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Many vision science studies employ machine learning,
especially the version called ‘‘deep learning.’’
Neuroscientists use machine learning to decode neural
responses. Perception scientists try to understand how
living organisms recognize objects. To them, deep
neural networks offer benchmark accuracies for
recognition of learned stimuli. Originally machine
learning was inspired by the brain. Today, machine
learning is used as a statistical tool to decode brain
activity. Tomorrow, deep neural networks might
become our best model of brain function. This brief
overview of the use of machine learning in biological
vision touches on its strengths, weaknesses,
milestones, controversies, and current directions. Here,
we hope to help vision scientists assess what role
machine learning should play in their research.

Introduction

What does machine learning offer to biological
vision scientists? It was developed as a tool for
automated classification, optimized for accuracy. Ma-
chine learning is used in a broad range of applications
(Brynjolfsson, 2018), from regression in stock market
forecasting to reinforcement learning to play chess, but
here we focus on classification. Physiologists use it to
identify stimuli based on neural activity. To study
perception, physiologists measure neural activity and
psychophysicists measure overt responses, like pressing
a button. Physiologists and psychophysicists are
starting to consider deep learning as a model for object
recognition by human and nonhuman primates (Cadieu
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014;
Yamins et al., 2014; Ziskind, Hénaff, LeCun, & Pelli,
2014; Testolin, Stoianov, & Zorzi, 2017). We suppose
that most of our readers have heard of machine
learning but are wondering whether it would be useful

in their own research. We begin by describing some of
its pluses and minuses.

Pluses: What it’s good for

At the very least, machine learning is a powerful tool
for interpreting biological data. A particular form of
machine learning, deep learning, is very popular (Figure
1). Is it just a fad? For computer vision, the old
paradigm was: feature detection, followed by segmen-
tation, and then grouping (Marr, 1982). With machine
learning tools, the new paradigm is to just define the
task and provide a set of labeled examples, and the
algorithm builds the classifier. (This is ‘‘supervised’’
learning; we discuss unsupervised learning below.)

Unlike the handcrafted pattern recognition (includ-
ing segmentation and grouping) popular in the 70s and
80s, deep learning algorithms are generic, with little
domain-specificity.1 They replace hand-engineered fea-
ture detectors with filters that can be learned from the
data. Advances in the mid-90s in machine learning
made it useful for practical classification, such as
handwriting recognition (LeCun et al., 1989; Vapnik,
2013).

Machine learning allows a neurophysiologist to
decode neural activity without knowing the receptive
fields (Seung & Sompolinsky, 1993; Hung. Kreiman,
Poggio, & DiCarlo, 2005). Machine learning is a big
step in the shifting emphasis in neuroscience from how
the cells encode to what they encode—that is, what that
code tells us about the stimulus (Barlow, 1953; Geisler,
1989). Mapping a receptive field is the foundation of
neuroscience (beginning with Weber’s 1834 mapping of
tactile ‘‘sensory circles’’). This once required single-cell
recording, looking for minutes or hours at how one cell
responds to each of perhaps a hundred different
stimuli. Today it is clear that characterization
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Glossary

Backprop: Short for ‘‘backward propagation of errors,’’
it is widely used to apply gradient-descent learning to
multilayer networks. It uses the chain rule from calculus
to iteratively compute the gradient of the cost function
for each layer.

Convexity: A real-valued function is called ‘‘convex’’ if
the line segment between any two points on the graph of
the function lies on or above the graph (Boyd &
Vandenberghe, 2004). A problem is convex if its cost
function is convex. Convexity guarantees that gradient
descent will always nd the global minimum.

Convolutional neural network (ConvNet): Rooted in
the Neocognitron (Fukushima, 1980) and inspired by the
simple and complex cells described by Hubel and Wiesel
(1962), ConvNets apply backprop learning to multilayer
neural networks based on convolution and pooling (LeCun
et al., 1989; LeCun, Bottou, Bengio, & Haffner, 1998).

Cost function: A function that assigns a real number
representing cost to a candidate solution by measuring

the difference between the solution and the desired
output. Solving by optimization means minimizing cost.

Cross-validation: Assesses the ability of the network
to generalize from the data that it trained on to new
data.

