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Abstract

Objective

In the pathogenesis of sepsis, activation of both pro- and anti-inflammatory responses are

key components, but knowledge is lacking on the association between bacterial etiology

and development of dysregulated responses with sustained immunosuppression. The aim

of this study was to evaluate how the immunosupression marker HLA-DR on monocytes

(mHLA-DR) is associated with bacterial etiology and markers of inflammation during the

clinical trajectory of bloodstream infection (BSI).

Methods

Ninety-one adults, predominantly non-ICU patients, with BSI caused by Streptococcus

pneumoniae (n = 27), Staphylococcus aureus (n = 22), Escherichia coli/Klebsiella pneumo-

niae (n = 23), and other species (n = 19) were prospectively included, and sampled on

admission (day 0) and on days 1–2, 3, 7±1, 14±2, and 28±4.

Results

The dynamics of mHLA-DR, measured by flow cytometry, differed significantly between eti-

ology groups (p<0.001). Patients with S. pneumoniae and S. aureus BSI demonstrated low

initial mHLA-DR, with the S. aureus group showing delayed recovery over time. Eleven

patients (55% S. aureus) had negative outcome (secondary bacteremia or death) and they

demonstrated sustained C-reactive protein elevation, neutrophilia, lymphocytopenia, and

loss of mHLA-DR.

Conclusions

Dynamics of mHLA-DR varied according to the bacterial etiology of infection, with delayed

recovery in patients with S. aureus BSI. Patients with negative outcome showed sustained
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CRP elevation, neutrophilia, lymphocytopenia, and low levels of mHLA-DR, supporting the

theory of a dysregulated host response with persistent inflammation and immunosuppres-

sion in late stages of deleterious sepsis.

Introduction

During the past decade, it has been recognized that the role of the immune system in sepsis is

perhaps more complex than previously imagined [1]. The previous dogma of sepsis pathobiol-

ogy based on excessive inflammation is insufficient [2, 3]. This is illustrated by repeated fail-

ures of interventional trials aiming to alter the trajectory of the disease by blocking pro-

inflammatory pathways [4]. In contrast to previous dogma, more recent research has shown

that pro- and antiinflammation appear simultaneously in sepsis [1] and that a dysregulated

response with sustained inflammation and immunosuppression is linked to development of

critical illness with deleterious secondary infections [5, 6]. In an autopsy study, Torgesen et al.

found that more than 70% of patients who died from sepsis had unresolved infectious foci

despite antibiotic treatment [7]. Two other post-mortem studies of patients who died following

sepsis demonstrated findings consistent with profound immunosuppression, including exten-

sive lymphocyte apoptosis [8] and diminished expression of human leukocyte antigen-DR

(HLA-DR) in lung and spleen tissue [9]. According to this and to advances in basic research of

sepsis pathobiology, the definition of sepsis was updated in 2016 [10]. The underlying patho-

genesis is today described as a dysregulated host response to infection [10]. However, the

mechanisms leading to dysregulated immune responses with sustained immunosuppression

are still not clearly understood. In particular, differences related to the etiology of infection

have not been addressed in this context previously. This is important to consider, as different

etiological bacterial pathogens have different virulence properties and are thus prone to cause

different types of infection, including chronic infections for some pathogens [11].

The HLA-DR expression on antigen presenting cells acts as an important immunological

synapse in antigen-dependent lymphocyte activation, and its loss of expression on monocytes

is suggested to be a diagnostic and prognostic marker of sepsis-related immunosuppression

[12]. Accordingly, expression of monocytic HLA-DR (mHLA-DR) has been proposed to be

used as a guide to initiate immunostimulating therapy in sepsis [13]. However, a retrospective

intensive care unit (ICU)-study could not identify a suitable single cut-off value of mHLA-DR

for prediction of adverse outcome, due to wide variations between individuals [14]. The

authors discussed that the different etiologies in their setting could have contributed to the var-

iations. To the best of our knowledge, no previous clinical studies have measured the

mHLA-DR expression over time and in relation to bacterial etiology of the primary infection.

