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Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2), is a pandemic that is claiming hundreds of thousands of

lives around the world. Angiotensin-converting enzyme-2 (ACE2) is a key player in

COVID-19 due to its pivotal role in the SARS-CoV-2 infection. This enzyme is

expressed throughout the body and the studies conducted so far have shown that its

expression varies according to several factors, including cell type, sex, age, disease

states and probably SARS-CoV-2 infection. Single-nucleotide polymorphisms (SNPs)

and epigenetic mechanisms, including DNA methylation, histone post-translational

modifications and microRNAs, impact ACE2 expression and may explain structural

variation. The understanding of how genetic variants and epigenetic markers act to

control ACE2 expression in health and disease states may contribute to comprehend

several aspects of COVID-19 that are puzzling researchers and clinicians. This review

collects and appraises the literature regarding some aspects in the ACE2 biology, the

expression patterns of this molecule, SNPs of the ACE2 gene and epigenetic mecha-

nisms that may impact ACE2 expression in the context of COVID-19.
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1 | INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respi-

ratory syndrome coronavirus-2 (SARS-CoV-2), is a disease that spread

quickly from its epicentre in Wuhan, a city located in the Chinese

province of Hubei, reaching 1 million confirmed cases worldwide on

2 April 2020, with an estimated death rate of 5.2%.1 One of the key

features of the infection - and that explains its widespread - is its high

interpersonal transmissibility. Interhuman transmission has been iden-

tified via droplets, direct contact and indirect contact through sur-

faces.2 Moreover, the virus has been identified in blood, saliva and

stool.3–5 Another important characteristic of the virus is its resistance

in the external environment: it can remain viable on plastic surfaces

for up to 3 days.6

Once in contact with healthy cells, SARS-CoV-2 can use the

renin-angiotensin system enzyme angiotensin-converting enzyme-2

(ACE2) along with the transmembrane protease serine type-2

(TMPRSS2), which are anchored on the cell membrane, to enter and

continue the infection.7 Because not every cell and tissue express

these enzymes, the virus cannot attack all tissues or organs indis-

tinctly. In addition to this difference in susceptibility in the context of

the organs of the same individual, there is a marked discrepancy in

the susceptibility levels of different patients: men, elders and patients

with prior history of cardiovascular, pulmonary and metabolic diseases

constitute the population with a higher risk of severe and lethal dis-

ease.8,9 On the other extreme, a large proportion of the individuals -

perhaps the great majority of infected subjects - are asymptomatic.10

The factors that account for this differential susceptibility are not fully

understood yet. Nevertheless, the study of ACE2 is undoubtfully of

great importance to shed light on some of the open questions.

Given the importance of ACE2 for the present pandemic, this

review will explore the characteristics of ACE2, the genetic and epige-

netic control of the ACE2 gene and its possible impact in the context

of COVID-19. Our intent in the elaboration of this review was to
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better comprehend some features of ACE2 and point out new and

promising research fields in COVID-19.

2 | BIOLOGY OF ACE2

ACE2 was discovered in 2000, as two independent groups character-

ized a carboxypeptidase homologue of the well-known ACE that could

cleave angiotensin I and angiotensin II and was not inhibited by con-

ventional ACE inhibitors, such as captopril, lisinopril and

enalaprilat.11,12 The ACE2 gene is located in chromosome X position

p22 and comprises approximately 40 kb, containing 18 exons interca-

lated with 17 introns.12 Interestingly, it was reported that this region

could escape X inactivation in female cells, although higher expression

was seen in males in some tissues.13 In addition to this, several single-

nucleotide polymorphisms (SNPs) have been found in ACE2.14,15

ACE2 is a type I transmembrane, 805 amino acids-long glycopro-

tein that contains a short C-terminal intracellular tail and an

N-terminal that extends to the extracellular space and contains the

peptidase domain (PD) of the enzyme.11,12 ACE2 and the testicular

ACE share 33% of the amino acids and both enzymes have a con-

served region in the active site: the zinc-binding motif His-Glu-Met-

Gly-His.11 ACE2 is a strict monocarboxypeptidase and contains a sin-

gle active site.11,16 ACE2 can also be detached from the plasma mem-

brane through the action of disintegrin and metalloproteinase

domain-containing protein 17 (ADAM-17), induced by angiotensin

II.17 ACE2 cleaves angiotensin II and angiotensin I - the latter much

less efficiently than angiotensin II - into angiotensin (1-7) and angio-

tensin (1-9), respectively.11,16 Through its action, ACE2 reduces the

availability of angiotensin II and produces angiotensin (1-7), which

acts on the Mas receptor (MasR) inhibiting diuresis and inducing vaso-

dilation and vasoprotection.18,19 Given the cardiovascular protective

properties of the peptides produced through the action of ACE2,

especially angiotensin (1-7), it may be important to maintain ACE2

expression or activity in the context of COVID-19.