Deep learning: A successful and popular version of
machine learning that uses backprop neural networks
with multiple hidden layers. The 2012 success of AlexNet,
then the best machine learning network for object
recognition, was the tipping point. Deep learning is now
ubiquitous in the Internet. The idea is to have each layer
of processing perform successively more complex com-
putations on the data to give the full multilayer network
more expressive power. The drawback is that it is much
harder to train multilayer networks (Goodfellow et al.,
2016).

Generalization: How well a classier performs on new,
unseen examples that it did not see during training.

Gradient descent: An algorithm that minimizes cost by
incrementally changing the parameters in the direction of
steepest descent of the cost function.

Hebbian learning: According to Hebb’s rule, the
efciency of a synapse increases after correlated pre- and
post-synaptic activity. In other words, neurons that re
together, wire together (Lowel & Singer, 1992). Also
known as spike-timing-dependent plasticity (Caporale &
Dan, 2008).

Machine learning: Any computer algorithm that learns
how to perform a task directly from examples, without a
human providing explicit instructions or rules for how to
do so. In one type of machine learning, called
‘‘supervised learning,’’ correctly labeled examples are
provided to the learning algorithm, which is then
‘‘trained’’ (i.e., its parameters are adjusted) to perform
the task correctly on its own and generalize to unseen
examples.

Neural nets: Computing systems inspired by biological
neural networks that consist of individual neurons
learning their connections with other neurons in order to
solve tasks by considering examples.

Supervised learning: Any algorithm that accepts a set
of labeled stimuli—a training set—and returns a classier
that can label stimuli similar to those in the training set.

Support vector machine (SVM): A type of machine
learning algorithm for classication. An SVM uses the
‘‘kernel trick’’ to quickly learn to perform a nonlinear
classication by nding a boundary in multidimensional
space that separates different classes and maximizes the
distance of class exemplars to the boundary (Cortes &
Vapnik, 1995).

Unsupervised learning: Discovers structure and re-
dundancy in data without labels. It is less widely used by
computer scientists than supervised learning, but of great
interest because labeled data are scarce while unlabeled
data are plentiful.

Figure 1. History of popularity. Lefthand scale: The frequency of

appearance of each of five terms—linear classifier, perceptron,

support vector machine, neural net, and backprop, (and not deep

learning)—in books indexed by Google in each year of publication.

Google counts instances of words and phrases of nwords, and calls

each an ‘‘ngram.’’ Frequency is reported as a fraction of all instances
of ngrams of that length, normalized by the number of books

published that year (ngram / year / books published).The figurewas

created using Google’s ngram viewer (https://books.google.com/

ngrams), which contains a yearly count of ngrams found in sources

printedbetween1500and2008. Righthand scale: For deep learning,

numbers representworldwide search interest relative to the highest

point on the chart for the given year for the term ‘‘deep learning’’ (as
reported by https://trends.google.com/trends/). The righthand

scale has been shifted vertically tomatch in 2004 the corresponding

(not shown) deep learning ngram frequency (lefthand scale).
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of a single neuron’s receptive field, which was
invaluable in the retina and V1, fails to characterize
how higher visual areas encode the stimulus. Machine
learning techniques reveal ‘‘how neuronal responses
can best be used (combined) to inform perceptual
decision-making’’ (Graf, Kohn, Jazayeri, & Movshon,
2011). The simplicity of the machine decoding can be a
virtue as it allows us to discover what can be easily read
out (e.g., by a single downstream neuron; Hung et al.
2005). Achieving psychophysical levels of performance
in decoding a stimulus object’s identity and location
from the neural response shows that the measured
neural performance has all the information needed for
the observer to do the task (Majaj, Hong, Solomon, &
DiCarlo, 2015; Hong, Yamins, Majaj, & DiCarlo,
2016).

For psychophysics, signal detection theory (SDT)
proved that the optimal classifier for a known signal in
white noise is a template matcher (Peterson, Birdsall, &
Fox, 1954; Tanner & Birdsall, 1958). Of course, SDT
solves only a simple version of the general problem of
object recognition. The simple version is for known
signals, whereas the general problem includes variation
in viewing conditions and diverse objects within a
category (e.g., a chair can be any object that affords
sitting). SDT introduces the very useful idea of a
mathematically defined ideal observer, providing a
reference for human performance (e.g., Geisler, 1989;
Tjan & Legge, 1998; Pelli, Burns, Farell, & Moore-
Page, 2006). However, one drawback is that it doesn’t
incorporate learning.

