor loadings and their sign are
indicated in parentheses).

In “pure” right-handers:
positive correlation (r = +0.525 *) of ARH with factor including following traits esti-

mated by Cattell Questionnaire: extraversion (F2; +0.822), openness to change (Q1; +0.804),
dominance (E; +0.7), liveliness (F; +0.696);
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negative correlation (r = −0.553 **) ALH and positive correlation (r = +0.442 *) of
ARLH with factor including two traits estimated by Cattell Questionnaire: abstractedness
(M; +0.942) and privateness (N; −0.649).

In latent left-handers:
negative correlation (r = −0.498 *) of ARLH with factor including the following

traits estimated by Cattell Questionnaire: rule-consciousness (G; +0.724) and sensitivity
(I; +0.696).

Thus, the accuracy of classification is to a greater extent connected with personality
traits in “pure” right-handers during the imagination of RH movements. The accuracy of
recognition of brain states in this case is influenced by a wide range of personality traits,
including extraversion (F2), openness to change (Q1), dominance (E), and liveliness (F).
Abstractedness (M) and privateness (N) affect the imagination of LH movements by “pure”
right-handers. In latent left-handers, sensitivity (I) and rule-consciousness (G) influence the
accuracy of recognition of brain states during imagination movements of RH comparative
to LH (not comparative to the rest, as in right-handers). It is necessary to emphasize that,
since samples were not very large, data obtained using factor analysis are less reliable than
paired correlations.

3.3. Subjective Complexity of Real and Imaging Movements Correlated with the Accuracy of
Classification of the Brain States

The average values of subjective complexity (Table 4) show that it is subjectively more
difficult to imagine movements than to perform them (on average by 37.5% for the group
of all the subjects (p < 0.001); by 41% for “pure” right-handers (p < 0.005); by 32% for latent
left-handers (p < 0.01)). A more detailed analysis shows that it is subjectively more difficult
to imagine LH movements than to perform them, both in the group of all subjects (by 45%,
p < 0.001), and in “pure” right-handers (by 54%, p < 0.01), and in latent left-handers (by
33.5%, p < 0.05), while subjective complexity of real and imagery movements of RH differs
significantly only for the group of all subjects (by 30%, p < 0.05). There were no significant
differences in subjective complexity of both real and imagery movements of RH and LH.

Table 4. Mean values of subjective complexity (mean SC) and Spearman’s correlation coefficients
(correlations) between SC of real movement or motor imagery of the right hand (RH) or left hand
(LH) and the accuracy of classification of brain states during imagination of movements of the left
hand compared with right hand (ARLH) in the group of all participants (all), in the group of “pure”
right-handers (RHs) and latent left-handers (LHs).

LH RH

Mean SC Correlations Mean SC Correlations

Real movement
All 1.88 - All 1.96 -

RHs 1.80 RHs 0.527 * RHs 1.87 -
LHs 2.00 - LHs 2.11 -

Motor imagery

All 2.73 - All 2.54 All 0.697 **
RHs 2.77 - RHs 2.40 RHs 0.664 **

LHs 2.67 - LHs 2.78 LHs 0.604 (p = 0.085)
(0.685 *)

The values of correlation coefficients are indicated only in a case of significance. Significant correlations are
marked with an asterisk (*) (for p < 0.05) or two asterisks (**) (for p < 0.01), p-value and Pearson correlation
coefficients (in parenthesis) are indicated in a case of Spearman trend.

Analysis of correlations of subjective complexity with classification accuracy does not
reveal significant correlations of subjective complexity with ARH and ALH for the group as
a whole and for groups of “pure” right-handers and latent left-handers. However, ARLH
significantly correlates with subjective complexity of imaginary movements of RH (but not
the LH), in group as a whole (r = 0.697, Table 4), as well as in group of “pure” right-handed
(r = 0.664, Table 4, Figure 2); for group of latent left-handers tendency in the same direction.
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Besides that, ARLH significantly correlates with subjective complexity of real LH (but not
RH) movements in groups of “pure” right- handers.