In addition to counterbalancing the action of ACE and angiotensin

II, ACE2 has two other physiological roles: the cleavage of apelin pep-

tides and the formation of an amino acid transporter along with

SLC6A19.20 Apelin is a peptide, comprised of 77 amino acids, that is

cleaved by endopeptidases to give rise to several smaller peptides

whose activity through the G protein-coupled receptor angiotensin II

protein J receptor (APJR) mediates important protective actions in the

cardiovascular system.21,22 ACE2 is able to remove the C-terminal

amino acids from these peptides and, at least, partially inactivate them

given the lower hypotensive action in the presence of ACE2, whereas

the ACE2 deficiency or inhibition or the introduction of apelin-

resistant analogs rescued the cardioprotective effects of the pep-

tides.23 However, the metabolized apelin peptides may also be

biologically relevant.24 Remarkably, apelin peptides specifically induce

ACE2 expression through the action of APJR.25 Given its actions, it

has been hypothesized that apelin, and possibly its ACE2-metabolized

peptides, may be protective in COVID-19 through their cardi-

oprotective mechanisms.26,27 ACE2 has been found associated with

SLC6A19 in the brush border of epithelial intestinal cells and the proxi-

mal kidney tubules.28,29 SLC6A19 is expressed in the kidney and in the

small intestine, where it mediates the transport of neutral amino acids

from the lumen to the interstice.29 Whereas it partners with collectrin

and ACE2 in the kidney, it relies exclusively on ACE2 in the intestine,

forming a dimer of heterodimers.30,31 Although SARS-CoV-2 can bind to

ACE2 in the presence of SLC6A19 when the complex is in a closed

state,31 it was not determined yet if the presence of the amino acid

transporter alters the dynamics of interaction or internalization.

Following the onset of the COVID-19 pandemic, ACE2 was read-

ily recognized as the receptor for SARS-CoV-2 entry.7,32 Like SARS-

CoV, SARS-CoV-2 has a spike (S) protein, which is a trimeric protein

composed of S1 and S2 domains both with high homology, mainly in

the receptor-binding domain (RBD) - 73.9% of the residues are similar

between the viruses.33,34 Before interacting with ACE2, the priming

of the S protein is necessary and achieved by proteases, like

TMPRSS2 and cathepsin L/B.7 The S protein of SARS-CoV-2, specifi-

cally, is also cleaved by furin at the S1/S2 boundary, which enhances

the virus entry in susceptible cells if compared to SARS-CoV, which

does not rely on this mechanism.35,36 After cleavage, the C-terminal

domain (CTD) of S1 is exposed and ready to make contact with the

outer surface of the PD of ACE2.33,37 Both SARS-CoV and SARS-

CoV-2 have a CTD structure composed of a core subdomain bearing

five antiparallel β-strands and an external subdomain composed of

two β-strands connected by a flexible loop.33,38 The contact of the

CTD of S1 and ACE2 is mediated mainly by the external subdomain

and is driven by polar interactions - H bonds - between the viral and

the human proteins.33,38 Despite the similarities between the RBDs of

the two viruses, ACE2 has a stronger affinity for that of SARS-CoV-2

due to key substitutions in its RBD.31,33 Moreover, the epitopes dis-

played in the RBDs of the two proteins are different, which could

explain why antibodies targeting the RBD of one virus do not block

the infection caused by the other.33,39 Bioinformatics predictions have

pointed to different directions: while it was reported that some vari-

ants of ACE2 could bind to the RBD of SARS-CoV-2 with varying

affinities and thereby be protective against the infection or favour

it,40,41 another study did not find any difference the interaction con-

sidering eight variants found in European non-Finnish and African

populations.42 An in vitro study testing ACE2 variants did not found

any evidence for their role in modulating the interaction with SARS-

CoV-2, except for one that reduced the expression of ACE2.43 The

relevance of these results in vivo, however, remains to be studied.

3 | EXPRESSION PATTERNS OF ACE2

In the seminal papers characterizing ACE2, its expression determined

by Northern-blotting was tracked in higher levels in the kidney, heart

and testis, but lower levels were detected in the colon, small intestine

and ovary.12,13 Later, the mRNA expression was determined by qRT-

PCR across 72 tissues from three donors. It was shown that ACE2 is

ubiquitously expressed, but higher levels were seen in the testis, kid-

ney, digestive tract and cardiovascular tissues. Interestingly, the
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highest expression was observed in the ileum.44 Following the SARS

