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Low-cost scalable discretization, prediction, and feature
selection for complex systems
S. Gerber1*, L. Pospisil2*, M. Navandar1, I. Horenko2*†

Finding reliable discrete approximations of complex systems is a key prerequisite when applying many of the
most popular modeling tools. Common discretization approaches (e.g., the very popular K-means clustering)
are crucially limited in terms of quality, parallelizability, and cost. We introduce a low-cost improved quality
scalable probabilistic approximation (SPA) algorithm, allowing for simultaneous data-driven optimal discretiza-
tion, feature selection, and prediction. We prove its optimality, parallel efficiency, and a linear scalability of
iteration cost. Cross-validated applications of SPA to a range of large realistic data classification and prediction
problems reveal marked cost and performance improvements. For example, SPA allows the data-driven next-
day predictions of resimulated surface temperatures for Europe with the mean prediction error of 0.75°C on a
common PC (being around 40% better in terms of errors and five to six orders of magnitude cheaper than with
common computational instruments used by the weather services).
INTRODUCTION
Computers are finite discrete machines. Computational treatment and
practical simulations of real-world systems rely on the approximation of
any given system’s state X(t) (where t = 1,…, T is a data index) in terms
of a finite number K of discrete states S = {S1,…, SK} (1, 2). Of particular
importance are discretizationmethods that allow a representation of the
system’s states X(t) as a vector of K probabilities for the system to be in
some particular state Si at the instance t. Components of such a vector
—GX(t) = (G1

X (t), G2
X (t),…, GK

X (t))—sum up to one and are partic-
ularly important, since they are necessary for Bayesian and Markovian
modeling of these systems (3–5).

Bayesian and Markovian models belong to the most popular tools
for mathematical modeling and computational data analysis problems
in science (with more than 1 million literature references each, accord-
ing to Google Scholar). They were applied to problems ranging from
social and network sciences (6) to a biomolecular dynamics and drug
design (7–9), fluidmechanics (10), and climate (11). Thesemodels dwell
on the law of the total probability and the concept of conditional ex-
pectation, saying that the exact relation between the finite probabilistic
representations GY(t) and GX(t) for the given discretization SX ¼
fSX1 ;…; SXn g and SY ¼ SY1 ;…; SYm of any two processes X(t) and Y(t)
is given as a linear model

GYðtÞ ¼ LGXðtÞ ð1Þ

where L is the m × n matrix of conditional probabilities Li;j ¼
Probability½YðtÞ is in SYi if XðtÞ is in SXj �. In the following, we as-
sume that these conditional probabilities are stationary (independent
of data index t) and only depend on the discrete state indices i and j.
This linearmodel (Eq. 1) is exact in a probabilistic sense, meaning that
it does not impose amodeling error even if the underlying dynamics of
X(t) and Y(t) are arbitrarily complex and nonlinear.

This property of (Eq. 1) is a direct consequence of the law of the total
probability and a definition of the conditional probability, saying that
the probability to observe Y(t) in any discrete state SYi can be exactly
expressed as a sum over j probabilities to observe Y(t) in this particular
stateSYi conditioned on observingX(t) in any of the particular statesS

X
j .

If L is known, then the linear model (Eq. 1) provides the best relation
between the two probabilistic representation GY(t) and GX(t) in given
discretizations SX ¼ fSX1 ;…; SXn g and SY ¼ fSY1 ;…; SYmg (2–4).

A particular, and very important, case of the Bayesianmodels (Eq. 1)
emerges when choosing Y(t) as X(t + 1), where t is a time index. The
relation matrix L is then a left-stochastic square matrix of stationary
transition probabilities between discrete states, formally known as a
transfer operator. A Bayesian model (Eq. 1) in this particular case is
called aMarkovmodel (2–4). Besides of their direct relation to the exact
law of total probability, another reason for their popularity, especially in
the natural sciences, is the fact that these models automatically satisfy
important physical conservation laws, i.e., exactly conserve probability,
and herewith lead to stable simulations (2, 7, 9). Various efficient com-
putational methods allow the estimation of conditional probability
matrices L for real-world systems (7–15).

In practice, all thesemethods require a priori availability of discrete
probabilistic representations. Obtaining these representations/
approximations GX(t) bymeans of commonmethods from the original
system’s states X(t) is subject to serious quality and cost limitations. For
example, the applicability of grid discretization methods covering orig-
inal system’s space with a regular mesh of reference points {S1,…,SK} is
limited in terms of cost, since the required number of boxes K grows
exponentially with the dimension n of X(t) (1).