Deep learning, on the other hand, provides a pretty
good observer that learns, which may inform studies of
human learning.2 In particular, it might reveal the
constraints on learning imposed by the set of stimuli
used in training. Further, unlike SDT, deep neural
networks cope with the complexity of real tasks. It can
be hard to tell whether behavioral performance is
limited by the set of stimuli, their neural representation,
or the observer’s decision process (Majaj et al., 2015).
Implications for classification performance are not
readily apparent from direct inspection of families of
stimuli and their neural responses. SDT specifies
optimal performance for classification of known signals
but does not tell us how to generalize beyond a training
set. Machine learning does.

Minuses: Common complaints

Some biologists point out that neural nets do not
match what we know about neurons (e.g., Crick, 1989;
Rubinov, 2015; Heeger, 2017). Biological brains learn
on the job, while neural networks need to converge
before they can be used. Furthermore, once trained,

deep networks generally compute in a feed-forward
manner while there are major recurrent circuits in the
cortex. But this may simply reflect the different ways
that we use artificial and real neurons. The artificial
networks are trained for a fixed task, whereas our
visual brain must cope with a changing environment
and task demands, so it never outgrows the need for the
capacity to learn. Furthermore, there has recently been
large progress in using trained recurrent neural
networks both for computational tasks and as expla-
nations for neural phenomena (Barak, 2017).

It is not clear, given what we know about neurons
and neural plasticity, whether a backprop network can
be implemented using biologically plausible circuits
(but see Mazzoni, Andersen, & Jordan, 1991; Bengio,
Le, Bornschein, Mesnard, & Lin, 2015). However, there
are several promising efforts to implement more
biological plausible learning rules, such as spike-
timing–dependent plasticity (Mazzoni et al., 1991;
Bengio et al., 2015; Sacramento, Costa, Bengio, &
Senn, 2017).

Engineers and computer scientists, while inspired by
biology, focus on developing machine learning tools
that solve practical problems. Thus, models based on
these tools often do not incorporate known constraints
imposed by physiology. To this, one might counter that
every biological model is an abstraction and can be
useful even while failing to capture all the details of the
living organism.

Some biological modelers complain that neural nets
have alarmingly many parameters. Deep neural net-
works continue to be opaque. Before neural network
modeling, a model was simpler than the data it
explained. Deep neural nets are typically as complex as
the data, and the solutions are hard to visualize (but see
Zeiler & Fergus, 2013). While the training sets and
learned weights are long lists, the generative rules for
the network (the computer programs) are short. One
flavor of this is proposals for cascaded canonical
computations in the cortex (Hubel & Wiesel, 1962;
Simoncelli & Heeger, 1998; Riesenhuber & Poggio,
1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio,
2007). Traditionally, having very many parameters has
often led to overfitting—that is, good performance on
the training set and poor performance beyond it—but
the breakthrough is that deep-learning networks with a
huge number of parameters nevertheless generalize
well. Furthermore, Bayesian nonparametric models
offer a disciplined approach to modeling with an
unlimited number of parameters (Gershman & Blei,
2011). Mallat (2016) also notes that known symmetries
of the problem can greatly reduce the number of
parameters to be learned.

Some statisticians worry that rigorous statistical
tools are being displaced by deep learning, which lacks
rigor (Friedman, 1998; Matloff, 2014; but see Breiman,
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2001; Efron & Hastie, 2016). Assumptions are rarely
stated. There are no confidence intervals on the
solution. However, performance is typically cross-
validated, showing generalization. Deep learning is not
convex, but it has been proven that convex networks
can compute posterior probability (e.g., Rojas, 1996).
Furthermore, machine learning and statistics seem to
be converging to provide a more general perspective on
rigorous probabilistic inference (Chung, Lee, & Som-
polinsky, 2018).