epidemic, immunohistochemical localization of the ACE2 protein rev-

ealed specificity in the localization of the protein within several tis-

sues. Positive staining was found in endothelial cells and smooth

muscle in the cardiovascular system; epithelial cells from the proximal

tubules of the kidney; in alveolar type 1 and 2 (AT1 and AT2, respec-

tively) epithelial cells in the lungs; in the smooth muscle and

enterocytes in the gut; in the basal layer of the skin and oral and nasal

mucosa and marginal staining was described in the brain.45

Recent studies employing single-cell transcriptome analysis and

looking at transcriptome databases have described interesting results

that could help to explain the entry and tropism of SARS-CoV-2. Con-

sistent with prior literature, epithelial and endothelial cells of the

intestine are the main cell types expressing ACE2 mRNA, with

the ileum and colon presenting the highest proportion of positive

cells.46–49 Considering the oral cavity, which is an important entry site

for the virus, the tongue holds epithelial cells, lymphocytes and fibro-

blasts expressing ACE2.48 In the superior airways, ACE2 expression

was observed in secretory epithelial cells of the nasal and sinus

mucosa.50 Tracheal epithelial cells, large airway epithelial cells and, in

a smaller proportion, small airway epithelial cells (SAE) express ACE2

mRNA.51 In the lungs, AT2 cells are the main cell type expressing both

ACE2 and TMPRSS2.51,52 In addition to these, transient secretory cells,

a cell type that expresses markers of Goblet and ciliated cells, also

presented high expression of ACE2 and TMPRSS2.52 In addition,

FURIN expression was observed in lung cells, often being expressed in

the ACE2+ and TMPRSS2+ cells.52 In the heart, pericytes are the main

cells expressing ACE2. It was shown that these cells establish interac-

tions with endothelial cells, which could promote microcirculatory

dysfunctions in the heart if the virus is present.46 In the urinary tract,

epithelial cells of the proximal tubules and the urothelial cells of the

bladder were observed expressing the enzyme.49 In testes, particu-

larly, spermatogonia, leydig and sertoli cells - these two cell

populations could not be separated in this study - were shown

expressing ACE2, with spermatogonia also expressing TMPRSS2.53

Neuronal expression was also reported based on data from trans-

criptome databases and animal studies.54–56

Considering the data presented, it could be hypothesized that the

organs with the highest expression could be the most affected by

the disease and the infection routes comprise the oral and nasal

mucosa. Indeed, it is known that gastrointestinal, pulmonary, cardio-

vascular and renal symptoms are common in COVID-19 patients and

the use of face masks greatly reduces transmission.57,58 However, the

scenario seems to be more nuanced, as multi-organ failure and multi-

system inflammatory syndrome in children in the context of COVID-

19 reveal that, in addition to cytopathic effects directly attributable to

the virus infecting the cells through ACE2, immune activation, cyto-

kine storm, endothelial dysfunction and the coagulopathy that follows

the infection contributes to damage and its manifestations.59–61

In addition to the cell type, several factors have been described to

modulate the expression of ACE2. Studies observed modulation of

ACE2 expression by age and sex in animal models and humans. Elder

rats (24-month old) presented lower protein expression compared to

young and middle-aged (3- and 12-month old) in the lungs. Moreover,

elder females showed higher expression than males.62 In sheep, males

experienced increased ACE2 activity from birth to the first year and

1-year-old animals of both sexes displayed increased protein

and mRNA expression compared to newborn lambs.63 In mice, gonad-

ectomy increased the activity of renal ACE2 in females only, and

treatment with 17β-estradiol decreased the activity of the enzyme in

both males and females regardless of the sex chromosome comple-

ment.64 Normal human bronchial epithelial cells grown at an air-liquid

interface treated with 17β-estradiol also displayed lower ACE2 mRNA

expression than vehicle-treated controls.65 In humans, the analysis of

transcriptomic datasets has revealed that ACE2 is differentially

expressed in the nasal and bronchial cells between children and adults

and in some tissues between men and women, with adults and men

having higher expression.13,66 Using qPCR, it was also shown that age

is positively correlated with ACE2 mRNA expression in a cohort

including patients with respiratory disease and that sex and age are

significantly associated with ACE2 expression in a multivariate analy-

sis.67 In combination with sex, smoking was reported to increase

ACE2 and TMPRSS2 mRNA in SAE cells, with male smokers having a

higher expression of ACE2 compared to female smokers.51 These data

suggest that older people, males and smokers are at higher risk for

SARS-CoV-2 infection and mortality. Several meta-analyses revealed

that males, and particularly older patients are at higher risk for infec-

tion and mortality regardless of ethnicity.68–72 However, the evidence

for smoking is controversial, although it favours the case of smoking

as a risk factor.73–75

Hypoxia is also a factor that modulates ACE2 expression and may

be an important risk factor for complications following COVID-19.

HIF-1α, a key transcription factor involved in the hypoxia response

and that was found to be upregulated in the peripheral blood of

COVID-19 patients.76 HIF-1α has been observed to downregulate

ACE2 mRNA and protein in airway smooth muscle and umbilical vein

endothelial cells.77,78 Consistently with these findings, patients with

lung fibrosis, a condition that is associated with the hypoxic state, dis-

play lower ACE2 expression.79 This ACE2 downregulation promoted

by HIF-1α may cause dysregulation of the concentration of the pro-

tective peptides derived from the action of this enzyme.80 Moreover,

HIF-1 upregulation following hypoxia may trigger inflammatory signal-

ling.76 However, ACE2 increased expression was observed in the cul-

ture of hepatocarcinoma cells under prolonged hypoxia and asthmatic

patients have no difference in ACE2, TMPRSS2 and FURIN expression

in the epithelial brush border cells compared to healthy controls,

which suggests that hypoxia and pulmonary diseases may induce dif-

ferent responses according to the cell type and the duration of the

stimulus.81,82 Hyperoxia, in its turn, was involved in ACE2 activity

downregulation through its shedding promoted by ADAM-17.83

The metabolic status also has an influence on ACE2, since type I

and II diabetes mellitus were shown to modulate ACE2 activity and

expression in humans and mice.84–88 Inflammation may also play a

role in ACE2 expression, since NF-κB, IFN-γ and TNF-α, IL-1β, IL-4

and TGF-β may regulate it.82,89–91 Conversely, ACE2 may also regu-

late inflammation and thrombus formation, particularly in the context
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of SARS-CoV-2 infection.92 Heart failure has been associated with

