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Abstract Various posttranslational modifications (PTMs) participate in nearly all aspects of biolog-

ical processes by regulating protein functions, and aberrant states of PTMs are frequently impli-

cated in human diseases. Therefore, an integral resource of PTM–disease associations (PDAs)

would be a great help for both academic research and clinical use. In this work, we reported PTMD,

a well-curated database containing PTMs that are associated with human diseases. We manually

collected 1950 known PDAs in 749 proteins for 23 types of PTMs and 275 types of diseases from

the literature. Database analyses show that phosphorylation has the largest number of disease asso-

ciations, whereas neurologic diseases have the largest number of PTM associations. We classified all

known PDAs into six classes according to the PTM status in diseases and demonstrated that the

upregulation and presence of PTM events account for a predominant proportion of disease-

associated PTM events. By reconstructing a disease–gene network, we observed that breast cancers
nces and
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have the largest number of associated PTMs and AKT1 has the largest number of PTMs connected

to diseases. Finally, the PTMD database was developed with detailed annotations and can be a use-

ful resource for further analyzing the relations between PTMs and human diseases. PTMD is freely

accessible at http://ptmd.biocuckoo.org.
Introduction

Posttranslational modifications (PTMs) are essential biochem-

ical reactions that covalently regulate the conformation, activ-
ity, and stability of proteins, and play a critical role in a broad
spectrum of biological processes [1,2]. For example, phospho-
rylation is strongly implicated in orchestrating signal transduc-

tion, cytoskeleton rearrangement, and cell cycle progression
[3,4]. Additionally, acetylation regulates the transcription
and cellular metabolism through the modification of histones

and nonhistone proteins [5,6], whereas ubiquitination usually
mediates the proteasomal degradation process by conjugating
poly-ubiquitin chains to target proteins [7,8]. Currently, over

620 types of PTMs have been experimentally discovered
(http://www.uniprot.org/docs/ptmlist.txt), while accumulating
evidence has revealed that the abnormal status of PTMs is fre-

quently involved in various human diseases, such as cancers,
diabetes, and neurodegenerative diseases [9–11]. For example,
the ubiquitination of metastasis suppressor 1 (MTSS1), an
important tumor suppressor, mediated by the skp1-cullin1-F-

box beta-transducin repeat-containing protein (SCF b-
TRCP) E3 ubiquitin ligase complex, is essential for regulating
cell proliferation and migration in breast and prostate cancers

[12]. Additionally, there is a significantly higher phosphoryla-
tion level of basal endothelial nitric oxide synthase (eNOS)
at S1177 in type 2 diabetes mellitus (T2DM) patients, and

the abnormal eNOS activation mediated by phosphorylation
has been suggested to play a potential role in endothelial insu-
lin resistance [13]. Moreover, the T313M mutation of PINK1,
an important regulator of mitochondrial trafficking, abolishes

its phosphorylation by a protein kinase MARK2, exhibits
toxic effects in neurons, and is involved in neurodegeneration
in Parkinson’s disease (PD) [14]. These studies indicate that

there are strong associations between PTMs and diseases.
Therefore, an integrative resource of PTM–disease associa-
tions (PDAs) would be a great help for both academic research

and biomedical applications.
A number of public databases have been developed for col-

lecting and maintaining PDAs, such as KinMutBase [15],

MoKCa [16], KIDFamMap [17], and HHMD [18]. The
KinMutBase is the first comprehensive database, which
contains 582 disease-causing mutations in 20 tyrosine and 13
serine/threonine kinase domains, with the corresponding dis-

ease types and numbers of affected patients and families avail-
able for each entry [15]. However, KinMutBase only contained
mutations in protein kinase domains. To further consider

mutations in full-length sequences of protein kinases, Richard-
son et al. developed the database MoKCa, which contains
thousands of somatic mutations in protein kinases identified

in cancers [16]. The structural and functional annotations of
potential phenotypic alterations are also provided for these
cancer mutations. To demonstrate the inhibitor selectivity of

protein kinases in disease therapy, the integral database KID-
FamMap was developed about the kinase–inhibitor interac-
tions between 399 human protein kinases and 35,788 kinase
inhibitors in 339 diseases, providing information for the inhibi-
tor selectivity and binding mechanisms of kinases [17]. These
three databases mentioned above are mainly focused on phos-

phorylation and protein kinases. Beyond phosphorylation,
HHMD serves as an integral resource for the annotation of
histone modifications in cancers, which includes 43 location-
specific histone modifications in 9 human cancer types [18].