Therefore, the primary aim of the present study was to evaluate how the dynamics of

mHLA-DR expression differ between bacterial etiologies of bloodstream infection (BSI). The

secondary aim was to assess how levels of mHLA-DR and commonly used markers of inflam-

mation (C-reactive protein (CRP), neutrophil count and lymphocyte count) are expressed in

relation to each other and to the outcome of BSI.

Materials and methods

Study design and setting

This prospective study was conducted between 2011 and 2014 at the Department of Infectious

Diseases, Örebro University Hospital, Sweden. Blood cultures were collected on hospital
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admission (day 0) from patients with suspected bacterial infection. The inclusion criterion was

blood culture positivity within 1–3 days of admission. Exclusion criteria were prior participa-

tion in the study or documented infection with human immunodeficiency virus, hepatitis B or

C. Blood samples for neutrophils, lymphocytes, monocytes, CRP-levels, and mHLA-DR

expression were collected on days 1–2, 3, 7±1, 14±2, and 28±4 after admission.

Information regarding comorbidities, clinical data, other microbiological data, and out-

come data, was obtained from the patient records. Comorbidity was assessed using the Charl-

son comorbidity score [15].

Acute disease severity was assessed according to the acute changes from baseline Sepsis-

related Organ Failure Assessment (SOFA) score on admission [16]. The baseline level was nor-

malized to zero in patients with no co-existing organ failure prior to the onset of infection.

Patients with an acute SOFA score increase of�2 were defined as septic, according to the

Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [10].

Neutropenia (neutrophil count<0.5 x 109/L) or immunosuppressive medication (metho-

trexate, chemotherapeutics, or cortisol dosing equivalent to prednisolone�20 mg) was consid-

ered to constitute immunosuppression prior to infection.

Patients with secondary BSI and/or death 3–60 days after admission were considered to

have negative outcome.

Blood donor control group

Blood samples from 61 healthy blood donors at Örebro University Hospital were randomly

collected and used as controls for mHLA-DR. The sex distribution was 75% male (n = 46) and

the median age was 50 years.

Blood cultures

Venous blood was collected in two sets of blood culture bottles, two aerobic and two anaerobic

and was incubated using the BACTEC system (Becton Dickinson, Franklin Lakes, NJ, USA).

The bacteria were identified to species level by routine diagnostic laboratory procedures. Iden-

tification of bacteria was confirmed by matrix-assisted laser desorption ionization-time of

flight mass spectrometry (MALDI-TOF MS) (MicroflexLT, Biotyper 3.1; BrukerDaltonics,

Bremen, Germany).

Flow cytometry analysis of monocytic HLA-DR

Blood was sampled in ethylenediaminetetraacetic acid (EDTA) anticoagulant tubes that were

immediately placed on ice and transported to the laboratory for flow cytometry analysis of

HLA-DR expression on monocytes (CD14+ cells), according to the protocol of Docke et al.

[17]. The samples were prepared within 4 hours of collection. Antibody staining was per-

formed using QuantiBRITE™ Anti-HLA-DR PE�/Anti-Monocyte PerCP-Cy5.5 (BD Biosci-

ences, San Jose, CA, USA) and QuantiBRITE™ PE� (BD Biosciences), in accordance with the

instructions of the manufacturer. An FC500 flow cytometer (Beckman Coulter, Fullerton, CA,

USA) equipped with an argon laser (488 nm) and HeNe laser (633 nm) and EXPO 32 software

was used for flow cytometry analysis. Kaluza v.1.2 software (Beckman Coulter) was used for

data analysis. The results are expressed as number of antibodies bound per cell (AB/c).

Some of the mHLA-DR results from this cohort of patients and controls, have previously,

in part, been presented in evaluation studies of PCR-based diagnostics of HLA-DR [18, 19].

However, the results were not linked to specific etiologies or outcome data.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0192883 February 21, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0192883


C-reactive protein and leukocyte counts

CRP, neutrophil count, and lymphocyte count were analyzed with accredited routine labora-

tory methods at Örebro University Hospital.