increased ACE2 activity and expression, perhaps due to a compensa-

tory mechanism. While angiotensin II may induce further cardiac dam-

age, increased ACE2 means higher levels of angiotensin (1–7), which

is cardioprotective.18,93–95 The pharmacological induction of ACE2

expression was also reported. Agents that can modulate ACE2 are

ACE inhibitors (ACEI), angiotensin II AT1 receptor blockers (ARBs),

statins, mineralocorticoid antagonists and rosiglitazone.96–100 Never-

theless, the discontinuation of these drugs in patients infected with

SARS-CoV-2 is a matter of debate.101,102

In the SARS-CoV-2 infection, it is possible that ACE2 protein

expression is downregulated, as is the case in the SARS-CoV infec-

tion.103 Particularly in the latter, the viral S protein alone was able to

decrease the levels of ACE2 protein expressed in the cell membrane,

probably due to the internalization of the molecule, and worsen acute

lung injury in acid-challenged mice.103 Indeed, a recent study has

shown that platelets reduce their ACE2 membrane expression due to

internalization when facing the virus or its S protein. Moreover,

virus-activated platelets exhibit higher aggregatory capacity and

inflammatory cytokine release, which could explain some of the

thromboembolic events in COVID-19.104 It was also reported that

SARS-CoV-2 infection in the lung cancer cell line Calu-3 slightly

decreased ACE2 mRNA expression through the upregulation of the

transcriptional repressor zinc finger E-box-binding homeobox

1 (ZEB1).105 As Verdecchia et al. (2020) discuss in their review, this

ACE2 downregulation may have adverse cardiopulmonary effects in

COVID-19, since Angiotensin II would accumulate, and Angiotensin

1-7 levels would be decreased.106 A potentially beneficial approach to

rescue ACE2 loss in infected patients would be the treatment with

recombinant human ACE2 protein (rhACE2) or an antibody targeting

the S protein.104,107 Currently, there is one completed clinical trial

studying rhACE2 as a treatment for COVID-19 (NCT04335136).

Additionally, a case report observed decreased concentration of

inflammatory cytokines, reduced the presence of SARS-CoV-2 in

plasma and airways, and clinical recovery following the administration

of soluble rhACE2.108

4 | POLYMORPHISM OF ACE2

Polymorphic variants may be responsible for altering levels and pat-

terns of expression in different tissues. Also, they can modify the

composition and conformation of the protein.109 The ACE2 gene is

one of the genes with the most genetic variants, and some studies

have evaluated its relationship with diseases.109,110 In the current

pandemic, the variability in susceptibility to COVID-19 depends on

several factors, and genetic polymorphisms can be one of them. Dif-

ferences in the spread of the virus, as well as in the development and

worsening of symptoms, may be related to the polymorphic genetic

variability of the ACE2 gene.109,111

The ACE2 gene is located on the chromosome X:

15 561 033-15 602 069, reverse strand, and comprises �41 036 nitrog-

enous bases. It produces 5 transcripts – two encoding a protein – and is

composed of 19 exons and 18 introns. The ACE2 gene has �14 194 alle-

lic variants that include �12 000 intronic variants, �260 exonic variants.

Also, we can distinguish 660 missense and synonymous variants.112 This

gene has great potential for genetic variability and this is observed in

different populations worldwide.111

Change of only one nucleotide in the base sequence, in at least

1% of the population, is called SNP.113 SNPs are common changes

that occur in DNA with the potential to modify the observed pheno-

type and can have an important impact on the epidemiology of some

diseases.114,115 However, finding this relationship is not an easy task.

Usually, diseases have a multifactorial character and there is the possi-

bility that the assessed SNP is not the variant responsible for the

alteration.

The SNPs of the ACE2 gene have been studied for more than

17 years in different populations and some studies show their rela-

tionship with cardiovascular diseases, diabetes, pulmonary alterations,

and other comorbidities. The most studied population is the Chinese,

and their diverse ethnicities, such as Han and Dongxiang. Interest-

ingly, even before the COVID-19 pandemic affected the world in

2020, studies have pointed to the influence of the presence of ACE2

polymorphisms in diseases related to organs such as the heart, lungs

and kidneys.116 These organs have also been described as the most

affected in hospitalized patients due to COVID-19.117

The literature is scarce in studies that evaluated the distribution

of SNPs and the expression, or bioavailability, of the protein in dis-

eases. However, many studies assessed the distribution of SNPs in

different populations and found associations with diseases. Most pub-

lished studies evaluated SNPs and variants in the intronic region with

an association of alleles and genotypes. Regarding COVID-19, the

SNPs of ACE2 can influence the interaction of the virus with the cell

due to alteration of the receptor conformation.118 Another point is

concerning the damage caused to the organism in individuals who

already had a genotype susceptible to diseases. These are some

important questions that are being raised in current studies.