Some physiologists note that decoding neural
activity to recover the stimulus is interesting and useful
but falls short of explaining what the neurons do. Some
visual psychophysicists note some salient differences
between performance of human observers and deep
networks on tasks like object recognition and image
distortion (Ullman, Assif, Fetava, & Harari, 2016;
Berardino, Laparra, Ballé, & Simoncelli, 2017). Some
cognitive psychologists dismiss deep neural networks as
unable to ‘‘master some of the basic things that children
do, like learning the past tense of a regular verb’’
(Marcus et al., 1992). Deep learning is slow. To
recognize objects in natural images with the recognition
accuracy of an adult, a state-of-the-art deep neural
network needs 5,000 labeled examples per category
(Goodfellow, Bengio, & Courville, 2016). But children
and adults need only 100 labeled letters of an
unfamiliar alphabet to reach the same accuracy as
fluent native readers (Pelli et al., 2006). Overcoming
these challenges may require more than deep learning.

These current limitations drive practitioners to
enhance the scope and rigor of deep learning. But bear
in mind that some of the best classifiers in computer
science were inspired by biological principles (Rosen-
blatt, 1958; LeCun, 1985; Rumelhart, Hinton, &
Williams, 1986; LeCun et al., 1989; Riesenhuber &
Poggio, 1999; and see LeCun, Bengio, & Hinton 2015).
Some of those classifiers are now so good that they
occasionally exceed human performance and might
serve as rough models for how biological systems
classify (e.g., Khaligh-Razavi & Kriegeskorte, 2014;
Yamins et al., 2014; Ziskind et al., 2014; Testolin et al.,
2017).

Milestones in classification

Mathematics versus engineering

The history of machine learning has two threads:
mathematics and engineering (Figure 2). In the
mathematical thread, two statisticians, Fisher (1922)
and later Vapnik (2013), developed mathematical
transformations to untangle categories. They assumed
distributions and proved convergence.

In the engineering thread, a loose coalition of
psychologists, neuroscientists, and computer scientists
(e.g., Turing, Rosenblatt, Minsky, Fukushima, Hinton,
Sejnowski, LeCun, Poggio, and Bengio) sought to
reverse-engineer the brain to build a machine that learns.
Their algorithms are typically applied to stimuli with
unknown distributions and lack proofs of convergence.

1936: Linear discriminant analysis

Fisher (1936) introduced linear discriminant analysis
to classify two species of iris flower based on four
measurements per flower. When the distribution of the
measurements is normal and the covariance matrix
between the measurements is known, linear discrimi-
nant analysis answers the question: Supposing we use a
single-valued function to classify, what linear function
y¼ w1x1 þ w2x2 þ w3x3þ w4x4, of four measurements
x1, x2, x3, and x4 made on flowers, with free weights w1,
w2, w3, and w4, will maximize discrimination of
species?3 Linear classifiers are great for simple problems
for which the category boundary is a hyperplane in a
small number of dimensions. However, complex
problems like object recognition typically require more
complex category boundaries in many dimensions.
Furthermore, the distributions of the features are
typically unknown and may not be normal.

Cortes and Vapnik (1995) noted that the first
algorithm for pattern recognition was Fisher’s optimal
decision function for classifying vectors from two known

Figure 2. Milestones in classification. The math thread is italic;

the engineering thread is plain.
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distributions. Fisher solved for the optimal classifier in
the presence of Gaussian noise and known covariance
between elements of the vector. When the covariances are
equal, this reduces to a linear classifier. The ideal
template matcher of signal detection theory is an example
of such a linear classifier (Peterson et al., 1954). This fully
specified simple problem can be solved analytically. Of
course, many important problems are not fully specified.
In everyday perceptual tasks, we typically know only a
‘‘training’’ set of samples and labels.

1953: Machine learning

The first developments in machine learning were to
play chess and checkers. ‘‘Could one make a machine
to play chess, and to improve its play, game by game,
profiting from its experience?’’ (Turing, 1953). Arthur
Samuel (1959) defined machine learning as the ‘‘Field of
study that gives computers the ability to learn without
being explicitly programmed.’’

1958: Perceptron

Inspired by physiologically measured receptive fields,
Rosenblatt (1958) showed that a very simple neural
network, the perceptron, could learn to classify from
training samples. Perceptrons combined several linear
classifiers to implement piecewise-linear separating
surfaces. The perceptron learns the weights to use in a
linear combination of feature-detector outputs. The
perceptron transforms the stimulus into a binary
feature vector and then applies a linear classifier. The
perceptron is piecewise linear and has the ability to
learn from training examples without knowing the full
distribution of the stimuli. Only the final layer in the
perceptron learns.

