
Enumerating Pathways of Proton Abstraction Based on a
Spatial and Electrostatic Analysis of Residues in the
Catalytic Site
Sandeep Chakraborty*

Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India

Abstract

The pathways of proton abstraction (PA), a key aspect of most catalytic reactions, is often controversial and highly debated.
Ultrahigh-resolution diffraction studies, molecular dynamics, quantum mechanics and molecular mechanic simulations are
often adopted to gain insights in the PA mechanisms in enzymes. These methods require expertise and effort to setup and
can be computationally intensive. We present a push button methodology – Proton abstraction Simulation (PRISM) – to
enumerate the possible pathways of PA in a protein with known 3D structure based on the spatial and electrostatic
properties of residues in the proximity of a given nucleophilic residue. Proton movements are evaluated in the vicinity of
this nucleophilic residue based on distances, potential differences, spatial channels and characteristics of the individual
residues (polarity, acidic, basic, etc). Modulating these parameters eliminates their empirical nature and also might reveal
pathways that originate from conformational changes. We have validated our method using serine proteases and concurred
with the dichotomy in PA in Class A b-lactamases, both of which are hydrolases. The PA mechanism in a transferase has also
been corroborated. The source code is made available at www.sanchak.com/prism.
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Introduction

Evolution has honed enzymes to efficiently and selectively

catalyze biochemical reactions. Catalysis entails specific functional

groups of the enzyme to be positioned appropriately with respect

to the substrate [1]. Of later, the induced fit postulation has gained

more acceptance over the lock and key model for catalysis [2]. The

formation and rupturing of bonds after substrate binding is

achieved by different modes of catalysis (metal-ion, acid-base,

covalent, etc). Proton abstraction (PA) in the active site of the

enzyme is a common feature in the various modes of catalysis.

The mechanism of PA often remains enigmatic despite of

intense research. A classic example is the debate surrounding the

base (Lys73 or Glu166) responsible for deprotonating the active

site serine (Ser70) in Class A b-lactamases [3–9]. In contrast,

His57 is unanimously accepted to be the base that abstracts the

proton from Ser195 in serine proteases [10–12]. Ultrahigh-

resolution diffraction studies [3,4,13,14], molecular dynamics,

quantum mechanics and molecular mechanic simulations [15–17]

are methods usually applied to gain insights in the PA mechanisms

in enzymes. These methods require considerable expertise for

setting up the simulations and can be computationally intensive. A

fast, simple and accurate method to probe the active site for

possible ways of achieving the deprotonation of a known

nucleophile would be quite useful for such studies.

We have previously established a computational method

(CLASP) based on the spatial and electrostatic properties of

residues for the detection of active sites and predicting unknown

functions in proteins [18]. CLASP has been extended to define a

generic methodology to quantify promiscuity (the catalysis of

reactions distinct from the one the protein has evolved to perform,

but using the same domain) in a wide range of proteins [19].

Analysis based on the potential difference between the catalytic

residues in Class A b-lactamases identified the dichotomy in the

PA mechanism and germinated the idea of a method that would

enumerate the possible pathways for PA. We present an

automated computational methodology – Proton abstraction Simu-

lation (PRISM) – to enumerate the various pathways of PA based

on the spatial and electrostatic properties of residues in the

proximity of a known nucleophilic residue (Fig. 1).

The goal of achieving deprotonation of a nucleophilic residue

can be theoretically achieved through multiple pathways. PRISM

enumerates all these possibilities. Proton movements based on

distances, spatial channels, potential differences and characteristics

of the individual residues (polarity, acidic, basic, etc.) are iterated

with simultaneous recalibration of potentials of the residues

concerned. The paths that result in the desired goal of

deprotonating the nucleophile are saved during these simulations,

and are the final output at the end of the simulation.

PRISM has been validated using serine proteases, Class A b-

lactamases (both hydrolases) and a serine transferase [20]. Such

results demonstrate that the simplistic model of PRISM enables it

be fast and simple without compromising on its ability to extract

the correct proton abstraction pathways.
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Results

We present the results of running PRISM on three well known

catalytic reactions involving the deprotonation of a nucleophile –

Class A b-lactamases, serine proteases and serine hydroxymethyl-

transferase.

1. Class A b-lactamases
b-lactamases are the chief cause of bacterial resistance to

penicillins, cephalosporins and related b-lactam compounds

[21,22]. They inactivate antibiotics by hydrolyzing the amide

bond of the b-lactam ring yielding biologically inactive products.

The Ambler classification [23,24] has four classes – Classes A, C

and D [25,26] have a nucleophilic serine at the active site, while

Class B b-lactamases are metallo-enzymes [27,28].