The cardiovascular system is affected by changes in the renin-

angiotensin system in several ways. The change in blood pressure,

vasoconstriction, proliferation, inflammation, increased heart rate are

some changes that can cause comorbidities or aggravate pre-

established situations in the cardiac system.119,120 The rs6632677

variant has been linked to hypertrophy and dilation in cardiomyopa-

thies in studies with the population of India and China.114,121 Some

variants have been associated with chronic conditions such as

hypertension (rs1978124, rs879922, rs714205, rs4646176 and

rs2074192), and also myocardial infarction (rs1978124, rs228566

and rs4646142).114,119 The pre-existence of any disease or cardiovas-

cular alteration worsens the prognosis of a patient affected by

COVID-19. A 30%-40% of the patients who presented with the

severe form of the disease had some cardiovascular alteration, even if

controlled or in the mild forms.122

Few studies have related to the allelic frequency of ACE2 variants

with specific changes in the lungs, despite the high levels of expres-

sion of this enzyme in alveolar cells.123 The published works refer to

the great susceptibility of the structures that make up the airways to
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express high levels of ACE2 and consequently increase the risk of

infection by SARS-CoV.14,124 Some variants, like rs2285666, are

related to this higher probability in some Asian populations, even so,

the studies found it difficult to relate this finding in other

populations.125,126 Despite this, it has been published on the influence

of Angiotensin II bioavailability on pulmonary fibrosis, inflammation

and cytokine production, clinical findings commonly seen in patients

with COVID-19.127 Changes in the serum level of angiotensin (1-7)

were related to the rs2074192 and rs2106809 variants in the Han

population in hypertensive patients, which can influence the involve-

ment of the lungs in patients affected by COVID-19.

The cytokine storm is the most important factor in the worsening

and widespread involvement of the organism in the disease. The pres-

ence of chronic and acute diseases and comorbidities increases the

risk of morbidity and mortality in these patients.128 Obesity, liver dis-

ease and kidney disease are those that stand out in terms of fatality

related to COVID-19, followed by chronic obstructive pulmonary dis-

ease, cardiovascular diseases, diabetes and hypertension.122 Some of

the effects of these comorbidities have been related to polymorphic

variants in some populations. The variants rs1978124, rs2236306,

rs233575, rs4646188, rs879922, rs2106809, rs2285666, rs4646142,

rs4646155 and rs4646188 were related to changes in low-density

and high-density lipoprotein cholesterol levels, and rs2106809 and

rs2285666 were related to type 2 diabetes in the Chinese population.

Also, rs2285666, rs4240157, s4646142, rs4646155 and rs4830542

were related to tissue damage in organs like the heart.

Another important factor about ACE2 polymorphisms would be

the impact on dissemination and susceptibility to infection. This infor-

mation is perhaps the most important and difficult to obtain, due to

the difficulty of analysing the genotype of a population during a pan-

demic.129 Even so, some incipient findings give an idea of the SNPs

involved. rs4646127, rs2158082, rs5936011, rs6629110, rs4830983

and rs5936029 are related to greater ACE2 expression and greater

susceptibility to COVID-19 in East Asian, European, African, South

Asian and mixed American.130

Besides that, allelic changes in this gene are distributed differently

between men and women due to their location on the X chromosome

and can interfere with COVID-19 infection.131,132 Epidemiological

data worldwide show that men are most affected by the pandemic.

They have the highest rates of infection and also the highest rates of

morbidity and mortality.133 Many factors can contribute to this find-

ing, such as cultural behaviour of exposure and self-care, pre-existing

diseases, hormonal factors, genetic and phenotypic factors.134 How-

ever, the genetic basis of ACE2 can contribute to this scenario, such

as the presence of variants related to diseases or related to increased

expression. It was seen that there is a relationship between the

increase in the expression of ACE2 and the risk of infection. But once

infected, the higher expression of ACE2 may be a factor that contrib-

utes to a better prognosis.135 Although many of the changes related

to polymorphic variants are detected in women (Table S1 in Data S1),

there is evidence that points to a greater expression of ACE2 in the

female gender.135,136 This increase in expression may be related to

some polymorphic variants.

Evaluations of exon changes are still very incipient, especially

with respect to SARS-CoV-2. The most recent publications bring an

analysis of bioinformatics about the possibilities of exonic vari-

ants.40,42 Some candidates have shown to be potential modifiers of

the interaction of the viral protein and the ACE2 receptor, but have

not yet assessed this change in the field. The data for the variants and

polymorphisms can be seen in Table S1 in Data S1.