1969: Death of the perceptron

However, it quickly became apparent that the
perceptron and other single-layer neural networks cannot
learn tasks that are not linearly separable—that is, they
cannot solve problems like connectivity (Are all elements
connected?) and parity (Is the number of elements odd or
even?), which people solve readily (Minsky & Papert,
1988). On this basis, Minsky and Papert prematurely
announced the death of artificial neural networks.

1974: Backprop

The death of the perceptron showed that learning in
a one-layer network was too limited. This impasse was

broken by the introduction of the backprop algorithm,
which allowed learning to propagate through multiple-
layer neural networks. The history of backprop is
complicated (see Schmidhuber, 2015). The idea of
minimization of error through a differentiable multi-
stage network was discussed as early as the 1960s (e.g.,
Bryson, Denham, & Dreyfus, 1963). It was applied to
artificial neural networks in the 1970s (e.g., Werbos,
1974). In the 1980s, efficient backprop first gained
recognition, and led to a renaissance in the field of
artificial neural network research (LeCun, 1985;
Rumelhart, Hinton, & Williams, 1986). During the
2000s backprop neural networks fell out of favor, due
to four limitations (Vapnik, 1999): (a) No proof of
convergence. Backprop uses gradient descent. Gradient
descent with a nonconvex cost function with multiple
minima is only guaranteed to find a local, not the
global minimum of the cost function. This has long
been considered a major limitation, but LeCun et al.
(2015) claim that it hardly matters in practice in current
implementations of deep learning. (b) Slow. Conver-
gence to a local minimum can be slow due to the high
dimensionality of the weight space. (c) Poorly specified.
Backprop neural networks had a reputation for being
ill-specified, with an unconstrained number of units and
training examples, and a step size that varied by
problem. ‘‘Neural networks came to be painted as slow
and fussy to train [,] beset by voodoo parameters and
simply inferior to other approaches’’ (Cox & Dean,
2014). (d) Not biological. Lastly, backprop learning
may not to be physiological: While there is ample
evidence for Hebbian learning (increase of a synapse’s
gain in response to correlated activity of the two cells
that it connects), such changes are never propagated
backwards, beyond the one synapse, to a previous
layer. With hindsight it is clear that a fifth limitation to
the backprop in the 80s was inadequate resources:
limited computing power and lack of large labeled
datasets.

1980: Neocognitron, the first convolutional
neural network

Fukushima (1980) proposed and implemented the
Neocognitron, a hierarchical, multilayer artificial
neural network. It recognized stimulus patterns
(deformed numbers) despite small changes in position
and shape.

1982: Hopfield network

The Hopfield network was introduced as a form of
recurrent artificial network that serves as a content-
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addressable memory and was proposed as a model for
understanding human memory (Hopfield, 1982).

1987: NETtalk, the first impressive backprop
neural network

Sejnowski and Rosenberg (1987) reported the
exciting success of NETtalk, a neural network that
learned to convert English text to speech:

The performance of NETtalk has some similarities
with observed human performance. (i) The
learning follows a power law. (ii) The more words
the network learns, the better it is at generalizing
and correctly pronouncing new words. (iii) The
performance of the networks degrades very slowly
as connections in the network are damaged: no
single link or processing unit is essential. (iv)
Relearning after damage is much faster than
learning during the original training. . .

1989: ConvNets

Yann LeCun and his colleagues combined convolu-
tional neural networks with backprop to recognize
handwritten characters (LeCun et al., 1989). This
network was commercially deployed by AT&T, and
today reads millions of checks a day (LeCun et al.,
1998). Later, adding half-wave rectification and max
pooling greatly improved its accuracy in recognizing
objects (Jarrett, Kavukcuoglu, & LeCun, 2009).

1995: Support vector machine (SVM)

Cortes & Vapnik (1995) proposed the support
vector network, a learning machine for binary classi-
fication problems. Support vector machines (SVMs)
generalize well and are free of mysterious training
parameters. Some versions of the SVM are convex
(e.g., Lin, 2001).