Statistics

Levels of inflammatory markers are presented as medians with interquartile range (IQR).

Analyses of mHLA-DR were performed after logarithmic transformation since the distribution

was evaluated as log-normal. Unadjusted and adjusted linear regression was used to evaluate

mHLA-DR on day 1–2 in respect to different patient characteristics and bacterial etiology. Lin-

ear mixed models for repeated measurements were used to evaluate the dynamic variation in

mHLA-DR at different time points unadjusted and adjusted for sepsis-3 (severity) and pre-

existing immunosuppression. A heterogeneous, first-order autoregressive correlation structure

was chosen due to best model fit, evaluated using Akaike information criteria (AIC). Time was

modeled on a continuous scale to evaluate whether the slope of the geometric mean of

mHLA-DR over time showed significant interaction with bacterial etiology, indicating differ-

ent dynamics. The slopes of the mean mHLA-DR changes over time were estimated for differ-

ent etiologies and stratified for presence/absence of sepsis. Time was also modeled on

categorical scale to estimate the mean ratios in mHLA-DR between subpopulations of different

factors at each time point. Bonferroni–Holm corrections were performed for adjustments of

multiple comparisons over time. Mann-Whitney U-test was used to compare differences in

CRP, neutrophil, lymphocyte and monocyte counts between outcome groups at each time

point.

Spearman’s rho was used to assess correlations between mHLA-DR and markers of inflam-

mation (CRP, neutrophil count, lymphocyte and monocyte count). A p-value <0.05 was con-

sidered statistically significant. Unpaired T-test, with Bonferroni-Holm correction for multiple

comparisons was used for pairwise comparison of mHLA-DR between blood donor controls

and study patients at each sampling time point. All statistical analyses were performed with

SPSS version 22 (IBM Corp., Armonk, NY, USA).

Ethics

Ethical approval for the study was obtained from the Regional Ethics Review Board of Uppsala,

Sweden (approval number 2009/024). A written informed consent was obtained in all cases

and controls.

Results

Characteristics of the study population

Altogether 116 adult patients with positive blood culture were enrolled in the study. Six

patients were excluded, as presented in the flow chart (S1 Fig). Samples for 19 patients were

unavailable on days 1 and 2; the remaining 91 patients were sampled within 1–2 days of admis-

sion and were eligible for inclusion in the study. There was no systematic reason for missing

samples, and no significant difference in baseline data of patients with missing data compared

to patients with full sample series (data not shown). Patient characteristics of the study popula-

tion and baseline laboratory parameters are given in Table 1. Among the 91 study patients, the

median age was 70 years and 56% were males. According to the Sepsis-3 definition, 52% of the

patients had sepsis on admission. All patients were hospitalized and 13% were admitted to the

ICU. The four most frequently detected pathogens in blood culture were Streptococcus pneu-
moniae (n = 27), Staphylococcus aureus (n = 22), Escherichia coli (n = 18), and Klebsiella

Monocytic HLA-DR expression in bloodstream infection and sepsis
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pneumoniae (n = 5). Nineteen patients were categorized as having “other etiology.” They had

bacteremia with: Enterococcus species (n = 4), polymicrobial etiology (n = 4), S. agalactiae
(n = 3), Group C or G streptococcus (n = 3), Salmonella species (n = 2), Pseudomonas aerugi-
nosa (n = 1), Enterobacter cloacae (n = 1), and Haemophilus influenzae (n = 1). The distribution

of infectious foci is presented in Table 2.

Table 1. Demographic and clinical characteristics of patients.