5 | EPIGENETIC REGULATION OF ACE2
EXPRESSION

Epigenetics is the study of the mitotically heritable changes in the

gene function that cannot be explained by the changes in the DNA

molecule.137 One important feature of the epigenetic mechanisms is

the malleability in face of an environmental change: through the cellu-

lar sensors, changes can be transmitted to the machinery involved in

writing, reading and erasing these marks. In this way, the cell can

adapt its functions to cope with a particular stimulus.138,139

DNA methylation is an epigenetic mechanism characterized by

the addition of a methyl group in the 50 carbon of the cytosine base

followed by a guanine (CpG) promoted by the enzymes DNA met-

hyltransferases.140 Mukerjee et al have shown that the offspring of

female mice fed with high-fat high-sucrose during gestation and

weaning presented lower methylation of ACE2 promoter in the

brainstem, kidney and cecum at 3 months of age and higher levels of

the enzyme in the hypothalamus at 7 months of age compared to the

offspring of dams fed with the control diet.141 Fan et al analysed

the methylation of peripheral blood in 5 CpGs in the ACE2 promoter

(ChrX:15,621,790-15,621,942) in the context of essential hyperten-

sion and observed that the CpGs located at ChrX:15,621,822 and

ChrX:15,621,814 had higher methylation in the cases than in con-

trols.142 Additionally, they found that control men and women dif-

fered in the methylation levels in the CpGs located at ChrX:15621814

and ChrX:15,621,846.142 Differential ACE2 methylation and expres-

sion were also observed in CD4+ T cells of lupus patients.143,144

Finally, it was determined that cancer may modulate ACE2 expression

through ACE2 promoter methylation since methylation changes are

concordant with the expression in several cancer types.145 Taken

together, these results suggest that ACE2 methylation and expression

may be regulated by the intrauterine life, by autoimmune, neoplastic

and metabolic diseases, and by sexual factors. Concurrently, with the

epidemiological data of the COVID-19 pandemics, these findings may

provide some evidence to explain the differences in susceptibility and

severity between the sexes and point out diseases like lupus and can-

cer to be risk factors for the disease.146,147

Histone PTMs correspond to the covalent attachment of several

organic radicals mainly to the residues of the N-terminal tails that pro-

trude from the octamer of histones that compose the nucleosome.137

The result of the PTMs can be either repress transcription or allow it

depending on the nature of the radical that is added and the residue

where it occurs.139 Rabbits treated with a high-cholesterol diet (HCD)

experienced in the heart global reductions of H3S10 phosphorylation
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TABLE 1 Studied miRNAs that target ACE2 in humans, cell lines and animals

miRNA Sample type Main findings References

mi-200c-3p Cell culture (HEK293T, THP1 and A549), pneumonia

and control patients, C57Bl/6 mice

miR-200c-3p is upregulated in cells exposed to H5N1

virus, dsRNA, LPS and LTAvia NF-κB and in patients

with severe pneumonia of various causes. miR-200c-

3p inhibition improves ACE2 expression, survival

and lung injury score in H5N1-infected mice

[152]

Cell culture: neonatal rat cardiomyocytes (NRCMs),

neonatal rat cardiac fibroblasts (NRCFs), human

primary cardiac fibroblasts (HCFs), human umbilical

vein endothelial cells (HUVECs), human-induced

pluripotent stem cell-derived cardiomyocyte (hiPSC-

CM)

miR-200c-3p downregulates ACE2 mRNA and protein

particularly in NRCMs and hiPSC-CM

[153]

miR-let-7b Cell culture: pulmonary artery smooth muscle cells

(PASMCs) isolated from Sprague–Dawley rats, and

C57Bl/6 mice

Hypoxia upregulates miR-let-7b, which decreases

ACE2 expression in cultured cells. miR-let-7b

expression depends on HIF-1α, as its inhibition
partially prevents miR-let-7b upregulation. miR-let-

7b induces cell migration and proliferation, whereas

miR-let-7b knockout mice under hypoxic conditions

presented higher ACE2 histochemical staining in the

pulmonary artery wall, concomitant with thickened

artery wall and higher Fulton's index

[154]

miR-1246 Cell culture (PMVEC), C57Bl/6mice LPS treatment induces miR-1246 upregulation, which

downregulates ACE2 expression. LPS upregulates

apoptosis, IL-1β and TNF-α through miR-1246, while

ACE2 overexpression represses apoptosis. Anti-miR-

1246-injected mice presented improved lung injury

score, ACE2 expression, vascular permeability and

decreased inflammation following intrathecal LPS

instillation

[155]

Small airway epithelial (SAE) cells from smokers and

nonsmoker individuals

Microarray and qRT-PCR analyses showed lower

expression of miR-1246 in smoker individuals

compared to nonsmokers. In the same study, ACE2

mRNA was upregulated in smokers

[51]

miR-125b Cell culture (HK-2 and HEK-293T) Cells treated with high concentrations of glucose

(30 mM) had higher expression of miR-125b and

lower ACE2 expression. ROS production and

apoptosis in high glucose conditions are partially

dependent on miR-125b expression, as its inhibition

caused lower ROS production and fewer apoptotic

cells

[156]

miR-421 Cell culture (HEK293T, Huh7, isolated cardiac

myofibroblasts)

miR-421 upregulation caused specific ACE2 protein

downregulation. miR-421 is highly expressed in the

kidney; HEK293T cells have higher expression than

Huh7 or isolated cardiac myofibroblasts

[157]