Therefore, the most common approaches for tackling these kinds of
problems are so-called meshless methods. They attempt to find discret-
ization bymeans of grouping the statesX(t) intoK clusters according to
some similarity criteria. The computational costs for popular clustering
algorithms (16) and formostmixturemodels (17) scale linearlywith the
dimensionality n of the problem and the amount of data, T. This cheap
computation made clustering methods the most popular meshless dis-
cretization tools, even despite the apparent quality limitations they
entail. For example,K-means clustering (the most popular clustering
method, withmore than 3million Google Scholar citations) can only
provide probabilistic approximations with binary (0/1) GX(t)
elements, excluding any other approximations and not guaranteeing
optimal approximation quality. Mixture models are subject to similar
quality issues when the strong assumptions they impose [such as
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Gaussianity in Gaussian mixture models (GMMs)] are not fulfilled.
Closely related to clustering methods are various approaches for
matrix factorization, such as the non-negative matrix factorization
(NMF) methods that attempt to find an optimal approximation of
the given (non-negative) n × T data matrix X with a product of the
n × K matrix S and the K × T matrix GX (18–24).

In situations whereK is smaller thanT, these non-negative reduced
approximations SGX are computed by means of the fixed-point itera-
tions (19, 21) or by alternating least-squares algorithms and projected
gradient methods (22). However, because of the computational cost
issues, probabilistic factorizations (i.e., these approximations SGX

show that the columns of G are probability distributions) are either
excluded explicitly (22) or obtained by means of the spectral de-
composition of the data similarity matrices (such as the XTX similarity
matrix of the size T × T). These probabilistic NMF variants such as the
left-stochastic decomposition (LSD) (24), the closely related spectral
decomposition methods (25), and the robust Perron cluster analysis
(8, 12) are subject to cost limitations.

These cost limitations are induced by the fact that even the most
efficient tools for eigenvalue problem computations (upon which all
these methods rely) scale polynomial with the similarity matrix
dimension T. If the similarity matrix does not exhibit any particular
structure (i.e., if it is not sparse), then the overall numerical cost of
the eigenvalue decomposition scales asO(T3). For example, considering
twice as much data leads to an eightfold increase in cost.

Similar scalability limitations are also the characteristic for the
density-based clustering methods [such as the mean shifts (26), the
density-based spatial clustering of applications with noise (DBSCAN)
(27), and the algorithms based on t-distributed stochastic neighbor
embedding (28)], having an iteration complexity in the orders between
O(T log(T)) (for sparse similarity matrices) andO(T2) (for full similarity
matrices). Practical applicability of these methods is restricted to relatively
small systems or relies on the ad hoc data reduction steps, i.e., T cannot
routinely exceed 10,000 or 20,000 when working on commodity
hardware (see, e.g., the gray dotted curves with crosses in Fig. 3) (9, 28).

The cost and quality comparison for the probabilistic approximation
methods are shown in Fig. 1. Cost factor becomes decisive when discre-
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tizing very large systems, e.g., in biology and geosciences, leading to the
necessity of some ad hoc data preprocessing by means of computation-
ally cheap methods such as K-means, principal components analysis,
and other prereduction steps (29, 30).

In the following, we present a method not requiring this ad hoc re-
ductional data preprocessing, having the same leading order computa-
tional iteration complexity O(nKT) as the cheap K-means algorithm
and allowing simultaneously finding discretization that is optimal for
models (Eq. 1).
RESULTS
Cost, quality, and parallelizability in scalable
probabilistic approximation
Below,we derive themethodology by formulating the discrete approx-
imation as an optimization problem. Here, an approximation quality of
a discretization is expressed as the sum of all distances distS(X(t), G

X(t))
between the original states X(t), and their probabilistic representa-
tions GX(t) obtained for a particular discretization S = {S1,…, SK}.
For example, minimizing the sum of the squared Euclidean distances
distSðXðtÞ;GXðtÞÞ ¼ ‖XðtÞ � ∑Kk¼1G

X
k ðtÞSk‖22 with respect to G and S

for a fixed given X would allow finding the optimal probabilistic ap-
proximations ∑Kk¼1G

X
k ðtÞSk of the original n-dimensional data points

X(t) in the Euclidean space (18–24). Then, Sk is an n-dimensional
vector with coordinates of the discrete state k, andGX

k ðtÞ is the prob-
ability that X(t) belongs to this discrete state (also referred to as a
“cluster k,” a “box k,” or a “reference point k” in the following).