Since these databases are constructed primarily on specific
PTM types or specific proteins, a general data resource for
PTM–disease associations will be more advantageous for fur-

ther investigations on PTMs and related diseases.
In this work, we first collected 1950 known PDAs in 749

proteins for 23 PTM types and 275 disease types from the liter-

ature. For convenience, we classified the 23 PTM types and 275
disease types into 9 and 26 super-types, respectively. Database
analyses indicate that phosphorylation has the largest number

of disease associations (81.49%), whereas the super-type of
neurologic diseases has the largest number of associations with
PTMs (18.32%). Additionally, all PDAs were classified into six
types based on the PTM status in diseases, and observed that

the upregulation (40.56%) and emergence (38.26%) of PTM
events make up the majority of disease-associated PTM events.
Moreover, by reconstructing a disease–gene network contain-

ing 749 PTM substrates, 275 diseases, and 1437 disease–gene
interactions, breast cancers are found to have the largest num-
ber of associated PTMs, while the important protein kinase

AKT1 has the largest numbers of connected diseases. To pro-
vide more disease information, we also integrated annotations
from other public databases. Finally, we developed an integral

database, PTMD, for PTMs that are associated with diseases.
PTMD can serve as a useful resource for further analyzing
the relations between PTMs and diseases.
Construction and content

Here, we defined a PDA as a PTM event that is causally influ-

enced or changed in a disease. To ensure the data quality, we
first searched PubMed using multiple keywords, such as
‘‘acetylation”, ‘‘glycosylation”, ‘‘methylation”, ‘‘nitration”,

‘‘S-palmitoylation”, ‘‘phosphorylation”, ‘‘S-nitrosylation”,
‘‘sumoylation”, and ‘‘ubiquitination”. We manually curated
experimentally identified PDAs from the related literature. In
total, we collected 1950 PDAs in 749 proteins for 23 types of

PTMs and 275 types of diseases. We also used the names of
other PTM types such as malonylation and propionylation
to search PubMed, but did not identify any additional PDAs.

To gain further insight into the relationships between
PTMs and diseases, we classified all collected PDAs into six
classes according to the status of PTM events in diseases. (i)

Upregulation (U): the PTM level is upregulated in diseases.
For example, the phosphorylation level of eNOS at S1177 is
significantly increased in T2DM [13]. (ii) Down-regulation
(D): the PTM level is down-regulated in diseases. For instance,

a significant decrease in the phosphorylation level at tyrosine

http://ptmd.biocuckoo.org
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216 of GSK3b, an important serine/threonine kinase, was
detected in squamous cell carcinoma (SCC) samples compared
to normal tissues, suggesting a pathological role of the inacti-

vated form of GSK3b in skin carcinogenesis [19]. (iii) Presence
(P): the presence of a PTM event is associated with disease pro-
gression. For example, the SCF b-TRCP-mediated ubiquitina-

tion of MTSS1 plays a regulatory role in the proliferation and
migration of cancer cells [8]. (iv) Absence (A): the absence of a
PTM event is involved in disease progression. For example, a

S392 nonphosphorylated form of p53 is present in human
breast tumors, while the inability to phosphorylate p53 at this
site was related to treatment response [20,21]. (v) Creation (C):
a mutation event (single amino acid or indel mutations) creates

one or multiple PTM sites or increases the protein PTM level
in diseases. As an example, Fang et al. reported a mutant form
of FAK with deletion of exon 33, which strongly increases its

phosphorylation level at Y397, alters the downstream signal-
Figure 1 The data in the PTMD database

A. The percentage of different PTM super types that are associated with

types. B. The percentage of different super-types of diseases in PTMD

based on the tissue information. C. The number of disease association

disease associations within each type of PDAs for each PTM super-ty

while the block length represents the number of PDAs for each PTMs.