Chronic kidney disease, haemodialysis and control

patients; cell culture (THP1)

miR-421 levels are higher in the serum from patients

with kidney disease. miR-421 serum levels are

inversely correlated with ACE2 expression in the

leukocytes. THP1 cells exposed to uremic toxins

increase miR-421 and decrease ACE2 expression

[158]

miR-143 Female Wistar rats Rats subjected to mild- and high-intensity training

presented higher left ventricle expression of ACE2,

Ang (1–7), and Ang (1–7)/AngII ratio, while

decreased miR-143 was observed in the left

ventricle of the heart of the high-intensity group

compared to the sedentary and mild-intensity

groups

[159]

Male SHR and Wistar-Kyoto rats SHR rats subjected to moderate-intensity training

showed higher ACE2 protein expression and

decreased mi-143 in the aorta

[160]
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and H3 acetylation concomitantly with reduced H3 acetylation in the

ACE2 promoter.148 Atorvastatin treatment of animals that received

HCD reverted the effect of HCD on global acetylation and phosphor-

ylation, ACE2 promoter H3 acetylation and the protein expression in

the heart.148 High-fat diet (HFD) fed mice treated with rhACE2

showed higher H3K9 dimethylation, H3K9 acetylation and H3K27

acetylation in the subcutaneous white adipose tissue than mice of the

HFD group. Moreover, the treatment with rhACE2 regulated

the levels of the histone modifiers euchromatin histone lysine methyl-

transferase 1 (EHMT1), histone acetyltransferase GCN5 (GCN5),

P300/CBP-associated factor (PCAF), and histone deacetylase

3 (HDAC3).149 In human embryonic stem cells, knockout of the his-

tone methyltransferase enhancer of zeste homologue 2 (EHZ2)

resulted in lower levels of the repressive histone marker H3K27

trimethylation and concomitant higher ACE2 expression.150 Pinto

et al analysing publicly available transcriptomes of the lung in pulmo-

nary diseases revealed that the expression of several histone-

modifying enzymes positively correlated with ACE2 expression.151 In

addition, epigenetic analyses found that several of the genes posi-

tively associated with ACE2 expression, and possibly ACE2 itself, could

be regulated by the lysine demethylase 5B (KDM5B) and by the his-

tone marks H3K27 acetylation, H3K4 methylation and H3K4

trimethylation.151 In general, the results considering histone PTMs

involved in ACE2 regulation reveal that the chromatin around the

ACE2 locus is actively regulated by several enzymes in response to

environmental cues, which may be important in the context of

COVID-19. It may be particularly relevant the regulation promoted by

atorvastatin in rabbits, which enhanced H3 methylation in the ACE2

promoter and could therefore be used to increase ACE2 expression in

infected patients. It could also be relevant the modulation promoted

by rhACE2 in several histone modifiers, pointing out rhACE2 - or its

cleavage products - as a promising therapy in COVID-19 with effects

beyond its immediate catalytic actions (see Section 5).

Non-coding RNAs are a class of RNAs that do not code a protein.