The Class A enzymes (TEM, SHV, etc. and the newly emerging

extended-spectrum b-lactamases) have a diverse substrate profile

and are the common b-lactamases observed in clinical isolates.

The roles of Lys73 and Glu166 in the acylation step as the

catalytic base required to deprotonate the Ser70 is highly debated.

The ambiguity on the role of Lys73 in deprotonating Ser70 as the

sole base is evident from the reversed sign of the potential

difference (PD), which suggests that Lys73 by itself cannot act as

the base required to abstract the proton from Ser70 (Fig. 2).

We chose 4 structures of Class A b-lactamases – one apo crystal

structure PER-1 (PDBid:1E25 [29]), a TEM-1 with a boronic acid

transition-state analog bound (PDBid:1M40 [4]), a TEM N170G

mutant with increased efficiency on ampicillin (PDBid:3JYI [30])

and a SHV-1 b-lactamase complexed with an inhibitor (2G2U

[31]). Table 1 and Table 2 shows the pairwise distance and PD

between the catalytic residues in these Class A b-lactamases. It is

evident from these tables that these distances and PD are

correlated, a result that we have previously used to predict

functions in proteins [18]. The paths for PA for these proteins are

shown in Table 3. Fig. 3 shows the simulation steps that identifies

[Lys73NZ-.Glu166OE1, Ser70OG-.Lys73NZ] as a possible

path for abstracting the proton from Ser70 in a Class A b-

lactamases (PDBid:1E25). The other path for PA (Ser70OG-

.Glu166OE1) acts through an intermediate water.

We now consider 2 CTX-M type enzymes – PDBid:2P74 [7]

and PDBid:1IYS [32] – in which the Lys73 has more flexibility

than other classes of Class A b-lactamases. Table 1 shows that

these proteins differ with respect to the positioning of the OE1

Figure 1. Flow for PRISM. A push button methodology for enumerating the possible pathways of proton abstraction in a protein with known 3D
structure based on the spatial and electrostatic properties of residues in the proximity of a given nucleophilic residue.
doi:10.1371/journal.pone.0039577.g001

Figure 2. The differences in the way the nucleophilic serine is
deprotonated in b-lactamases and serine proteases. The
potential differences are annotated on the edges, the direction of the
edge indicating the direction of the potential difference. Ser70 cannot
donate proton to Lys73 because of reverse potential gradient in b -
lactamase. In serine proteases, the Ser195 however has the correct
potential to donate the proton to His57.
doi:10.1371/journal.pone.0039577.g002

Proton Abstraction Simulation
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atom of Glu166. This has implications with respect to PD

calculations, and the deviations in PD can be seen in Table 2. For

example, the distance between the functional atoms of Lys73 and

Glu166 in the PDBid:1E25 and PDBid:2P74 are 5.0Å and 2.9Å

respectively, while the PD between the respective atoms are 436

units and 234 units. The paths for PA in protein PDBid:2P74 are

shown in Table 3. One such path in PDBid:2P74 is [Ser130OG-

.Lys73NZ, Lys73NZ-.Glu166OE1, Ser70OG-.Lys73NZ], the

simulation steps for which are shown in Fig. 4. Note that only after

Ser130 donated the proton to Lys73 it was able to have the high

PD required to transfer a proton to Glu166.

2. Serine proteases
Serine proteases cut peptide bonds in proteins using a well-

known catalytic triad – (Ser195, His57, Asp102) [10]. The precise

synchronized action between these residues is played out within a

cleft in which the substrate fits in and is subsequently cleaved off.

PRISM extracts the correct path (Table 3) for PA in a trypsin-like

protease (PDBid: 1A0J [33] – [Ser195OG-.His57NE2]) and a

subtilisin-like protease (PDBid:1GCI [34] [Ser221OG-

.His64NE2]).

3. Serine hydroxymethyltransferase (SHMT)
Since both serine protease and b-lactamases are hydrolases, we

validated PRISM on an enzyme with a different mode of catalysis

– a transferase (PDBid:1CJ0 [20]). SHMT is a critical enzyme of

the one-carbon units and catalyzes the interconversion of serine

and glycine (folate-linked one-carbon units are needed for DNA

synthesis and repair and provide methyl groups in methylation

reactions). Ser226 is conserved as either a Thr or Ser across all

known SHMTs [20]. PRISM extracts two paths for PA in this

protein – [Lys229NZ-.His126ND1, Thr226OG1-.Lys229NZ]

and [Thr226OG1-.His228ND1] – given Thr226 as the nucle-

ophilic residue that is to be deprotonated (Table 3).