2006: Backprop revived

Hinton and Salakhutdinov (2006) sped up backprop
learning by unsupervised pretraining. This helped to
revive interest in backprop (Hinton, Osindero, & Teh,
2006). In the same year, a supervised backprop-trained
convolutional neural network set a new record on the
famous MNIST handwritten-digit recognition bench-
mark (Ranzato et al., 2006, 2007).

2012: Deep learning

Geoff Hinton said, ‘‘It took 17 years to get deep
learning right; one year thinking and 16 years of
progress in computing, praise be to Intel’’ (Cox &
Dean, 2014; LeCun et al., 2015). It is not clear who
coined the term ‘‘deep learning.’’4 In their book, Deep
Learning Methods and Applications, Deng and Yu
(2014) cite Hinton et al. (2006) and Bengio (2009) as the
first to use the term. However, the big debut for deep
learning was an influential paper by Krizhevsky,
Sutskever, and Hinton (2012) describing AlexNet, a
deep convolutional neural network that classified 1.2
million high-resolution images into 1,000 different
classes, greatly outperforming previous state-of-the-art
machine learning and classification algorithms.

Controversies

The field is growing quickly, yet certain topics
remain hot. For proponents of deep learning, the ideal
network is composed of simple elements and learns
everything from the training data. At the other
extreme, computer vision scientists argue that we know
a lot about how the brain recognizes objects, which we
can engineer into the networks before learning (e.g.,
gain control and normalization). Some engineers look
to the brain only to copy strengths of the biological
solution; some scientists think there are useful clues in
its limitations as well (e.g., crowding).

Is deep learning the best solution for all visual
tasks?

Deep learning is not the only thing in the vision
scientist’s toolbox. The complexity of deep learning
may be unwarranted for simple problems that are well
handled by, for example, SVM. Try shallow networks
first, and if they fail, go deep.

Why object recognition?

The visual task of object recognition has been very
useful in vision research because it is an objective task
that is easily scored as right or wrong, is essential in
daily life, and captures some of the magic of seeing. It is
a classic problem with a rich literature. Deep neural
nets solve it, albeit with a million parameters.
Recognizing objects is a basic life skill, including
recognition of words, people, things, and emotions.
The concern that the research focus on object
recognition might be merely an obsession of the
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scientists rather than a central task of biological vision
is countered by hints that visual perception is biased to
interpret the world as consisting of discrete objects even
when it isn’t, such as when we see animals in the clouds.

Of course, there are many other important visual
tasks, including interpolation (e.g., filling in) and
extrapolation (e.g., estimating heading). The inverse of
categorization is synthesis. Human estimation of one
feature, such as brightness or speed, is imprecise and
adequately represented by roughly seven categories
(Miller, 1956). For detection of image distortion, a
simple model with gain-control normalization is better
than current deep networks (Berardino et al., 2017).
Scientists, like the brain, use whatever tool works best.

Deep learning is not convex

A problem is convex if its cost function is convex—
that is, if the line between any two points on the
function lies on or above the function. This guarantees
that gradient descent will find the global minimum. For
some combinations of stimuli, categories, and classifi-
ers, convexity can be proven. In machine learning,
some kernel methods, including SVMs, have the
advantage of convexity, at the cost of limited general-
ization. In the 1990s, SVMs were popular because they
guaranteed fast convergence even with a large number
of training samples (Cortes & Vapnik, 1995). However,
cost functions for deep neural networks are not convex.
Unlike convex functions, nonconvex functions can
have multiple minima and saddle points. The challenge
in high dimensional cost functions is the saddle points,
which greatly outnumber the local minima, but there
are tricks for not getting stuck at saddle points
(Dauphin et al., 2014). Although deep neural networks
are not convex, they do fit the training data and
generalize well (LeCun, Bengio, & Hinton, 2015).

Shallow versus deep networks

The field’s imagination has focused alternately on
shallow and deep networks, beginning with the percep-
tron in which only one layer learned, followed by
backprop, which allowed multiple layers to learn, and
cleared the hurdles that doomed the perceptron. Then
SVM, with its single layer, sidelined the multilayer
backprop. Today multilayer deep learning reigns;
Krizhevsky et al. (2012) attributed the success of
AlexNet to its eight-layer depth; it performed worse
with fewer layers. Some people claim that deep learning
is essential to recognize objects in real-world scenes. For
example, the ‘‘Inception’’ 22-layer deep learning net-
work won the Image Net Real World Challenge in 2014
(Szegedy et al., 2015).