Characteristics Bloodstream infection etiology

Total cohort

n = 91

E. coli/K. pneumoniae
n = 23

S. aureus
n = 22

S. pneumoniae
n = 27

Other

n = 19

Median age, yrs (IQR) 70 (62–79) 75 (60–86) 78 (67–82) 70 (62–74) 69 (62–79)

Sex

Male, n (%) 51 (56) 9 (39) 20 (91) 9 (33) 13 (68)

Female, n (%) 40 (44) 14 (61) 2 (9) 18 (67) 6 (32)

Median SOFA score change (IQR) 2 (1–3) 1 (0–2) 1.5 (1–3) 2 (1–4) 2 (1–5)

Sepsis, n (%) 47 (52) 6 (26) 11 (50) 20 (74) 10 (53)

Immunosuppression prior to infection, n (%) 7 (8) 4 (17) 1 (5) 1 (4) 1 (5)

Intensive care unit admission, n (%) 12 (13) 2 (9) 2 (9) 5 (7) 3 (16)

Median Charlson co-morbidity score (range) 1 (0–8) 2 (0–4) 1 (0–8) 1 (0–8) 1 (0–4)

Congestive heart failure, n (%) 14 (15) 3 (13) 5 (23) 3 (11) 3 (16)

Chronic lung disease, n (%) 7 (8) 0 1 (5) 5 (19) 1 (5)

Diabetes, n (%) 21 (23) 10 (43) 4 (18) 2 (7) 5 (26)

Cancer, n (%) 5 (5) 0 3 (14) 2 (7) 0

Moderate or severe kidney disease, n (%) 6 (7) 2 (9) 3 (14) 0 1 (5)

Connective tissue disease, n (%) 6 (7) 2 (9) 0 4 (15) 0

Median hospital days (IQR) 6 (3–15) 3 (3–6) 14 (9–43) 5 (4–12) 6 (3–19)

Outcome data

Combined negative outcome, n (%) 11 (12) 1 (4) 6 (27) 1 (4) 3 (16)

Death 3–60 days, n (%) 10 (11) 1 (4) 5 (23) 1 (4) 3 (16)

Secondary bloodstream infection, n (%) 5 (5) – 2 (9) 1 (4) 2 (11)

Continuous data presented as median and interquartile range (IQR) or range (min–max). Categorical variables presented as numbers and column percentage.

SOFA = Sepsis-related Organ Failure Assessment scale.

https://doi.org/10.1371/journal.pone.0192883.t001

Table 2. Distribution of infectious foci in different groups of bacterial etiology.

Primary focus of infection Bloodstream infection etiology

Total cohort

n = 91

E. coli/ K. pneumonia
n = 23

S. aureus
n = 22

S. pneumoniae
n = 27

Other

n = 19

Urinary tract, n (%) 21 (23) 18 (78) 0 0 3 (16)

Bronchitis, n (%) 2 (2) 0 0 2 (7) 0

Lungs/lower respiratory tract, n (%) 25 (27) 1 (4) 0 22 (81) 2 (11)

Joint/bone,n (%) 8 (9) 0 7 (32) 1 (4) 0

Heart, n (%) 8 (9) 0 5 (23) 0 3 (16)

Central nervous system, n (%) 2 (2) 0 0 2 (7) 0

Other, n (%) 25 (27) 4 (17) 10 (45) 0 11 (58)

Foci defined as “other” include abdominal, skin/soft tissue, catheter-related/stent graft, and unknown foci.

https://doi.org/10.1371/journal.pone.0192883.t002
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Etiology of bloodstream infection, SOFA-score, and immunosuppression

affects monocyte HLA-DR on days 1–2

To address the effects of BSI etiology on mHLA-DR expression, a linear regression was per-

formed. The median mHLA-DR level on days 1–2 was 17,500 (IQR11,500–32,200) AB/c in the

91 patients with BSI. As demonstrated in Table 3, the etiology of infection, pre-existing immu-

nosuppression, and SOFA score change on admission were independently associated with

mHLA-DR levels on days 1–2. The unadjusted models of linear regression showed that S.

aureus and S. pneumoniae etiology had significantly lower relative mean mHLA-DR compared

to E. coli/K. pneumoniae and that a higher SOFA score change was significantly associated

with lower relative mHLA-DR. The findings were similar regarding etiology when, adjustment

was made for all variables in the table, as possible confounding from SOFA score, comorbidity,

age, sex, and pre-existing immunosuppression could be present. Comorbidity assessed by

Charlson score�1, was not associated with lower mHLA-DR expression in either unadjusted

or adjusted analysis. However, preexisting immunosuppression was found to be associated

with lower mHLA-DR levels after adjusted analysis. The effects of age and SOFA score change

were evaluated both as categorical variables (SOFA score change <2 or�2, age<65 years or

�65 years) and continuous variables with similar results, as shown in Table 3.