Figure 2. Scheme of the mutual location of areas of state of parameters calculated from EEG characteristics and used for
classification, characterizing different brain states: at the rest (empty circles), while imagining movements of the right hand
(RH) or left hand (LH) with low (L) or a high (H) value of an individual personality trait or subjective complexity of real or
imaginary movements among “pure” right-handers, latent left-handers and both groups together. The distance between
circles corresponds to the classification accuracy of brain states. p-value and Pearson correlation coefficients (in parenthesis
with an asterisk) are indicated in a case of Spearman trend (Figure 2H). The description and explanations for the figure are
given in the text.

4. Discussion

The results of the study revealed a correlation between the accuracy of classification
of brain signals during imagination of RH or LH movements with personality traits and
subjective complexity of real and imaginary movements, and the relationship between
these factors can change depending on the latent left-handedness. Latent left-handedness
is a variant of mixed (inconsistent) handedness, which, according to modern researchers, is
more significant for dividing people according to the degree of left-handedness than for
left-handers and right-handers [58]. All the data obtained are assumed to be associated
with laterality—differences in information processing and motor control in the right and
left hemispheres of right-handers and left-handers.

In right-handers the left dominant hemisphere comparative to their right one is
characterized by shorter connections between neurons [63], more local information pro-
cessing [64], higher blood circulation [65], more developed sensory and motor areas [66]. It
is specialized in verbal cognition, gestures, fine motor skills, and control of sequence of
movements, while the right-hemisphere in right-handers—in nonverbal cognition, postural
control and positional aspects of movements [67–70]. When controlling hand movements,
dominant hemisphere is specialized in limb trajectory control, and nondominant—in limb
position control [71–87].

The left-handers are characterized by a smaller morphological and functional inter-
hemispheric asymmetry comparative to the right-handers [67,69,70], which is apparently
connected with their more pronounced interhemispheric connections through corpus callo-
sum [88–90]. There is evidence of a greater strength of connections between the occipital
regions of the right and left hemispheres (coherence) of left-handers than right-handers [91].
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Left-handers are characterized by less asymmetry of the central sulcus [92] and of the cere-
bellum [93] than right-handers. A significant correlation was found between the degree of
handedness and the size of the planum temporale, assessed by the bifurcation of the Sylvian
fissure [94]. During RH and LH movements EEG analysis revealed differences in right-
and left-handers not only in interhemispheric interactions, but also in cortico-subcortical
ones [95].

Motor control in right-and left-handers is characterized by two features. On the
one hand, when organizing the movements of right-handers and left-handers, there is
often “mirror” activity in the dominant and subdominant hemispheres. In both right-
handers and left-handers, the contralateral areas of the cortex are activated more than the
ipsilateral areas [96], and this is more pronounced for the dominant hand than for the non-
dominant hand (non-dominant hand demonstrates more bilateral pattern of activity [97,98].
The non-dominant hand is better in the task of comparing proprioceptive goals than
the dominant hand: RH in left-handers and LH in right-handers [99]. The study of the
accuracy of hand movements when reproducing sequences modified according to the
principle of position constancy suggests that the subdominant hemisphere of both right-
handers and left-handers remembers and uses information about positions, despite the
change in the movements themselves [86].When reproducing sequences modified by the
principle of constancy of the amplitude and direction of movement (and changing the
position), the dominant hemisphere in both right-handers and left-handers remembers and
uses information about the parameters of the movements [87].

On the other hand, even during a simple movement such as the clenching of the fist,
with a basic “mirror” similarity of the activated brain areas in right- and left-handers, there
are differences in the strength of connections between different areas [100,101]. During
finger movement of the dominant hand the contralateral primary motor cortex of the domi-
nant hemisphere is activated in both right- and left-handers, but there is no “mirroring”
for other motor areas [100]. Based on the data that both in right- and left-handers RH
reproduced simple rhythmic patterns more precisely than LH, it was suggested that the
left hemisphere control the serial organization of movements regardless of the handed-
ness [102]. During LH movements left dorsal premotor cortex is more active both in right-
and left-handers, and this asymmetry is less in left-handed people [103]. Reproducing of
grasping force is asymmetrical in right-handers, but not in left-handers [104,105].

In general, for right- and left-handers “mirror” brain patterns are more typical for
more simple movements, whereas during more complex or sequential movements the brain
patterns are more complicated, including left premotor cortex, however this asymmetry is
not so pronounced in left-handers [70,79,100,106,107].

Taking into account these data, we will answer the questions that arise when consider-
ing the results of the study.