type. The dot size represents the number of PDAs for each disease. U an

in diseases, respectively; P and A indicate that the presence and a

respectively. C indicates that a mutation event (single amino acid or in

protein PTM level in diseases, whereas N indicates that a mutation eve

levels in diseases. PTM, posttranslational modification; PDA, PTM–d
ing, and further enhances cell migration and invasion in breast
cancers [22]. (vi) Disruption (N): a mutation event that dis-
rupts one or multiple PTM sites or reduces the protein PTM

levels in diseases. A typical instance of this type of disease-
associated PTMs is that the T313M mutation of PINK1 dis-
rupts its MARK2-mediated phosphorylation and is implicated

in PD [14]. Thus, the former two types (U and D) focused on
the changes of PTM levels in diseases compared to normal tis-
sues, whereas the type P and A showed whether the presence or

absence of a PTM event is related to disease progression. The
last two types C and N underscored the impact of a mutation
event on PTM in diseases.

Next, we grouped 23 PTM types into 9 super-types, includ-

ing acetylation, glycosylation, methylation, nitration, S-
palmitoylation, phosphorylation, S-nitrosylation, sumoyla-
tion, and ubiquitination (Figure 1A). For example, both ser-

ine/threonine phosphorylation and tyrosine phosphorylation
diseases. In PTMD, 23 types of PTMs were classified into 9 super-

. In total, 275 types of diseases are classified into 26 super-types

s within each type of disease-associated PTMs. D. The number of

pe. Blocks with different colors represent different types of PDAs,

E. The distribution of the six types of PDAs for each disease super-

d D indicate that the PTM level is upregulated and downregulated

bsence of a PTM event is associated with disease progression,

del mutations) creates one or multiple PTM sites or increases the

nt disrupts one or multiple PTM sites or reduces the protein PTM

isease association.
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were classified into the super-type of phosphorylation, while
the monoubiquitination and polyubiquitination were classified
into the super-type of ubiquitination. In our results, the top

three super-types of PTMs with largest number of disease asso-
ciations are phosphorylation (81.49%), methylation (9.18%),
and ubiquitination (3.74%), whereas other PTM super-types

only have a small number of disease associations (Figure 1A).
In this regard, more efforts are required to identify these
disease-associated PTMs. We also grouped 275 types of

diseases into 26 super-types based on the tissue location
(Figure 1B). Among all the diseases, the super-type of neuro-
logic diseases has the largest number of associations with
PTMs (18.32%) (Figure 1B). This observation is consistent

with the mainstream viewpoint that abnormal PTM events
extensively occur in numerous neurodegenerative diseases,
such as Alzheimer’s disease (AD) and PD, and are involved

in neuronal dysfunction and cell death [11,23,24]. The second
and third super-types of disease with the largest number of
PTM associations are breast (11.19%) and blood (10.01%) dis-

eases (Figure 1B). Among the six types of PDAs, we found that
40.56% and 10.15% PTMs are upregulated and down-
regulated in diseases, respectively (Figure 1C), suggesting that

an increase in PTM levels may contribute more to disease
development. Their potentials as candidate biomarkers for
disease diagnosis and drug design warrant further studies.
Figure 2 The browse options of PTMD

We provided two options to browse the database: by PTMs (A) and by

types of phosphorylation (tyrosine, threonine, and serine phosphoryla

diseases, such as breast cancer and mammary tumor, are shown. E. The

Protein Information, PTM–Disease Association, Disease Cross-ref An
Moreover, 38.26% of disease-associated PTM events fall into
the type P, while only 4.92% disease-associated PTMs are clas-
sified in the type A (Figure 1C), indicating that PTM events

preferentially exists during disease progression, whereas the
development of only a small proportion of diseases is associ-
ated with the loss of PTMs. It is of note that within each type

of PDAs, the numbers of disease associations varied for differ-
ent super-types of PTMs (Figure 1D). For instance, more than
700 disease-associations were found for the phosphorylation in

the type U, and 559 relations are in the type P (Figure 1D).
Additionally, the numbers of disease associations within each
type of PDAs varied remarkably among 26 super-types of
diseases (Figure 1E).