Monocyte HLA-DR dynamics differ between bacterial etiologies during the

course of infection

Monocyte HLA-DR expression was evaluated during the course of infection to study potential

differences related to BSI etiology. As shown in Fig 1c, the dynamics of mHLA-DR expression

over time differed between the different etiologies of BSI. Patients with S. pneumoniae BSI

demonstrated the lowest initial mean values, with a fast recovery, increasing by 26% per assess-

ment point on average, mean ratio 1.26 (95% CI 1.19–1.33) as estimanted by the linear mixed

model. The mHLA-DR levels in patients with S. aureus BSI demonstrated initial low levels

with delayed recovery over time, averagely increasing by 9% between assessment points, mean

ratio 1.09 (95% CI 1.01–1.18). By contrast, patients with E. coli/K. pneumoniae BSI demon-

strated the highest mean mHLA-DR levels without significant mean changes over time. When

studying the slopes of mHLA-DR means over time by the mixed model-interaction test, the

etiology of BSI was found to differ significantly over time (p<0.001) and remained as a signifi-

cant factor after multivariate adjustments for Sepsis-3 diagnosis and pre-existing immunosup-

pression (p<0.001).

As illustrated in Fig 1a the dynamic pattern of CRP and neutrophil counts over time indi-

cated an inverse relation between the dynamics of these markers and mHLA-DR during the

course of infection,. However, in contrast to CRP-levels, the neutrophil counts did not demon-

strate significant differences between the etiology groups over time (Mixed models interaction

test; neutrophil count p = 0.052, CRP p = 0.001). Lymphocyte counts were low in all etiology

groups until day 7, as shown in Fig 1d. After day 7, the highest levels were seen in patients with

E. coli/K. pneumoniae BSI.

Delayed recovery of monocyte HLA-DR expression in patients with

Staphylococcus aureus bloodstream infection

The relative mean differences of mHLA-DR in BSI and blood donor controls are summarized

in S1 Table. In comparison to blood donor controls (median mHLA-DR 33,200 AB/c),

patients with S. aureus etiology demonstrated significantly decreased mHLA-DR levels

throughout the study period whereas mHLA-DR in patients with S. pneumoniae were

Monocytic HLA-DR expression in bloodstream infection and sepsis
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decreased only on the three first sampling time-points. In contrast, patients with E. coli/K.

pneumoniae etiology had similar mHLA-DR levels as healthy controls on early assessment

points (day 1–2, day 3) and were only slightly decreased on day 7.

Correlation between monocyte HLA-DR and markers of inflammation

Monocyte HLA–DR expression demonstrated a weak to moderate inverse correlation to both

CRP and neutrophils at all assessment points. Correlations for CRP and neutrophils on the

early assessments were on day 1–2; CRP r = -0.29 p<0.01, neutrophil count r = -0.37 p<0.01,

on day 3; CRP r = -0.50 p<0.01, Neutrophil count r = -0.56 p<0.01). Fig 2a–2i shows the cor-

relation between mHLA-DR expression and markers of inflammation (CRP, neutrophil

count, and lymphocyte count) on days 7, 14, and 28. Lymphocyte counts correlated positively

to mHLA-DR, but the correlation was significant only on assessment days 7 and 28 as shown

in Fig 2g–2i. By contrast, monocyte levels did not correlate to mHLA-DR expression, except

for a weak negative correlation on day 7. Correlations for monocytes were on day 1–2; r =

-0.093 p = 0.39, day 3; r = -0.065 p = 0.65, day 7;r = -0.30 p = 0.016, day 14; r = -0.22 p = 0.084,

day 28 r = 0.019, p = 0.88).