Moreover, it can be useful to add other minimized quantities to the
resulting expression, e.g., FS(S) (to increase the “quality” of discrete
states S, to be explained below) and FG(G

X) to improve the quality of
GX while simultaneously minimizing the sum of discretization errors.
For example, the temporal persistence of the probabilistic representa-
tions GX (if t is a time index) can be controlled by FGðGXÞ ¼
1
T ∑t‖G

Xðt þ 1Þ � GXðtÞ‖ (31–33) (measuring the average number of
transitions between discrete states over time), whereas FS(S) can be
chosen as a discrepancy between the actual discretization S and some
a priori available knowledge Sprior about it, i.e., asFS(S)=∣∣S − Sprior∣|
Fig. 1. Comparing discretization quality (A), full computational cost (B), and algorithm parallelizability (C) for scalable probabilistic approximation (SPA) (blue surfaces) and for
common discretization methods: K-means clustering (16, 17) (red), NMF (19–24) [in its probabilistic variant called LSD (24), green surfaces], and the discretizing neuronal

networks (NNs) based on self-organizing maps (SOMs) (38) (a special form of unsupervised NNs used for discretization, orange surfaces). For every combination of data
dimension n and the data statistics length T, methods are applied to 25 equally randomly generated datasets, and the results in each of the curves represent averages over
these 25problems. Parallel speedup in (C) ismeasured as the ratio of the average times time(GPU)/time(CPU)needed to reach the same relative tolerance threshold of 10−5 on a
single GPU [ASUS TURBO-GTX1080TI-11G, with 3584 Compute Unified Device Architecture (CUDA) cores] for time(GPU) versus a single CPU core (Intel Core i9-7900X CPU) for
time(CPU). Further comparisons can be found in the fig. S2. TheMATLAB script Fig1_reproduce.m reproducing these results is available in the repository SPA at https://github.
com/SusanneGerber. GPU, graphics processing unit; CPU, central processing unit.
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(34, 35). Consequently, the best possible probabilistic approximation
can be defined as a solution of a minimization problem for the
following L with respect to the variables S and GX

LðS;GXÞ ¼ ∑T
t¼1distS XðtÞ;GXðtÞ� �þ DSFSðSÞ þ DGFGðGXÞ ð2Þ

subject to the constraints that enforce that the approximation GX is
probabilistic

∑K
k¼1G

X
k ðtÞ ¼ 1; and GX

k ðtÞ≥0 for all k and t ð3Þ

where DS and DG (both bigger or equal then zero) regulate the relative
importance of the quality criteriaFS andFG with respect to the impor-
tance of minimizing a sum of discrete approximation errors.

As proven in Theorem 1 in the SupplementaryMaterials, theminima
of problem (Eqs. 2 and 3) can be foundbymeans of an iterative algorithm
alternating optimization for variables GX (with fixed S) and for varia-
bles S (with fixed GX). In the following, we provide a summary of the
most important properties of this algorithm. A detailed mathemat-
ical proof of these properties can be found in Theorems 1 to 3 (as well
as in the Lemma 1 to 15 and in the Corollaries 1 to 11) from the Sup-
plementary Materials.

In terms of cost, it can be shown that the computational time of the
average iteration for the proposed algorithm grows linearly with the
size T of the available data statistics in X, if FG(G

X) is an additively
separable function [meaning that it can be represented as FGðGXÞ ¼
∑Tt¼1φGðGXðtÞÞ].We refer to the iterative methods for minimization of
(Eqs.2 and 3), satisfying this property, as scalable probabilistic approxima-
tions (SPAs). Further, if the distance metrics distS(X(t), G

X(t)) is either
an Euclidean distance or a Kullback-Leibler divergence, then the over-
all iteration cost of SPA grows asO(nKT) (where n is the system’s orig-
inal dimension and K is the number of discrete states). That is, the
Gerber et al., Sci. Adv. 2020;6 : eaaw0961 29 January 2020
computational cost scaling of SPA is the same as the cost scaling of
the computationally cheap K-means clustering (16) (see Corollary 6
in the SupplementaryMaterials for a proof). Moreover, in such a case,
it can be shown that the amount of communication between the pro-
cessors in the case of the Euclidean distance distS(X(t), G

X(t)) during
one iteration in a parallel implementation of SPA will be indepen-
dent of the size T of system’s output and will change proportionally
to O(nK) and to the number of the used computational cores. Figure 2
illustrates these properties and shows a principal scheme of the SPA
parallelization.