Figure 3. PRISM Simulation steps in PDBid:1E25. We show the simulation steps that identifies [Lys73NZ-.Glu166OE1, Ser70OG-.Lys73NZ] as
a possible path for abstracting the proton from Ser70 in a Class A b -lactamases (PDB id: 1E25). The values associated with each atom is the potential
at that atom computed using APBS.
doi:10.1371/journal.pone.0039577.g003

Table 1. Pairwise distance in Å between catalytic residues in Class A b-lactamases – Ser70(a), Lys73(b), Ser130(c), [Arg/Lys]234(d),
Glu166(e).

ab ac ad ae bc bd be cd ce de

PDB

1E25 2.8 3.2 4.7 5.5 3.6 5.6 5 2.9 8 10

1M40 2.7 3 4.6 5.4 3.1 5.2 5 2.8 7.7 9.8

3JYI 3.1 2.9 4.6 5 3.9 5.8 4.4 2.8 7.2 9.4

2G2U 2.8 3.5 4.4 5.4 4.3 5.3 5.1 2.6 8.4 9.6

CTX BLases

2P74 2.7 3.1 4.5 3.9 4.3 5.7 2.9 2.8 6.6 8.1

1IYS 2.9 2.8 4.2 4.1 2.7 4.7 4.3 2.9 6.3 7.9

doi:10.1371/journal.pone.0039577.t001

Proton Abstraction Simulation
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Discussion

In the sheltered confines of the active site, evolution has shaped

the residues to be like a spring coiled for action, albeit at the cost of

the thermal stability of the whole protein [35,36]. It is this precise

recognition of the substrate that sets the whole catalytic machinery

rolling [37]. A static analysis of the active site should reveal, with

some degree of certainty, the course of events that follows this

nudge. In the current work we enumerate the possible ways of

proton abstraction (PA) from a static analysis of the spatial and

electrostatic properties of residues in the neighborhood of a known

nucleophile.

PA mechanisms in proteins are studied through ultrahigh-

resolution diffraction studies [3,4,13,14], molecular dynamics,

quantum mechanics and molecular mechanic simulations [15–17]

using molecular dynamics programs [38,39]. We present a

methodology – Proton abstraction Simulation (PRISM) – to

enumerate the various pathways of PA based on the spatial and

electrostatic properties of residues in the proximity of a known

nucleophilic residue (Fig. 1). Proton movements based on

distances, spatial channels, potential differences and characteristics

of the individual residues (polarity, acidic, basic, etc) are iterated

with simultaneous recalibration of potentials of the residues

concerned. We have validated our method using serine proteases,

Class A b-lactamases and serine hydroxymethyltransferases.

There are quite a few limitations of our approach, the primary

being the fact that we use a static image of the protein. The

distances and potential differences over which PA is allowed are

empirical, as is the method for recalibrating the potentials after a

proton movement. Varying these parameters (made possible by

small runtimes) in a sense simulates a dynamic movement of the

protein. Hard limits can never paint a true picture of catalysis – if a

PA is valid over 3Å, there is no reason why it should not be valid

over 3.1Å. Conformational changes in the presence of substrate is

accepted to play a key role in catalysis. Although proton transfer

across multiple water molecules has been observed, currently PA

Table 2. Pairwise potential difference between catalytic residues in Class A b-lactamases – Ser70(a), Lys73(b), Ser130(c), [Arg/
Lys]234(d), Glu166(e).

ab ac ad ae bc bd be cd ce de

PDB

1E25 2125.6 22.4 2189.1 310.7 148.1 263.5 436.3 2211.5 288.2 499.7

1M40 2215.3 230.9 2241.8 230.6 184.4 226.6 445.9 2211 261.5 472.5

3JYI 2150.5 19.2 2209 322.2 169.7 258.5 472.7 2228.1 303.1 531.2

2G2U 2201.7 22.3 2250.3 233.7 224 248.6 435.4 2272.7 211.4 484

CTX BLases

2P74 191.4 248.8 198.4 456 2240.2 7.1 264.6 247.2 504.8 257.6

1IYS 2215 227.7 2178.1 77.7 187.3 36.9 292.6 2150.4 105.3 255.7

doi:10.1371/journal.pone.0039577.t002

Table 3. Paths for proton abstraction as enumerated by PRISM.