Prolonged inflammation, lymphocytpenia and inability to restore

mHLA-DR in patients with negative outcome

Altogether eleven of the 91 patients (12%) had a negative outcome 3–60 days after hospital

admission, i.e. secondary BSI (n = 5) and/or death (n = 10). Among these eleven patients, S.

aureus was the primary BSI etiology in six patients.

Characteristics of the patients with negative outcome are described in Table 1. Five patients

(5.5%) developed secondary BSI and altogether ten patients (11%) died. The SOFA score

Table 3. mHLA-DR expression on day 1–2 in patients with potential confounding baseline factors.

Subpopulation factors

N = 91

mHLA–DR

(AB/c x 103)

Unadjusted Adjusted

n (%) Median (IQR) Mean ratio (95% CI) p Mean ratio (95% CI) p

SOFA score change <2 44 (48%) 24.5 (16.7–41.2) Ref Ref

SOFA score change�2 (Sepsis-3) 47 (52%) 12.8 (9.5–22.0) 0.60 (0.46–0.78) <0.01 0.71 (0.54–0.92) 0.01

Comorbidity, Charlson score = 0 31 (34%) 16.0 (11.2–35.4) Ref Ref

Comorbidity, Charlson score >1 60 (66%) 18.3 (11.8–32.1) 0.94 (0.69–1.26) 0.66 0.95 (0.72–1.25) 0.69

Male 51 (56%) 16.7 (9.7–35.1) Ref Ref

Female 40 (44%) 18.8 (12.6–26.0) 1.04 (0.78–1.39) 0.78 1.06 (0.80–1.41) 0.68

Age <65 yrs 30 (33%) 21.2 (15.0–37.0) Ref Ref

Age�65 yrs 61 (67%) 15.2 (10.8–31.9) 0.75 (0.56–1.01) 0.06 0.86 (0.65–1.14) 0.28

No immunosuppression prior to sepsis 84 (92%) 17.8 (11.5–33.6) Ref Ref

Immunosuppression prior to sepsis 7 (8%) 16.6 (11.7–22.4) 0.80 (0.47–1.36) 0.41 0.59 (0.36–0.96) 0.04

E. coli/K. pneumoniae etiology 23 (25%) 30.9 (18.3–51.9) Ref Ref

S. aureus etiology 22 (24%) 15.4 (10.3–26.9) 0.56 (0.39–0.81) <0.01 0.61 (0.41–0.90) 0.01

S. pneumoniae etiology 27 (30%) 12.3 (9.6–16.8) 0.44 (0.31–0.63) <0.01 0.49 (0.34–0.71) <0.01

Other etiology 19 (21%) 22.9 (13.1–41.0) 0.77 (0.53–1.13) 0.18 0.82 (0.56–1.20) 0.30

Adjusted regression with Sepsis-related Organ Failure Assessment (SOFA) score change per unit and age per years on a continuous scale showed similar results (SOFA

score change: mean ratio 0.88 (0.82–0.94), p<0.01; immunosuppression prior to sepsis: mean ratio 0.59 (0.37–0.93), p = 0.02; S. aureus etiology: mean ratio 0.63 (0.43–

0.92), p = 0.02; S. pneumoniae etiology: mean ratio 0.5 (0.35–0.70), p<0.001). AB/c = antibodies bound per cell; CI = confidence interval; IQR = interquartile range;

SD = standard deviation; Ref = reference level.

https://doi.org/10.1371/journal.pone.0192883.t003
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change on admission was higher in patients with negative outcome; the median score was 5 in

the group with a negative outcome and 1 in the group without negative outcome. None of the

patients with a negative outcome were immunosuppressed prior to admission.

Patients with a negative outcome failed to restore mHLA-DR and lymphocyte counts and

demonstrated a sustained CRP elevation and neutrophilia in comparison to patients without a

negative outcome (Fig 3). Monocyte counts did not differ significantly between outcome

groups on any assessment point (S2 Fig).