In terms of quality, it is straightforward to validate that several of the
common methods are guaranteed to be suboptimal when compared to
SPA, meaning that they cannot provide approximations better than
SPA on the same system’s dataX. This can be shown rigorously for dif-
ferent forms of K-means (16), e.g., (see Corollary 1 in the Supplemen-
taryMaterials) and for the different variants of finite element clustering
methods on multivariate autoregressive processes with external factors
(see Corollary 2 in the Supplementary Materials) (31–33).

Figure 1 shows a comparison of SPA (blue surfaces) to the most
common discretization methods for a set of artificial benchmark prob-
lems of different dimensionality n and size T (see the Supplementary
Materials for a detailed description of the benchmarks). In comparison
with K-means, these numerical experiments illustrate that SPA has the
same overall cost scaling (Fig. 1B), combined with the substantially bet-
ter approximation quality and parallelizability scaling (Fig. 1, A and C).

Computing optimal discretization for Bayesian and
Markovian models
Common fitting of Bayesian orMarkovianmodels (Eq. 1) relies on the
availability of probabilistic representations GY(t) and GX(t) and re-
quires prior separate discretization of X and Y. There is no guarantee
that providing any two of these probabilistic representations GY(t) and
GX(t) as an input for any of the common computational methods (7–15)
for L identification would result in an optimal model (Eq. 1). That is,
Fig. 2. Parallelization of the SPA algorithm: Communication cost of SPA for every channel is independent of the data size T and is linear with respect to the
data dimension n.
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Bayesian and Markovian models obtained with common methods
(7–15) are only optimal for a particular choice of the underlying prob-
abilistic representations GY(t) and GX(t) (which are assumed to be given
and fixed for these methods) and are not generally optimal with respect
to the change of the discretization SY and SX.

As proven in Theorem 2 in the Supplementary Materials, the op-
timal discretization of the Euclidean variables X from Rn and Y from
m for the model (Eq. 1) can be jointly obtained from the family of
SPA solutions by minimizing the function L (Eqs. 2 and 3) for the
transformed variableX̂

D ¼ fY ; DXg fromRm+n. This variable is built as
a concatenation (amerge) of the original variablesY and DX (whereX is
multiplied with a tunable scalar parameter D > 0). Scalar parameter D
defines the relative weight of X discretization compared to Y discret-
ization: The larger D is, themore emphasis is placed onminimizing the
discretization errors for X. For any combination of parameter D and
the discrete dimension K from some predefined range, this SPA opti-
mization (Eqs. 2 and 3) is then performed with respect to the tran-
sformed variables SD;K ¼ fSYD;KLD;K ; DSXD;Kg and the original variable
GX
D;K (being the discrete probabilistic representation of the original

data X). Then, the lower n × K block of the obtained discretization
matrix SD,K (when divided with D) provides an optimal discretization
matrix SX for X.

In the case of Bayesianmodels, prediction of valuesYpred(s) from the
data vector X(s) (which was not a part of the original dataset X) is ap-
proached in two steps: (step 1) computing the discretization GX(s)
by solving the K-dimensional quadratic optimization problem
GX(s) = argminG ||X(s) − SXGX(s)||2

2, such that the K elements of GX(s)
sum up to one and are all non-negative (conditions for existence,
uniqueness, and stability of this problem solution are investigated in
Lemma 9, 11, 12, 14, and 17 in the Supplementary Materials); and
(step 2) multiplying the obtained discretization vector GX(s) with the
upper m × K block of the SPA matrix SD,K provides a prediction
Ypred(s), i.e., YpredðsÞ ¼ SYD;KLD;KGXðsÞ. Note that this two-step pre-
diction procedure would not require the explicit estimation of LD,K

and SYD;K . Y
pred(s) is computed by a direct multiplication of the vector

GX(s) (from the step 1) with the upperm × K block of the SPA matrix
SD,K. This is the procedure deployed in the computational analysis of
benchmarks described below. If required, then discretization matrix
SYD;K and the stochastic matrix LD,K can be disentangled from the
upper m × K block of SD,K by means of the standard matrix factori-
zation algorithms (18–24).