4.1. Why Are Lively Dominant Extroverts Higher in ARH?

It is known that the left nigrostriatal dopaminergic system prevails in people with a
dominant RH, and vice versa (right nigrostriatal dopaminergic system) in left-handers [108].
At the same time, there is information about the predominant content of dopamine in
basal ganglia (in globus pallidus, caudate nucleus, and putamen) of the left hemisphere
compared to the right hemisphere [109,110]. Extroverts have larger dopaminergic activity
than introverts [111]. Dopamine plays the role of a stimulating neurotransmitter in the
nigrostriatal dopaminergic system that helps to increase motor activity, reduce motor inhi-
bition, and muscle hypertonicity. This role of dopamine apparently leads to disinhibition
of neuronal pools associated with regulation of movements and motor imagery. Globus
pallidum regulates complex motor acts; when it is irritated, contraction of limb muscles
is observed. Caudate nucleus is important in conscious control of motor activity, and
putamen is responsible for regulation of movement and influences various types of learn-
ing. The level of basal ganglia is the level of synergies and stereotypes according to N.A.
Bernstein [112–114], and movements that our subjects imagined during the experiment
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(lifting and lowering arm) are well-learned, stereotyped movements that can be categorized
as “stereotypes”. Therefore, it can be assumed that ARH, but not ALH, was higher in
extraverts (compared to introverts) due to the greater activity of their dopaminergic system.

As to other traits that revealed a correlation with ARH in “pure” right-handers—
liveliness (F) and dominance (E)—there is no direct information in the literature, however,
these personality traits consistently complement the image of the user-extrovert who more
successfully controls BCI when imagining RH movements.

4.2. Why Does the Factor Sensitivity (I) in Latent Left-Handers (But Not in “Pure”
Right-Handers) Affect ARH (Not ALH)?

It is known that when organizing movements, left-handers are characterized by “mir-
roring”, that is, when performing movements, the dominant hemisphere of both left-handers
and right-handers regulates work of the dominant hand and controls ballistic movements,
and the subdominant hemisphere provides a description of positions (positional coding)
using feedbacks when organizing movements: the non-dominant hand copes better with
positional tasks—RH in left-handers and LH—in right-handers [71–73,79–82,86,87,99,115].
It seems likely that the higher sensitivity (I), the greater the inflow of afferent kinesthetic
information that provides feedbacks, and feedbacks, as mentioned above, are used to a
greater extent when organizing movements by the right hemisphere of right-handers and
the left hemisphere of left-handed ones. Therefore, in our experiment, activity of the brain
during imagination of movements of RH is more different from the rest in latent left-handers
with greater sensitivity (I).

It would be logical to expect that also in “pure” right-handers with a higher sensitivity
(I), the classification accuracy in imagining LH movements would be higher, but in this
case no significant changes were found. Perhaps there are some additional factors. It is
supposed to be connected with the differences in the morphofunctional organization of the
brain of right-handers and left-handers. These differences reveal themselves in data as fol-
lows. Even during such an elementary movement as making a fist a fundamental “mirror”
similarity of the activated areas of the brain of right-handers and left-handers is observed,
but there are differences in strength of connections between different areas [100]. Reproduc-
tion of force grip is asymmetric in right-handers, but symmetric in left-handers [104,105].
EEG analysis during the movements of RH and LH reveals differences in right-handers and
left-handers not only in interhemispheric, but also in cortical-subcortical interactions [116].
Studying RH and LH movement sequences in right- and left-handers demonstrates that
during the first reproduction of a memorized sequence of movements, errors are “mir-
rored”. However, when the same sequence is reproduced with the opposite hand (skill
transfer), “mirroring” is lost and the errors depend on other aspects, which are nevertheless
also associated with laterality [87].