PDB ids Paths for proton transfer

b-lactamases

1E25,1M40,3JYI,2G2U 1) [Ser70OG-.Glu166OE1]
2) [Lys73NZ-.Glu166OE1, Ser70OG-.Lys73NZ]

2P74 1) [Ser70OG-.Asn170ND2]
2) [Ser70OG-.Glu166OE1]
3) [Ser130OG-.Lys73NZ, Lys73NZ-.Glu166OE1
, Ser72OG-.Lys73NZ, Ser70OG-.Ser72OG]
4) [Ser130OG-.Lys73NZ, Ser237OG-.Asn170ND2,
Thr235OG1-.Lys234NZ, Ser72OG-.Glu166OE1,
Ser70OG-.Ser72OG]
5) [Ser70OG-.Asn132ND2]
6) [Ser130OG-.Lys73NZ, Ser237OG-.Asn170ND2,
Ser70OG-.Ser237OG]
7) [Ser130OG-.Lys73NZ, Lys73NZ-.Glu166OE1, Ser70OG-.Lys73NZ]

1IYS 1) [LYS73NZ-.ASN170ND2, SER70OG-.LYS73NZ]

Serine proteases

1A0J 1) [Ser195OG-.His57NE2]

1GCI 1) [Ser221OG-.His64NE2]

Serine hydroxymethyltransferase

1CJ0 1) [Lys229NZ-.His126ND1, Thr226OG1-.Lys229NZ]
2) [Thr226OG1-.His228ND1]

doi:10.1371/journal.pone.0039577.t003
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in PRISM is limited over a single water molecule [40]. Also,

proton abstraction through metal ions is not currently handled

[41]. Finally, the method is highly dependent on the tool used for

potential computation [42], and thus shares the limitation of

similar approaches using Finite Difference Poisson-Boltzmann

(FDPB) [43–45].

Intuitively, the potential environment of the active site encodes

more than just the catalytic residues. Keeping this in mind, the

simulations are confined to the active site only. To summarize, we

present a fast, simple and accurate method for enumerating

potential pathways for proton abstraction of a known nucleophilic

residue in a protein with known structure (PRISM).

Materials and Methods

We now detail the PRISM methodology shown pictorially in

(Fig. 1). We describe the functions and also present the

pseudocode.

1. PRISM(): Top level function
The input to PRISM() (Fig. 5a) is a protein with known 3D

structure, and the reactive atom of a known nucleophilic residue

that has to be deprotonated (X). The set of atoms (CR) that

comprises the active site (GetActiveSiteAtoms) is first computed

and then a state of the active site is defined by the potentials of the

constituent atoms. The initial state of the active site is obtained by

computing the potentials of atoms in CR using APBS [42]. From

this initial state, all possible next states based on proton transfers

are iteratively computed (EvaluateNextPossibleStates). Pro-

ton transfers between two atoms are allowed if they are feasible

from both spatial (IsMoveSpatiallyFeasible) and electrostatic

(IsMoveElectostaticallyFeasible) considerations. Visited

states are cached to avoid infinite looping. For each new state

reached, we verify whether the target atom has been deprotonated

(IsTargetResidueDeprotonated). If the deprotonation is

achieved, then the path from the initial state to the current (goal)

state is emitted as a series of proton transfers between pairs of

atoms.

2. GetActiveSiteAtoms() Compute the set of atoms that
comprise the active site

The set of atoms (CR) that are less than a specified distance

(MAXRADIUS) from X is considered as the active site atoms

(Fig 5b). Note that each residue is represented by its reactive atoms

Figure 4. PRISM Simulation steps in PDBid:2P74. We show the simulation steps that identifies [Ser130OG-.Lys73NZ, Lys73NZ-.Glu166OE1,
Ser70OG-.Lys73NZ] as a possible path for abstracting the proton from Ser70 in a Class A b -lactamases (PDB id: 2P74). The values associated with
each atom is the potential at that atom computed using APBS.
doi:10.1371/journal.pone.0039577.g004

Figure 5. Pseudocode for PRISM. (a) Top level function. (b) Compute the set of atoms that comprise the active site.
doi:10.1371/journal.pone.0039577.g005

Proton Abstraction Simulation
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(one residue might have multiple atoms, as does histidine). CR

includes X as well.

3. EvaluateNextPossibleStates() – Find the possible new
states that can be reached by proton transfers from one
initial state

This function computes the new states reachable from the

current state, as defined by possible proton abstraction (PA)

between each pair of atoms (Fig. 6a). The feasibility of PA is

evaluated by IsMoveSpatiallyFeasible and IsMoveElectos-
taticallyFeasible If PA is possible, it is verified whether the last

PA has achieved the goal of deprotonation of X. Otherwise, a new

state is computed by adjusting the potentials of the two atoms

involved in PA (AdjustPotential). The current state is tagged as

visited to avoid infinite looping. Thus, each state branches into

multiple new states based on the number of possible proton

transfers from that state.