In case of Markovian models, when Y(s) is defined as X(s + 1),
K × K transition matrix LD,K obtained from such a matrix factori-
zation also allows the computation of the N-step predictions of GX, as
GX(s + N) =LN

D;KG
X(s) from the discrete approximation GX(s) of the

data point X(s) (from step 1). Then, in step 2, the N-step prediction
Ypred(s +N) is obtained asYpredðsþ NÞ ¼ SYD;KL

N
D;KG

XðsÞ. Alternative-
ly, to enforce that Y(s) is strictly defined as X(s + 1) in the case of the
Markov processes and that the two discretization operators SYD;K and
SXD;K should be the same and provide a discretization of the same Eu-
clidean dataset X, one can impose an additional equality constraint
SYD;K ¼ SXD;K to the SPA optimization problem (Eqs. 2 and 3) and split
the S-optimization step of the iterative SPA algorithm into two substeps:
(substep 1) theminimizationof (Eqs. 2 and3)with respect toSXD;K for fixed
values ofLD,K andG

X and (substep 2) theminimization of (Eqs. 2 and 3)
with respect to LD,K for fixed values of SXD;K and GX. This procedure
results in a monotonic minimization of the SPA problem (Eqs. 2 and
3) and provides direct estimates of the K × K Markovian transition
matrix LD,K and the n × K discretization matrix SXD;K in the Markovian
Gerber et al., Sci. Adv. 2020;6 : eaaw0961 29 January 2020
case. Note that this procedure does not provide an explicit Markov
model that directly relates X(s + N) to X(s). The two-step procedure
described above results in an implicit Markovian model GX(s + N) =
LN
D;KG

X(s), operating on the level of K-dimensional discrete probability
densities GX. The optimal combination of tunable parameters D and K
for the optimal discretization in model (Eq. 1) is obtained by applying
standardmodel selection criteria (36) (e.g., using information criteria or
approaches such as multiple cross-validations).

These procedures of simultaneous discretization and model infer-
ence rely on the assumption that both X and Y are Euclidean data. If
this is not the case, then the data have to be transformed to Euclidean
before applying the SPA. In the case of time series with equidistant time
steps, Euclidean transformation (or Euclidean embedding) is achieved
by the so-called Takens embedding transformation, when instead of
analyzing single realizations of the data X(s) in Rn, one considers
transformed data points given as a whole time sequence [X(s), X(s −
1),…, X(s − dim)] in Rn(dim+1). The justification of this procedure is
provided by the Takens theorem (37), proving that this transformation
embeds any sufficiently smooth non-Euclidean attractive manifold of a
dynamic system into Euclidean space. This procedure is deployed for
the time series data analysis benchmarks considered below, an analytical
example of such an embedding transformation for autoregressive
models is provided in Corollary 2 in the Supplementary Materials. Al-
ternatively, in the case of the classification problems for the data that are
not time series, one can apply SPA framework (Eqs. 2 and 3) to the
transformed data Xtrans(s) = F(X(s),w), s = 1,…, T. F is a nonlinear Eu-
clidean transformation performed, e.g., by a neuronal network (NN)
that relies on a tunable parameter vectorw (a vector of network weights
and biases). Then, the iterative minimization of (Eqs. 2 and 3) can be
augmented straightforwardly with an optimization with respect to an
additional parameter vector w of this NN transformation. Below, this
kernelized SPA procedure will be referred to as SPA + NN and used
for the analysis of classification benchmarks from Fig. 3.

Sensitivity analysis and feature selection with SPA
After the discretization problem is solved, an optimal discrete repre-
sentation GX(t) can be computed for any continuous point X(t). Ob-
tained vector GX(t) contains K probabilities GXðtÞ

k for a point X(t) to
belong to each particular discrete state Sk and allows computing the
reconstructionXrec(t) of the pointX(t) asXrec(t) = SGX(t). In this sense,
procedure (Eqs. 2 and 3) can be understood as the process of finding
an optimal discrete probabilistic data compression, such that the aver-
age data reconstruction error [measured as a distance between X(t) and
Xrec(t)] is minimized.

In the following, we refer to the particular dimensions of X as
features and consider a problem of identifying sets of features that are
most relevant for the discretization. The importance of any feature/
dimension j of X for the fixed discrete states S can be measured as
an average sensitivity of the obtained continuous data reconstructions
Xrec(t) with respect to variations of the original data X(t) along this
dimension j. For example, it can be measured by means of the average
derivative norm Ið jÞ ¼ 1

T ∑t ‖∂X
recðtÞ=∂XjðtÞ‖22. For every dimension j

of X(t), this quantity I(j) probes an average impact of changes in the
dimension j of X(t) on the resulting data reconstructions Xrec(t).
Dimensions j that have the highest impact on discretization will have
the highest values of I(j), whereas the dimensions j that are irrelevant for
the assignation to discrete states will have I(j) close to 0.