4.3. Why Does Factor Abstractedness (M) Affect ALH?

In the group of “pure” right-handers and latent left-handers together abstractedness
(M) is negatively correlated with ALH, i.e., in more “concrete” subjects, brain signals
during LH movement imagination differ more from the rest state. It can be assumed
that this is due to fact that the right hemisphere of right-handers specializes in holistic
descriptions, in formation of an internal representation of the “body scheme”; it pro-
vides regulation of posture and movement, carried out with feedback, and positional
aspects of movement [71–73,79–82,115]. On the other hand, the left hemisphere is charac-
terized by more local information processing (shorter interhemispheric connections [63],
it provides regulation of ballistic movements (without feedback) and their dynamic as-
pects [71–73,79–82,115], fine motor skills, gestures, sequences of movements, and speech,
categorization [117], which requires abstraction. This information about interhemispheric
asymmetry can be compared with such personal factors as concreteness and abstractness.
Concreteness—taking into account holistic sensory information, including kinesthetic in-
formation obtained from feedbacks during movements, abstractness—ignoring details,
truncated information, ballistic movements, descriptions in a language when a word re-
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flects a set of characteristic features, categorization (e.g., “tree”—roots, trunk and branches,
“hare”—moves, jumps, ears). From this point of view, more concrete, practical and less
abstract people have more activity in the areas of the brain associated with organization of
LH movements, which is more different from activity at the rest, which affects (manifested
in) an increase in the classification accuracy.

Why is latent left-handedness not a factor that determines the correlation between
abstractedness (M) and ALH? It can be assumed that this is due to the fact that the right
hemisphere in right-handers and left-handers works more similarly than the left. It can
be assumed that this is due to the fact that the right hemisphere in right-handers and
left-handers works more similarly than the left. Right-handers differ more in left and right
hemispheres than left-handers [67,90,92,93]. Depending on the degree of left-handedness,
properties of the left hemisphere change to a greater extent, not the right hemisphere [70].
All these features are associated with the nature of organization of intra- and interhemi-
spheric connections. In right-handers, intrahemispheric connections in the left hemisphere
are shorter [63] than in the right; in left-handers, interhemispheric connections are more pro-
nounced, due to which lateralization of functions is not so pronounced. When imagining
LH movements, the right hemisphere is more active, which differs less between right-
handers and left-handers, and therefore we do not observe dependence of the classification
accuracy on latent left-handedness.

4.4. What Is the Reason for the Differences in the Subjective Complexity of Realizing Real
Movements of the RH and LH and Their Imagination?

Subjective complexity is a parameter that is evaluated by the subject based on their
own feelings, not too often used in research. This approach was used to determine the
ability to imagine movements in patients with movement disorders, where it was shown
that the brightness of movement imagination correlates with the activation of motor
cortical zones, and in patients it is less than in healthy ones [118]. The complexity of the
new motor imaging paradigm compared to the traditional one was evaluated by [119]
when studying the effect of long-term seven-day training on the subjective difficulty of
imagining movements and the level of pain in patients with spinal cord injuries [120].
This method was also used to compare the subjective complexity with the task’s index of
difficulty and with the movement time [121–123]. We failed to find studies on correlation
between the accuracy of brain states classification and the subjective complexity of the
performance of real hand movements or their imagination.

Our experiments have demonstrated that in “pure” right-handers the subjective
complexity of real LH (not RH) movements and the subjective complexity of imagery
RH (not LH) movements correlate with ARLH. In addition, subjective complexity of real
and imaginary RH and LH movements is associated with different personality traits. It
can be assumed that those individuals for whom it is subjectively difficult to make a real
movement pay more attention to this process. Since kinesthetic feedbacks play a greater
role in motor control in the right hemisphere than in the left one [71–73,78–82,115], greater
attention to kinesthetic information plays a greater role in the LH real movements.

Why is ARLH greater in those who find it subjectively more difficult to imagine the
movements of the RH, and not the LH? We can assume that this is also due to attention
to the task—the more difficult the task, the more attention, and attention disinhibits the
specific loci of the brain involved. But why is this observed only for RH, but not for LH?
Here, apparently, the answer lies in the differences in the organization of movements—
ballistic in the left hemisphere and positional—in the right one [71–82,84,86,87,115]. When
imagining movements, feedbacks are not involved, therefore, the factor of complexity of
imagery movements connected with the left hemisphere and with the imagination of RH
movements in “pure” right-handers (in latent left-handers only a tendency, p < 0.1).

Why do personality traits affect the accuracy of the classification of brain states in
imagining the hand compared to rest, and subjective complexity affects the accuracy of
the classification of brain states in imagining the right and left hands (but not compared to
rest)? Probably, there is some parameter that determines the differences between LH-RH,
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but it does not affect the differences between LH-rest and RH-rest. It can be assumed
that this parameter is determined by the severity of interhemispheric connections. A
significant role in motor behavior is played by symmetrical movements, which are carried
out simultaneously by LH and RH. The realization of these movements is provided by
the simultaneous activity of the loci that control the movements of RH and LH. In the
case of high subjective complexity of the movement of a particular hand, and, as it seems
likely, more attention to the task, the activity of the locus controlling the movements of this
hand will be greater. Then the differences between the activity of areas which control the
symmetric RH and LH will be more, and more the classification accuracy ARLH, but not
ARH and ALH.