The need for depth is hard to prove, but, in
considering the depth versus width of a feed-forward
neural network, Eldan and Shamir (2016) showed that
a radial function can be approximated by a three-layer
network with far fewer neurons than the best two-layer
network (also see Telgarsky, 2015). Object recognition
implies a classification function that assigns one of
several discrete values to each image. Mhaskar, Liao,
and Poggio (2017) suggest that for real-world recogni-
tion the classification function is typically composi-
tional—that is, a hierarchy of functions, one per node,
in feed-forward layers, in which the receptive fields of
higher layers are ever larger. They argued that
scalability and shift invariance in natural images
require compositional algorithms. They prove that deep
hierarchical networks can approximate compositional
functions with the same accuracy as shallow networks
but with exponentially fewer training parameters.

Supervised versus unsupervised

Learning algorithms for a classifier can be supervised
or not (i.e., need labels for training, or don’t). Today
most machine learning is supervised (LeCun, Bengio, &
Hinton, 2015). The images are labeled (e.g., ‘‘car’’ or
‘‘face’’), or the network receives feedback on each trial
from a cost function that assesses how well its answer
matches the image’s category. In unsupervised learning,
no labels are given. The algorithm processes images,
typically to minimize error in reconstruction, with no
extra information about what is in the (unlabeled) image.
A cost function can also reward decorrelation and
sparseness (e.g., Olshausen & Field, 1996). This allows
learning of image statistics and has been used to train
early layers in deep neural networks. Human learning of
categorization is sometimes done with explicitly named
objects—‘‘Look at the tree!’’—but more commonly the
feedback is implicit. Consider reaching your hand to
raise a glass of water to your lips. Contact informs vision.
On specific benchmarks, where the task is well-defined
and labeled examples are available, supervised learning
can excel (e.g., AlexNet), but unsupervised learning may
be more useful when few labels are available. Unsuper-
vised learning adjusts the network to suit the statistics of
the world (Hinton & Salakhutdinov, 2006).

Current directions

What does deep learning add to the vision
science toolbox?

Deep learning is more than just a souped-up
regression (Marblestone, Wayne, & Kording, 2016).
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Like SDT, it allows us to see more in our behavioral and
neural data. In the 1940s, Norbert Wiener and others
developed algorithms to automate and optimize signal
detection and classification. A lot of it was engineering.
The whole picture changed with the SDT theorems,
mainly the proof that the maximum-likelihood receiver
is optimal for a wide range of simple tasks (Peterson et
al., 1954). In white noise a traditional receptive field
computes the likelihood of the presence of a signal
matching the receptive field weights. It was exciting to
realize that the brain contains 1011 likelihood computers.
Later work added prior probability, for a Bayesian
approach. Tanner and Birdsall (1958) noted that, when
figuring out how a biological system does a task, it is
very helpful to know the optimal algorithm and to rate
observed performance by its efficiency relative to the
optimum. SDT solved detection and classification
mathematically, as maximum likelihood. It was the
classification math of the 60s. Machine learning is the
classification math of today. Both enable deeper insight
into how biological systems classify. Of course, as noted
above, SDT is restricted to the case of known signals in
additive noise, whereas deep learning can solve real-
world object recognition like detecting a dog in a
snapshot after training on labeled examples. In the old
days we used to compare human and ideal classification
performance (Pelli et al., 2006). Today, we also compare
human and machine learning. Deep learning is the best
model we have today for how complex systems of simple
units can recognize objects as well as the brain does.
Several labs are currently comparing patterns of activity
of particular artificial layers to neural responses in
various cortical areas of the mammalian visual brain
(Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al.
2014; Schrimpf et al. 2018).

What can computer scientists learn from
psychophysics?