At first glance, direct computation of the sensitivities I(j) could seem
too expensive for realistic applications with large data statistics size T
4 of 8
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and in high problem dimensions and due to the a priori unknown
smoothness of the derivate ∂XrecðtÞ

∂XjðtÞ in the multidimensional space of
features. However, as proven in Theorem 3 in the Supplementary
Materials, in the case of discretizations obtained by solving the problem
(Eqs. 2 and 3) for the Euclidean distance measure dist, respective deriva-
tives ∂X

recðtÞ
∂XjðtÞ are always piecewise constant functions of Xj(t) if the sta-

tistics size T is sufficiently large. This nice property of derivatives allows
a straightforward numerical computation of I( j) for K > 2 and an exact
analytical computation of I for K = 2. It turns out that for K = 2, the
importance of every original data dimension j can be directly measured
asðS2;j � S1;jÞ2=‖S2 � S1‖22. That is, discretization sensitivity I( j) for the
feature j is proportional to the squared difference between the discret-
ization coordinates S1,j and S2,j in this dimension j. The smaller the
difference between the coordinates in this dimension, the lower is the
impact of this particular feature j on the overall discretization.

It is straightforward to verify (see Corollary 9 and Theorem 3 in the
Supplementary Materials for a proof) that the feature sensitivity
function I ¼ ∑j IðjÞ has a quadratic upper bound I ≤ ∑j,k1,k2(Sk1(j) −
Sk2(j))

2. Setting FS(S) in Eq. 2 as FS(S) = ∑j,k1,k2(Sk1(j) − Sk2(j))
2 for

any given combination of integer K and scalar DS ≥ 0, minimizing
(Eqs. 2 and 3) would then result in a joint simultaneous and scalable
solution of the optimal discretization and feature selection problems.
Overall, the numerical iteration cost of this procedure will be again O
(nKT). Changing DS controls the number of features: The larger DS is,
the fewer features (i.e., particular dimensions of the original data vector
X) remain relevant in the obtained discretization. The optimal value of
DS can again be determined by means of standard model validation
criteria (36). In the SPA results from Figs. 3 and 4 (blue curves), we
use this form ofFS(S), set DG = 0, and deploy themultiple cross-validation,
a standardmodel selection approach frommachine learning, to determine
the optimal DS and an optimal subset of relevant features for any given
number K of discrete states (clusters).

Applications to classification and prediction problems from
natural sciences
Next, we compare the discretization performance of SPA to the ap-
proximation errors of the common methods, including K-means
(16), soft clustering methods based on Bayesian mixture models
(17) (such as GMMs), density-based clustering (DBSCAN) (27),
and NN discretization methods (self-organizing maps, SOMs)
(38). To compare the performances of these methods, we use ob-
tained discretization in parametrization of the Bayesian/Markovian
models (Eq. 1), as well as in parametrization of NNs (38), on several
classification and time series analysis problems from different areas.
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To prevent overfitting, we deploy the same multiple cross-validation
protocol (36, 39) adopted in machine learning for all tested methods.
Here, the data are randomly subdivided into the training set (75%
of the data), where the discretization and classification/predic-
tion models are trained and performance quality measures (ap-
proximation, classification, and prediction errors) are then
determined on the remaining 25% of validation data (not used in
the training). For each of the methods, this procedure of random data
subdivision, training, and validation is repeated 100 times; Figs. 3
and 4 provide the resulting average performance curves for each
of the tested methods. In both classification and time series predic-
tion applications of SPA, no persistence in the t-ordering was assumed
a priori by setting DG in (Eq. 2) to 0. This means not imposing any a
priori persistent ordering in t for the probabilistic representations
{GX(1),…, {GX(T)} and justifying an application of the common multiple
cross-validation procedure (36) (which implies random reshufflings
in t and subdivisions of data into training and validation sets) for a
selection of optimal values for K and DS. MATLAB scripts reproducing
the results are available in the repository SPA at https://github.com/
SusanneGerber. Figure 3 shows a comparison of approximation and
classification performances for two problems of labeled data analysis
from biomedicine and bioinformatics: (Fig. 3A) for a problem of breast
cancer diagnostics based on x-ray image analysis (40) and (Fig. 3B) for a
problem of single-cell human mRNA classification (41). In these pro-
blems, variable X(t) is a continuous (and real valued) set of collected
features that have to be brought in relation to the discrete set of labels
Y(t). In case of the breast cancer diagnostics example (40), (Fig. 3A)
index t denotes patients and goes from 1 to 569,X(t) contains 32 image
features, and Y(t) can take two values “benign” or “malignant.” In the
case of the single-cell human mRNA classification problem (41), (Fig.
3B) index t goes from 1 to 300 (there are 300 single-cell probes), X(t)
contains expression levels for 25,000 genes, andY(t) is a label denoting
one of the 11 cell types (e.g., “blood cell,” “glia cell,” etc.). In both cases,
the ordering of data instances t in the datasets is arbitrary and is as-
sumed not to contain any a priori relevant information related to time
(such as temporal persistence of the ordering along the index t).