After collecting and classifying the PDAs, we further
searched the UniProt database [25] to obtain the correspond-
ing protein sequences and the annotation information. To pro-

vide more disease information for each protein, we integrated
the knowledge from several public databases, including Cancer
Gene Census [26], Comparative Toxicogenomics Database

(CTD) [27], DisGeNET [28], and OMIM [29]. Additionally,
we integrated experimentally identified PTM sites from our
previous studies [30,31]. The protein–protein interaction

(PPI) information was also obtained from public databases,
including BioGRID [32], IntAct [33], MINT [34], HPRD
[35], and DIP [36]. The PPI networks of disease-associated
diseases (C). B. All phosphorylated substrates with different PTM

tion) are shown in a tabular format. D. All specific types of breast

detailed information of human p53 in PTMD database, including

notation, PTM Sites, and Protein–Protein Interaction.
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genes/proteins were visualized using Cytoscape Web v1.0.4
interface [37]. The online service of PTMD database was
implemented in PHP + MySQL+ JavaScript and is freely

accessible at http://ptmd.biocuckoo.org.
Usage

The PTMD database was developed in an easy-to-use mode.
Here, we took human p53 as an example to demonstrate the

use of PTMD. The Browse page is the major site for users to
look through the PTMD, where data can be browsed in two
different ways, i.e., by PTM types and by diseases (Figure 2).
For convenience, the 9 super types of PTMs were present on

the left side (Figure 2A), whereas the 26 super-types of diseases
were visualized in a tag cloud picture on the right side of the
Browse page (Figure 2C). For the option ‘‘Browse by PTMs”,

after clicking the icon phosphorylation (Figure 2A), the corre-
sponding PTM types, including dephosphorylation, serine
phosphorylation, threonine phosphorylation, and tyrosine

phosphorylation, together with all protein substrates, can be
displayed (Figure 2B). For the option ‘‘Browse by Disease”,
users can select a disease super-type by clicking the tissue name
in the tag cloud (Figure 2C). Specifically, the larger font size

indicates the larger number of PDAs. By clicking the link
‘‘Breast disease”, all specific types of breast diseases can be
Figure 3 The search and advance options

A. The database can be directly searched with one or multiple keywords

C. Batch query allows users to query multiple keywords in a line-by-lin

detecting identical or homologous sequences.
shown in a tabular format (Figure 2D). Additionally, users
can click the ‘‘Breast cancer/tumor/carcinoma” link to visual-
ize all PTM substrates that are associated with breast cancers

(Figure 2D). Then, by clicking the UniProt accession number
of ‘‘P04637”, all PDAs for p53 can be shown (Figure 2E).

On the homepage, users can directly search the PTMD

database by inputting one or multiple keywords (Figure 3A).
For example, if the keyword ‘‘p53” is submitted, the corre-
sponding results for p53 is shown in a tabular format, includ-

ing UniProt accessions, Entrez gene IDs, protein names, and
gene names (Figure 3A). Moreover, the database provides
three additional advanced options, namely, (i) Advanced
query, (ii) Batch query, and (iii) BLAST search. (i) Advanced

query. In this option, users could use relatively complex and
combined keywords to locate the precise information, with
up to three search terms. The interface of search engine allows

the querying by different database fields and the linking of
queries through three operators ‘‘and”, ‘‘or”, and ‘‘not”
(Figure 3B). (ii) Batch query. Users can enter multiple

keywords, such as UniProt accession numbers, gene IDs, gene
names, PTM types, diseases, and tissues, in a line-by-line
format for querying (Figure 3C). Again, all related PTM sub-

strates can be presented in a tabular page. (iii) BLAST search.
This option was designed for querying the related information
in PTMD by protein sequences. The blastall program of NCBI
BLAST packages [38] was included in the PTMD database.
. B. Advanced query allows users to input up to three search terms.

e format. D. Blast search option interrogates a protein sequence for

http://ptmd.biocuckoo.org
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Users can enter a protein sequence in FASTA format for
searching identical or homologous proteins (Figure 3D).
Discussion

After the first phosphorylated protein casein was discovered in

1883, the identification and characterization of protein PTMs
has been pursued for over 135 years [39]. Extensive experimen-
tal studies have revealed that the abnormal PTM status is fre-

quently involved in disease development and progression
[9–11]. Although a number of public databases have been con-
structed for PDAs [15–18], these databases are mainly focused
on specific PTM types or specific proteins. Thus, it is still not

clear how many aberrant PTM events are associated with
human diseases, and a comprehensive and integrated data
resource of disease-associated PTMs with detailed annotations

would offer great help for both academic research and biomed-
ical applications.