Computer scientists build classifiers to recognize
objects. Vision scientists, including psychologists and
neuroscientists, study how people and animals classify in
order to understand how the brain works. So, what do
computer and vision scientists have to say to each other?
Machine learning accepts a set of labeled stimuli to
produce a classifier. Much progress has been made in
physiology and psychophysics by characterizing how
well biological systems can classify stimuli. The psy-
chophysical tools (e.g., threshold and SDT) developed to
characterize behavioral classification performance are
immediately applicable to characterize classifiers pro-
duced by machine learning (e.g., Ziskind, Hénaff,
LeCun, & Pelli, 2014; Testolin, Stoianov, & Zorzi, 2017).

Psychophysics

‘‘Adversarial’’ examples have been presented as a
major flaw in deep neural networks (Hutson, 2018;
Mims, 2018). These slightly doctored images of objects
are misclassified by a trained network, even though the
doctoring has little effect on human observers. The
same doctored images are similarly misclassified by
several different networks trained with the same stimuli
(Szegedy et al., 2013). Humans too have adversarial
examples. Illusions are robust classification errors
(Shapiro & Todorovic, 2016). The blindspot-filling-in
illusion is a dramatic adversarial example in human
vision. While viewing with one eye, two fingertips
touching in the blindspot are perceived as one long
finger. If the image is shifted a bit so that the fingertips
emerge from the blindspot, the viewer sees two fingers.
Neural networks lacking the anatomical blindspot of
human vision are hardly affected by the shift (but see
Azulay & Weiss, 2018). The existence of adversarial
examples is intrinsic to classifiers trained with finite
data, whether biological or not. In the absence of
information, neural networks interpolate and so do
biological brains. Psychophysics, the scientific study of
perception, has achieved its greatest advances by
studying classification errors (Fechner, 1860). Such
errors can reveal blindspots. Stimuli that are physically
different yet indistinguishable are called metamers. The
systematic understanding of color metamers revealed
the three dimensions of human color vision (Palmer,
1777; Young, 1802; Helmholtz, 1867). In recent work,
many classifiers have been trained solely with the
objects they are meant to classify, and thus will classify
everything as one of those categories, even doctored
noise that is very different from all of the images. It is
important to train with sample images that represent
the entire test set.

Conclusion

Machine learning is here to stay. Deep learning is
better than the ‘‘neural’’ networks of the 80s. Machine
learning is useful both as a model for perceptual
processing, and as a decoder of neural processing, to
see what information the neurons are carrying. The
large size of the human cortex is a distinctive feature
of our species and crucial for learning. It is anatom-
ically homogenous yet solves diverse sensory, motor,
and cognitive problems. Key biological details of
cortical learning remain obscure, but, even if they
ultimately preclude backprop, the performance of
current machine learning algorithms is a useful
benchmark.
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Resources

We recommend textbooks on deep learning by
Goodfellow, Bengio, and Courville (2016) and Ng
(2017). There are many packages for optimization and
machine learning in MATLAB and Python.

Keywords: deep learning, machine learning, neural
networks, object recognition

Acknowledgments

Thanks to Yann LeCun for helpful conversations.
Thanks to Aenne Brielmann, Augustin Burchell, Kaitie
Holman, Katerina Malakhova, Cristina Savin, Laura
Suciu, Pascal Wallisch, and Avi Ziskind for helpful
comments on the manuscript. NJM was supported by
National Institute of Health (NIH) R01 grants
EY005846 and EY024914. DGP was supported by
NIH grant R01 EY027964.

Commercial relationships: none.
Corresponding author: Najib J. Majaj.
E-mail: najib.majaj@nyu.edu.
Address: Department of Psychology and Center for
Neural Science, New York University, New York, NY,
USA.

Footnotes

1 Admittedly, these networks still demand tweaking
of a few parameters, including number of layers and
number of units per layer.

2 In the same spirit, ‘‘sequential ideal observer’’ and
‘‘accuracy maximization’’ model generalized ideal
observer calculations to include a shallow form of
supervised learning (Geisler, 1989; Burge & Jaini,
2017).

3 Linear discriminant analysis is an outgrowth of
regression, which has a much longer history. Regres-
sion is the optimal least-squares linear combination of
given functions to fit given data and was applied by
Legendre (1805) and Gauss (1809) to astronomical data
to determine the orbits of the comets and planets
around the sun. The estimates come with confidence
intervals and the fraction of variance accounted for,
which rates the goodness of the explanation.

4 The idea of deep learning is not exclusive to
machine learning and neural networks (e.g., Dechter,
1986).
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