Figure 4 summarizes results for five benchmark problems from
time series analysis and prediction: for the Lorenz-96 benchmark
system (42) modeling turbulent behavior in one dimension, in a
weakly chaotic (Fig. 4A) and in the strongly chaotic (Fig. 4B)
regimes; (Fig. 4C) for 45 years (T = 16,433 days) of historical Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF)–
resimulated 2-m height daily air temperature anomalies (deviations
from the mean seasonal cycle) time series on a 18 by 30 grid over
Fig. 3. Classification problems: Comparing approximation and classification performances of SPA (blue curves) to the common methods on biomedical
applications (40, 41). Common methods include K-means clustering (dotted lines), SOM (brown), pattern recognition NNs (dashed lines), GMMs (cyan), density-based
clustering (gray dotted lines with crosses), and Bayesian models (Eq. 1) (Bayes; dotted lines). Approximation error is measured as the multiply cross-validated average
squared Euclidean norm of difference between the true and the discretized representations for validation data. Classification error is measured as the multiply cross-
validated average total variation norm between the true and the predicted classifications for validation data. WDBC, Wisconsin Diagnostic Breast Cancer database.
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the continental Europe and a part of the Northern Atlantic (43), pro-
vided by the ECMWF; (Fig. 4D) for the biomolecular dynamics of a
10–alanine peptide molecule in water (15); and (Fig. 4E) for the electrical
activity of the brain measured in various brain-computer interaction
(BCI) regimes obtained with the 64-channel electroencephalography
and provided for open access by the BCI2000 consortium (44).

As can be seen from the Figs. 3 and 4, SPA tends to reach its approx-
imation quality plateau earlier (i.e., with much smaller K) but is gener-
ally much more accurate, with a discretization performance
improvement factor ranging from two to four (for breast cancer diag-
nostics example, for single-cell mRNA classification, for the tempera-
ture data over Europe, and for the molecular dynamics application).
For the Lorenz-96 turbulence applications (42) and for the brain activity
application (44), discretization obtained by SPA is 10 to 100 times better
than the discretization from common methods, being at the same level
of computational cost as the popular K-means clustering (16).

When evaluating a prediction performance of different models for
a particular system, it is important to compare it with the trivial pre-
diction strategies called mean value prediction and persistent predic-
tion. The mean value prediction strategy predicts the next state of the
system to be an expectation value over the previous already observed
states and is an optimal prediction strategy for stationary independent
and identically distributed processes such as theGaussian process. The
persistent prediction strategy is predicting the next state of the system
to be the same as its current state. This strategy is particularly success-
Gerber et al., Sci. Adv. 2020;6 : eaaw0961 29 January 2020
ful and is difficult to be beaten for the systems with more smooth ob-
servational time series, e.g., for the intraday surface temperature
dynamics. As it can be seen from the fig. S3, among all other
consideredmethods (K-means, NNs, SOM, andmixture models), on-
ly the SPA discretization combined with the Markov models (Eq. 1)
allow outperforming both the mean value and the persistent predic-
tions for all of the considered systems.
DISCUSSION
Computational costs become a limiting factor when dealing with big
systems. The exponential growth in the hardware performance ob-
served over the past 60 years (the Moore’s law) is expected to end in
the early 2020s (45). More advanced machine learning approaches
(e.g., NNs) exhibit the cost scaling that grows polynomial with the
dimension and the size of the statistics, rendering some form of ad
hoc preprocessing and prereduction with more simple approaches
(e.g., clustering methods) unavoidable for big data situations. However,
these ad hoc preprocessing steps might impose a strong bias that is not
easy to quantify. At the same time, lower cost of the method typically
goes hand-in-handwith the lower quality of the obtained data represen-
tations (see Fig. 1). Since the amounts of collected data in most of the
natural sciences are expected to continue their exponential growth in
the near future, pressure on computational performance (quality) and
scaling (cost) of algorithms will increase.
Fig. 4. Prediction problems in time series analysis: Comparing approximation and prediction performances of SPA (blue curves) to the common methods on
open-source datasets (15, 42–44). Common methods include K-means clustering (K-means; dark green) in combinations with pattern recognition recurrent NNs
(yellow and light green) and Markov models (Eq. 1) (dark green). Approximation and the prediction errors are measured in the average squared Euclidean norm of
deviations between the true and the predicted system states for the validation data (i.e., for data not used in the model fitting). EEG, electroencephalogram.
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Instead of solving discretization, feature selection, and predic-
tion problems separately, the introduced computational procedure
(SPA) solves them simultaneously. The iteration complexity of SPA
scales linearly with data size. The amount of communication be-
tween processors in the parallel implementation is independent
of the data size and linear with the data dimension (Fig. 2), making
it appropriate for big data applications. Hence, SPA did not require
any form of data prereduction for any of the considered applica-
tions. As shown in the Fig. 1, having essentially the same iteration
cost scaling as the very popular and computationally very cheap K-
means algorithm (16, 17), SPA allows achieving substantially higher
approximation quality and a much higher parallel speedup with the
growing size T of the data.