In total, our PTMD database contains 1950 PDAs in 749

proteins for 23 PTM types and 275 diseases. For a better
understanding of the relationships between PTM substrates
and diseases, we also constructed a disease–gene network. As
Figure 4 A disease–gene network

A. The network was visualized with Cytoscape v3.6.0 [47]. B. The to

substrates. C. The top ten genes with the largest number of associated

diseases. E. The numbers of each PTM super-type for the top ten gen
previously described [40], a gene was connected with a disease
if a PDA links them. The network contains 749 PTM proteins
and 275 diseases together with 1437 disease–gene interactions

(Figure 4A). Obviously, we find that a large proportion of dis-
eases are associated with only a small number of genes,
whereas a considerable number of diseases are associated with

many genes (Figure 4A). From the network, the top ten dis-
eases with the largest number of relations to genes and the
top ten genes with the largest number of connected diseases

were shown (Figure 4B, C), with the numbers of associations
for each PTM super-type also counted (Figure 4D, E). In the
results, the distribution of the six types of PDAs varied in these
diseases and genes, and the upregulation and presence of PTM

events dominate these influences. Among diseases, the breast
cancers have the highest number of associated PTMs
(Figure 4D), and at least three different super-types of PTMs

are implicated in most of these diseases. Especially, for breast
cancers, prostate cancers, and Alzheimer’s disease, up to six
different associated PTM super-types were found. The results

indicate that multiple PTMs may crosstalk with each other
and interact in the development of complex diseases. For
example, the K167 ubiquitination and T166 phosphorylation

of c-FLIP, an apoptosis inhibitor, were both found in prostate
p ten diseases with the largest number of associations with PTM

diseases. D. The number of each PTM super-type in the top ten

es. AD, Alzheimer’s disease; NSCLC, non-small-cell lung cancer.
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cancer [41]. T166 phosphorylation is required for the K167
ubiquitination, which further regulates the stability of c-
FLIP and influences the sensitivity of cancer cells to apoptosis

[41]. Additionally, the K810 methylation of the tumor suppres-
sor protein RB1 increases the phosphorylation level of adja-
cent S807/S811, which further enhances the cell cycle

progression of bladder cancers [42]. The top ten genes with
the largest number of connected diseases were displayed, and
almost all of these genes are involved in key signaling path-

ways (Figure 4C). For example, the serine/threonine protein
kinase AKT1, which has the largest number of associated dis-
eases [35] in the network, is implicated in PI3K/AKT signaling,
thus contributing to the cell cycle progression and cellular

growth [43]. Additionally, STAT3, a signal transducer and
activator of transcription that plays an important role in
JAK2/STAT3 signaling, is connected with 33 types of diseases

and is essential for the regulation of cell growth and prolifera-
tion [44]. In addition, we found p53 is connected with 21 types
of cancers and neurologic diseases, and the phosphorylation at

S46 induces apoptotic cell death by enhancing the protein sta-
bility and transcriptional activity of p53 [45,46]. The down-
regulation of p53 phosphorylation at S46 maintains tumorige-

nesis in cancers [45] but is upregulated by mutant huntingtin
(mHtt) to promote neuronal apoptosis in Huntington’s disease
(HD) [46]. Thus, one PTM event can have different states and
be classified into different classes based on associated diseases.

Taken together, our analyses confirm a strong relation
between PTMs and diseases, and the results are consistent with
the experimental observations. Additionally, the PTMD data-

base can serve as a useful resource for further analyzing the
relationships between PTMs and diseases. This data resource
will be updated twice per year, as new disease-associated PTMs

become available.
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