4. IsMoveSpatiallyFeasible() – Is proton movement
between to atoms spatially feasible?

Proton transfer between two atoms (atomA and atomB) was

regarded as possible if the distance between them is less than a

specified value (MAXDIST), or there was a water molecule (W)

such that the distance between atomA and W, and the distance

between atomB and W are both less than MAXDIST (Fig. 6b).

Spatial hindrance from other neighboring atoms is taken into

consideration. If a ball of radius 1 Å makes contact with any other

atoms as it rolls from atomA to atomB, then the PA is considered

as invalid between this pair of atoms.

5. IsMoveElectostaticallyFeasible() – Is the potential
difference between the two atoms favorable for a proton
transfer?

The characteristics of the residues involved determine the

potential difference required for a proton transfer (Table S1)

(Fig. 7a). For example, PA is forbidden if either of the atoms

belongs to a non-polar residue. Likewise PA from an acidic residue

Figure 6. Pseudocode for PRISM. (a) Find the possible new states that can be reached by proton transfers from one state. (b) Is proton movement
between to atoms spatially feasible?
doi:10.1371/journal.pone.0039577.g006

Figure 7. Pseudocode for PRISM. (a) Is the potential difference between the two atoms favorable for a proton transfer? (b) Adjust the potentials
of the two atoms between which PA occurred.
doi:10.1371/journal.pone.0039577.g007

Proton Abstraction Simulation
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to a basic residue requires a smaller PD than a proton movement

from a basic residue to an acidic residue.

6. AdjustPotential() – Adjust the potentials of the two
atoms between which PA occured

The potentials of the two atoms are adjusted after each move,

and results in a new state (Fig. 7b). The potential of the donor

atom is reduced and the potential of the recipient atom is

increased – as happens on a proton transfer – and the potential

difference between them is reduced.

Some of the functions are self-explanatory (GetDistanceBet-
weenAtoms, IsNonPolar, IsAtomFromBasicResidue,
IsAtomFromAcidicResidue, IsTargetResidueDeproto-
nated, RunAPBS). Table S2 shows the description of the

parameters used and their default values.

7. Tools
Adaptive Poisson-Boltzmann Solver (APBS) and PDB2PQR

packages were used to calculate the potential difference between

the reactive atoms of the corresponding proteins [42,46]. The

APBS parameters are set as follows -solute dielectric: 2, solvent

dielectric: 78, solvent probe radius: 1.4 Å, temperature: 298 K and

0 ionic strength. APBS writes out the electrostatic potential in

dimensionless units of kT/e where k is Boltzmann’s constant, T is

the temperature in K and e is the charge of an electron. We

extensively integrated and used the freely available BioPerl [47]

modules and Emboss [48] tools.

Supporting Information

Table S1 Parameters used in PRISM, and their default
values.

(PDF)

Table S2 Potential difference threshold for proton
transfer.

(PDF)

Acknowledgments

I gratefully acknowledge B.J.Rao for technical discussions and infrastruc-

tural support. I am also indebted to Bjarni Asgeirsson from the Science

Institute, Department of Biochemistry, University of Iceland for technical

help with the methodology.

Author Contributions

Conceived and designed the experiments: SC. Performed the experiments:

SC. Analyzed the data: SC. Contributed reagents/materials/analysis tools:

SC. Wrote the paper: SC.

References

1. Lehninger A, Nelson DL, Cox MM (2008) Lehninger Principles of Biochemistry.

W. H. Freeman, fifth edition.

2. Koshland DE (1958) Application of a Theory of Enzyme Specificity to Protein

Synthesis. Proc Natl Acad Sci USA 44: 98–104.

3. Tomanicek SJ, Wang KK, Weiss KL, Blakeley MP, Cooper J, et al. (2011) The

active site protonation states of perdeuterated Toho-1 -lactamase determined by

neutron diffraction support a role for Glu166 as the general base in acylation.

FEBS Lett 585: 364–368.

4. Minasov G, Wang X, Shoichet BK (2002) An ultrahigh resolution structure of

TEM-1 beta-lactamase suggests a role for Glu166 as the general base in

acylation. J Am Chem Soc 124: 5333–5340.

5. Chen CC, Smith TJ, Kapadia G, Wasch S, Zawadzke LE, et al. (1996) Structure

and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococ-

cus aureus PC1. Biochemistry 35: 12251–12258.

6. Damblon C, Raquet X, Lian LY, Lamotte-Brasseur J, Fonze E, et al. (1996) The

catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine

residue of the TEM-1 enzyme. Proc Natl Acad Sci USA 93: 1747–1752.

7. Chen Y, Bonnet R, Shoichet BK (2007) The acylation mechanism of CTX-M
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