In latent left-handers, apparently, the differences between brain activity in the organi-
zation of symmetrical hand movements are less (the connections between areas are less
asymmetric in left-handers, i.e., their hand control is more bilateral [101]). This suggests
that the differences between the activity of the brain in the organization of symmetrical
hand movements are less in latent left-handers than in pure right-handers. That is why the
correlation between the accuracy of classification ARLH and the subjective complexity is
not significant in latent left-handers.

4.5. How Can We Imagine the Relationship between the Results Described above?

The study showed that different personality traits and subjective complexity are
differently correlate with the accuracy of the classification, evaluated in different ways
(ARH, ALH, or ARLH). At first glance, some of the results obtained seem paradoxical.
How, for example, is it possible that sensitivity in latent left-handers correlates positively
with ARH and negatively with ARLH? In order to imagine this, we propose a hypothetical
scheme that demonstrates how it can be represented in the space of EEG parameters used
to classify brain signals in different states (Figure 2A).

Figure 2 shows the relationship between the EEG parameters that characterize the
brain state under different conditions—when imagining the movements of RH, LH and
at the rest. On Figure 2A the area of states of EEG parameters corresponding to the state
of the brain when imagining RH movements in the subgroup of individuals with a high
(H) levels of the factor sensitivity (I) (RHH) is located at a further distance from area at
the rest state (empty circle) than in subgroup of individuals with a low (L) expression of
these personality trait (RHL). This reflects the data on significant correlation between ARH
and this factor. The absence of correlations between ALH is reflected in the scheme by
the coincidence of the positions of the circles reflecting these parameters in individuals
with high and low (LHHL) values of this factor. The smaller LHHL-RHH than LHHL-RHL
distance reflects the differences in EEG parameters when imagining the movements of RH
and LH in subgroups with high and low level of the factor under consideration, which is
manifested in the presence of a negative correlation between this factor and ARLH.

This scheme can also be applied to other data obtained. Figure 2B illustrates the
area of states of EEG parameters in “pure” right-handers with high and low extroversion,
expressiveness, and dominance. The area of states of EEG parameters corresponding to
the state of the brain when imagining RH movements in individuals with a high level
of these personality characteristics (RHH) is located at a more distant distance from the
area corresponding to the state of the rest (empty circle) than in individuals with a low
expression of these personality traits (RHL). This reflects a significant correlation of the
accuracy of classification ARH with these personality traits. The absence of significant
correlations between the accuracy of classification ALH and these traits is reflected in
the scheme by the coincidence of the positions of the circles reflecting these parameters
in individuals with high and low (LHHL) levels of these personality traits. The same
LHHL-RHH and LHHL-RHL distances reflect the absence of correlations between the
discussed personality traits and the accuracy of classification ARLH.

The accuracy of classification of brain signals when imagining LH movements in
comparison with rest (ALH) is affected by the factor abstractedness (M). Abstractness is
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negatively correlated with ALH, i.e., in more “practical” subjects the brain signals when
imagining LH movements are more different from signals in the rest state. This is reflected
in Figure 2C, where the area of states of the EEG parameters corresponding to the states
of the brain when imagining LH in individuals with a low level of abstractedness (LHL)
is at a further distance from area corresponding to the rest state (an empty circle) than in
individuals with a high expression of this factor (LHH). This reflects a significant correlation
between ALH and this factor. The absence of significant correlations between ARH and this
factor is reflected in the scheme by the coincidence of the positions of the circles reflecting
these parameters in individuals with high and low (RHHL) levels of this factor (there is no
significant correlation of ARH and abstractedness). The same RHHL-LHH and RHHL-LHL
distances reflect the absence of significant correlations between this factor and the accuracy
of classification ARLH.