Fig 1. a–d. Dynamic variation of (a) CRP; (b) neutrophil count; (c) mHLA-DR; and (d) lymphocyte count, presented in

groups defined by bacterial etiology of bloodstream infection. Box plots give medians (line within the boxes), quartiles

(box range), min-max (whiskers) if no outliers were present; otherwise, by circle markers if outliers were more than 1.5

box lengths from the box, and asterisks (�) if outliers were more than three box lengths from the box. The x-axis presents

sampling time points, in days after hospital admission.

https://doi.org/10.1371/journal.pone.0192883.g001
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Discussion

In this study of patients with community-onset BSI, the dynamics of mHLA-DR differed

depending on the bacterial etiology and were inversely associated with dynamics of CRP and

neutrophil counts. Patients with negative outcome showed sustained CRP elevation, neutro-

philia, and lymphocytopenia, and low levels of mHLA-DR. During the early phase of infection,

both S. pneumoniae and S. aureus BSI were associated with low mHLA-DR levels, in contrast

to E. coli/K. pneumoniae BSI. These etiology-related expressions of mHLA-DR remained after

multivariate adjustments for baseline factors and the presence/absence of sepsis.

Previous studies evaluating mHLA-DR in sepsis rarely present results in relation to the eti-

ology [13, 20–22], despite knowledge of etiology-related differences in sepsis outcome [23]. In

a recently published meta-analysis of translational immunology in intensive care medicine,

only one study specified etiology and or/ site of infection [24]. However, in the study by Janols

Fig 2. mHLA-DR expression on post-admission days 7, 14, and 28, in relation to CRP (a-c), neutrophil counts (d-f), and

lymphocyte counts (g-i), in bloodstream infection with and without negative outcome. Filled circles represent patients with

negative outcome. Open circles represent patients without negative outcome.

https://doi.org/10.1371/journal.pone.0192883.g002
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et al. [25], patients with Gram-positive infections expressed lower mHLA-DR compared to

patients with Gram-negative infections, similar to our observations in the initial phase of infec-

tion. Nevertheless, we also showed important differences in the dynamics of mHLA-DR within

Gram-positive etiologies, i.e., between S. pneumoniae and S. aureus infections. Patients with S.

pneumoniae BSI demonstrated a rapid recovery after day 3, whereas patients with S. aureus
BSI demonstrated a longer duration of decreased levels (Fig 1). This is probably in part due to

the complex interaction between pathogens and host immune defense mechanisms leading to

different exposures to damage-associated molecular patterns (DAMPs) and pathogen-associ-

ated molecular patterns (PAMPs) during the course of BSI [26]. Indeed, it is well known that

S. pneumoniae is most often rapidly cleared from the bloodstream after initiation of antibiotic

therapy, and that recurring infections with persisting bacteremia despite accurate antibiotic

treatment are a hallmark of complicated S. aureus infections [27]. Therefore, in S. aureus BSI, a

Fig 3. Dynamic variation of (a) CRP; (b) neutrophil count; (c) mHLA-DR; and (d) lymphocyte count, in patients with and

without negative outcome (i.e., secondary bloodstream infection [BSI] or death 3–60 days post admission). Box plots give

medians (line within the boxes), quartiles (box range), and min–max (whiskers) if no outliers were present, otherwise circle markers

if outliers were more than 1.5 box lengths from the box, and asterisks (�) if outliers were more than three box lengths from the box.

https://doi.org/10.1371/journal.pone.0192883.g003
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prolonged PAMP exposure may cause repeated toll-like receptor-2 stimulation of immune

cells, which may drive the immune response towards development of antigen tolerance, with

monocyte deactivation (measured by mHLA-DR loss) [28] and subsequent T-cell deactivation

[29].