Applications to large benchmark systems from natural sciences
(Figs. 3 and 4) reveal that these features of SPAallowamarked improve-
ment of approximation and cross-validated data-driven prediction qua-
lities, combined with a massive reduction of computational cost. For
example, computing the next-day surface temperature anomalies for
Europe (e.g., at the ECMWF) currently relies on solving equations of
atmosphere motion numerically performed on supercomputers (43).
Discretization and cross-validated data-driven prediction results for
the same online resimulated daily temperature data provided in the
Fig. 4C were obtained on a standard Mac PC, exhibiting a mean error
of 0.75°C for the 1-day ahead surface air temperature anomalies com-
putations (approximately 40% smaller than the current next-day pre-
diction errors by weather services).

These probability-preserving and stable predictions GY(t) can be
accomplished very cheaply with the Bayesian or Markovian model (Eq. 1)
from the available SPA discretization (Eqs. 2 and 3), just by comput-
ing the product of the obtained K × K Bayesian matrix L with the
K × 1 discretization vector GX(t). Optimal K was in the orders of 10
to 40 for all of the considered applications from Figs. 3 and 4. The
iteration cost of this entire data-driven computation scales linearly, re-
sulting in orders of magnitude speedup as compared to the predictions
based on the entire system’s simulations. These results indicate a
potential to use efficient and cheap Bayesian andMarkovian descriptive
models for a robust automated classification and data-driven cross-
validated predictive computations in many realistic systems across
natural sciences. However, an assumption about the t independence
of the conditional probability matrixL in (Eq. 1), which allowed apply-
ing common model selection procedures from machine learning, can
limit the applicability of the method in the nonstationary situations,
whenL in (Eq. 1) becomes t dependent. Addressing the nonstationarity
problem will become an important issue for future applications to
these systems.
MATERIALS AND METHODS
We used the standard MATLAB functions kmeans(), fitgmdist(),
patternnet(), and som() to compute the results of the commonmethods
(K-means, GMM, NN, and SOM) in Figs. 1, 3, and 4. To avoid being
trapped in the local optima and to enable a unified comparison of all
methods, we used 10 random initializations and selected the results with
the best approximation quality measure for the training sets. In case of
the pattern recognition NNs (evaluated in the classification and predic-
tion performance subfigures of Figs. 3 and 4) in each of the instances of
themultiple cross-validation procedure, we repeated the network fitting
for the numbers of neurons in the hidden layer ranging between 1 and
15 and selected the results with the best classification/prediction perform-
Gerber et al., Sci. Adv. 2020;6 : eaaw0961 29 January 2020
ances for the training set.We implemented the LSD algorithm fromFig.
1 inMATLAB according to the literature description (24) and provided
it for open access. SPA algorithms developed and used during the cur-
rent study are also available in open access as MATLAB code at https://
github.com/SusanneGerber.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/5/eaaw0961/DC1
Description of the synthetic data problems (used in the Fig. 2 of the main manuscript)
General SPA formulation
SPA in the Euclidean space
Optimality conditions
The solution of S subproblem
The solution of G subproblem
Computing optimal discretizations for Bayesian and Markovian models
Sensitivity and feature selection with SPA in the Euclidean space
Appendix
Fig. S1. Distributed solution of G problem.
Fig. S2. Comparison of different measures.
Fig. S3. Comparison of one time-step predictions.
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