The influence of the factor rule-consciousness (G) on the accuracy of state recognition
when imagining movements of both RH and LH compared to the rest state (both ARH
and ALH) is illustrated by Figure 2D. For pure right-handers, this factor G significantly
correlates with ARH and ALH, for the group of all subjects, the factor G, as the factor
Q1 (openness to change), significantly correlates with ALH, and there are also significant
differences in ARH in subgroups with high and low values of this trait according to the
Mann–Whitney criterion (p < 0.05).

As can be seen from the schemes in Figure 2A–D, the relative position of the areas of
brain state in the space of EEG parameters differs depending on personality traits, on the
imaginary hand (RH or LH), and on the factor of latent left-handedness.

In the right part of Figure 2 (Figure 2E–H), schemes represent the areas of the brain
states in the space of EEG-parameters, which change depending on the subjective com-
plexity of real movements and their imagination. In “pure” right-handers and latent
left-handers subjective complexity of real movements of RH and of imagery movements
of LH is not correlated with the classification accuracy of brain states. It is shown by
coincidence of the circles RHH and RHL (signed by abbreviation RHHL) for real move-
ments and by coincidence of the circles LHH and LHL (signed by abbreviation LHHL) for
imagery movements, as well as by the same distance between empty circle (the rest state)
and matching circles (RHHL for real movements or LHHL for imagery movements). The
subjective complexity of LH real movements and of RH imagery movements in ”pure”
right-handers correlates with ARLH, which is reflected in the greater distance LHH-RHH,
than LHL-RHL. At the same time, the distances between the empty circle (the rest state)
and the circles of all other states are the same, which reflects the absence of correlations of
subjective complexity with ARH and ALH.

5. Conclusions

The study found that the relationship between brain signal recognition and personality
traits depends on whether an individual imagines RH or LH movements, as well as whether
they are “pure” right-handed or latent left-handers. Such personality characteristics as
extraversion, liveliness, dominance, and sensitivity are significant for the imagination of
RH movements, and the first three are significant for the group of “pure” right-handers,
and the last one is significant only for hidden left-handers. For the imagination of the
movements of the LH, practicability (negative correlation ALH with factor abstractedness)
is mainly important, and there is no dependence on the degree of handedness. Both
rule-consciousness and openness to change are important for imagination of both hands.
Rule-consciousness significantly negatively influences the accuracy of recognition in “pure”
right-handers, not in latent left-handers. Openness-to-change positively influences the
accuracy of recognition and does not depend on level of handedness.

The analysis of the subjective complexity of real and imagery movements showed that,
in contrast to personality traits, subjective complexity correlates only with the accuracy of
recognizing states when imagining RH and LH movements, but not states when imagining
movements compared to rest. For individuals with one personal profile, it is subjectively
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more difficult to perform real movement, for individuals with another profile —to imagine
these movements. The influence of personality traits on the subjective complexity of
imagery movements was revealed only in pure right-handers.

Data obtained can be considered as the concept of laterality—differences in informa-
tion processing and motor control in inter- and intra-hemispheric connections between
neurons and in neurotransmitters in the right and the left hemisphere in right- and the
left-handers. The differences in personality traits which are optimal for imagination of RH
or LH and on the influence of latent left-handedness may be important for rehabilitation of
patients after stroke.

In future studies, we are going to increase the sample size; to analyze the correlation
of personality traits not only with motor imagery of the upper limbs, but of the lower
limbs as well; to study the dynamics of training of the imagination of the upper and lower
extremities and its correlations with personality traits and brain asymmetry.
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 Figure A1. Left and right columns of plots represent the correlation fields between the factor score

and the classification accuracy of brain signals during imagination of movements of LH comparative
to the rest (ALH, left column) and of RH comparative to the rest (ARH, right column). Filled points
and solid trend lines represent the values for “pure” right-handers; empty points and dotted trend
lines represent latent left-handers. Significant Pearson’s or Spearman’s correlations (p < 0.05) are
marked with an asterisk (*) (red asterisks stand for ALH in the group of “pure” right-handers or
latent left-handers, green stand for ARH, and blue represent ALH or ARH among all participants).
The factors are specified on the top of the middle plots. The middle column of the plots represents
mean ALH (red columns) and mean ARH (green columns) for the subgroups of participants with the
low factor score (low expression of the personality trait; left columns) and with the high score (high
expression of the personality trait; right columns). Significant Mann-Whitney’s correlations (p < 0.05)
are marked with blue asterisks (*), p-value is indicated in the case of trend.
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