In contrast to the Gram-positive bacteria, E. coli/K. pneumoniae BSI did not have dimin-

ished mHLA-DR expression or low lymphocyte counts in this setting. Instead, the highest lym-

phocyte counts were seen in patients with E. coli/K. pneumoniae etiologies. The majority of

patients with Gram-negative infections in this study had pyelonephritis as the primary focus of

infection. Therefore, it is possible that the high mHLA-DR levels shown in E. coli/ K. pneumo-
niae BSI are confounded by the focus of infection. However, urinary tract infection is shown

to be an uncommon primary infection in patients who develop secondary infections [30]. This

is also supported by the autopsy study by Torgesen [7], in which pyelonephritis was an uncom-

mon site of unresolved septic foci. In contrast to S. aureus bacteremia, Gram-negative bacter-

emia is often transient [31] and thus, the PAMP exposure over time is probably lower in

Gram-negative BSI than in S. aureus BSI. In the present study, it should also be noted that a

low percentage of E. coli/K. pneumoniae patients had sepsis.

Contemporary data suggests that sepsis-induced immunosuppression is linked to persistent

inflammation with elevated CRP levels and neutrophil counts along with presence of lympho-

cytopenia and immature myeloid suppressor cells in peripheral blood [32–34]. This is referred

to as the “persistent inflammation-immunosuppression and catabolism syndrome (PICS)”

[34]. However, these new insights are debated as the supporting data based on genomics and

immunologic phenotyping are gathered from separate studies on trauma and sepsis patients

that all have shortcomings [35]. To our knowledge, no previous study has investigated

mHLA-DR expression in relation to the simultaneous expression of CRP, neutrophil, and lym-

phocyte counts during the disease trajectory in patients with BSI. The results from our study

support the inflammation-immunosuppression theory by demonstrating that mHLA-DR was

inversely related to CRP and neutrophils, and that patients with a negative outcome often

show sustained CRP elevation, neutrophilia, lymphocytopenia, and loss of mHLA-DR (Figs 2

and 3).

In line with previous studies [5, 20] most patients with a negative outcome in the present

study had suppressed immune function with low mHLA-DR and lymphocyte counts. This

indicates that these biomarkers may be promising tools for selection of patients for immunos-

timulating therapy. So far, there is no consensus about when such therapy should be given or if

treatment may be more successful in certain types of infection. In the present study, S. aureus
etiology was associated with a failure to exhibit a trend towards restoration of mHLA-DR val-

ues and lymphocyte counts, and was the most common etiology among patients with negative

outcome. For identification of patients who would benefit from immunostimulating therapy,

stratification based on the etiology of infection and a combination of markers reflecting differ-

ent mechanisms of immunosuppression would probably be useful, in order to achieve an indi-

vidualized treatment tailored by the immune status.

This study has some limitations. First, it was based on patients with positive blood cultures.

Therefore, the conclusions may not be valid for an unselected population with suspected sep-

sis. Secondly, the number of patients with a negative outcome was too low to enable adjust-

ment for confounders to evaluate the prognostic value of mHLA-DR and markers of

inflammation for prediction of a negative outcome. On the other hand, the strength of this

study was that all patients had proven bacterial infections. This enabled studies of the host

response to different BSI etiologies. Moreover, this study was not restricted to ICU patients,

which allows the results to be applicable for BSI patients of different severity.
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In conclusion, the present study showed substantial differences in markers of host

responses during BSI, attributable to the etiology of bloodstream infection. Patients with S.

aureus etiology failed to exhibit a trend toward restoration of normal mHLA-DR values, while

those with S. pneumoniae etiology demonstrated a rapid restoration. No signs of monocyte

deactivation or lymphocytopenia were seen in patients with E. coli/K. pneumoniae etiologies of

BSI. Patients with negative outcome demonstrated a dysregulated immune response with signs

of monocyte deactivation, lymphocytopenia and continuous elevation of proinflammatory

markers, supporting the theory of persistent inflammation and immunosuppression in delete-

rious sepsis.

The present study demonstrated important differences in host response related to the bacte-

rial etiology of sepsis. In view of the upcoming refined diagnostics of infectious diseases [36,

37], individualized immunomodulation therapies according to the host response and the bac-

terial etiology should be a possible future approach to optimize the treatment outcome of a

dysregulated host response in sepsis.
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Kristoffer Strålin.
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