Some members of this class - including microRNAs (miRNAs), small-

interfering RNAs (siRNAs), long-noncoding RNAs (lncRNAs) and

piwi-associated RNAs (piRNAs) - are able to regulate gene expression

through various mechanisms.138 miRNAs are small RNAs that can bind

to the 30 UTR of mRNAs and target them for degradation or impede

their translation.138 Several miRNAs have been observed to target

ACE2 mRNA (Table 1). Of note, miR-200c-3p is upregulated in

patients with pneumonia of various causes. It was shown that H5N1,

synthetic viral RNA, LPS and LTA can upregulate this miRNA through

NF-κB.152 This miRNA has also been observed downregulating ACE2

mRNA in neonatal rat cardiomyocytes and human cardiomyocytes

derived from induced pluripotent stem cells.153 Taken together, these

results indicate that miR-200c-3p may be a potential study target in

COVID-19. Other miRNAs of the miR-200 family have been proposed

to target ACE2 and might be important in COVID-19 given that they

are expressed in respiratory cells.164 miR-1246 and miR-let-7b,

involved in the regulation of ACE2, may also be good targets in the

context of the infection caused by SARS-CoV-2. miR-1246, induced

by LPS, was shown to increase apoptosis of pulmonary microvascular

endothelial cells, the expression of IL-1β and TNF-α and pulmonary

damage in LPS-challenged mice.155 In humans, this miRNA was

reported to be downregulated in SAE cells of smoker individuals com-

pared to nonsmokers.51 miR-let-7b is upregulated by hypoxia factor

HIF-1α and induces thickening of the wall of the pulmonary artery,

increased Fulton's index and right ventricle systolic pressure following

hypoxic stress in rats.154 Although the action of these miRNAs may

extend beyond inhibiting ACE2, some responses are dependent on the

inhibition of ACE2, which points to this enzyme having essential roles

in hypoxia and respiratory diseases.152,154,155 Finally, the lncRNA

ALT1 would also regulate ACE2 in hypoxic conditions. ALT1 was

observed to co-precipitate with ACE2 protein in human umbilical vein

endothelial cells. Hypoxia, HIF-1α expression, ALT1 knockdown and

contact inhibition of cell proliferation inhibited the expression of

ACE2; while ACE2 superexpression decreased HIF-1α, suggesting a

feedback loop that could be controlled by epigenetic factors.77 Given

that hypoxia and HIF-1α upregulation are a common phenomenon in

COVID-19,80 the non-coding RNAs induced by hypoxia may be rele-

vant targets in the disease. In addition to the miRNAs described above

TABLE 1 (Continued)

miRNA Sample type Main findings References

miR-483-3p Cell culture (HEK-293T) miR-483-3p was predicted to target ACE2 mRNA,

besides other components of the renin-angiotensin

system. Reporter assay containing the 30 UTR of

ACE2revealed lower luciferase expression. ACE2

mRNA levels were not altered in cells that

constitutively express miR-483-3p. The protein

levels were not determined

[161]

Cell culture (HTR-8/SVNeo) Cell proliferation was decreased following transfection

with miR-483-3p mimic

[162]

miR-429 FVB/NJ mice Female offspring of maternal low-protein diet (MLPD)

fed mice presented higher miR-429, while the male

offspring presented the inverse trend compared to

the offspring of normal diet-fed mice. ACE2 protein

expression was lower in the MLPD female offspring

[163]
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and in Table 1, in silico studies conducted after the onset of the

COVID-19 have proposed several other miRNAs that could target

ACE2 mRNA and therefore be important in the disease pathogene-

sis.165–167

6 | POSSIBLE ROLE OF GENETIC AND
EPIGENETIC CONTROL OF ACE2 IN
COVID-19

The degree of susceptibility to COVID-19 may be related to the bio-

availability of ACE2 in specific organs and tissues, as is suggested by a

number of transcriptomic studies.46,49–51 Since polymorphisms and

epigenetic mechanisms may impact ACE2 expression, it is of high

importance to determine these variables in the context of the infec-

tion by SARS-CoV-2.

ACE2 stood out in the context of the new pandemic due to its

role in the entry of the virus into the host cells.7,124 This knowledge

came mainly from bioinformatics studies on biocompatibility between

viral proteins and receptors in human cells, and previous studies on

the pathogenesis of the SARS pandemic in 2002-04.124,126,168 How-

ever, through clinical and laboratory studies during the COVID-19

pandemic, it was observed that comorbidities on patients were, in a

way, related to the deregulation of the renin-angiotensin sys-

tem.121,169 This highlighted ACE2, which could be participating both

in the infection process and in the progression of observed

comorbidities.

Another point to consider about the role of ACE2 in COVID-19

would be the diversity of the disease's involvement between individ-

uals and between different populations.121,127,170 This question

arouses interest in whether this variability is related to changes in bio-

availability, molecular and structural composition, expression and

genetic variants of the molecule.14,118,171

The ACE2 gene has many genetic variants, including introns and

exons, that can modify the expression process and the structure of

the protein. Therefore, the presence of ACE2 polymorphic variants in

different populations can be critical for understanding the range of

COVID-19 on the planet.119 However, the evaluation of this polymor-

phic characteristic is still incipient in COVID-19. Some studies show

that there is no association between genetic polymorphisms and

SARS-CoV infection. The presence of SNPs was verified among peo-

ple who developed SARS and those SARS-CoV positive without

developing the disease. No differences were observed between the

groups, which shows that this characteristic may not be important for

the infection process.14,172

On the other hand, once the SARS-CoV-2 infection is installed,

the evolution of the disease to symptomatic condition, and the degree

of involvement of the organism may be related to the ACE2 genetic

polymorphisms. These polymorphisms have been associated in several

populations with hypertension, stroke, diabetes, cardiac alterations

and lesions and the involvement of related organs, such as lungs and

kidneys. It has been reported that patients with a higher degree of

impairment have cardiac, pulmonary and renal changes, in addition to

changes in blood pressure.173–175 Possibly, patients who have poly-

morphic genetic variations related to these conditions may suffer from

such comorbidities due to a functional overload on ACE2, whose

function is impaired by virus interference.118 Such relationships

remain in the scope of hypotheses since there are no studies in the lit-

erature that correlate the distribution of SNPs in critically ill patients

affected by COVID-19 and the comorbidities presented.

Among the epigenetic mechanisms regulating ACE2 expression,

miRNAs are the most studied at the present and have shown results

that might be important in the context of SARS-CoV-2 infection. Hyp-

oxia and its regulated miRNA and lncRNA, for example, maybe clini-

cally relevant in the infection, as important features of pulmonary

function that could be affected by the virus are dependent on the reg-

ulation of these molecules.77,154 Smoking may also be relevant due to

miRNA modulation.51 Inflammation, important in SARS-CoV-2 infec-

tion, influences ACE2 expression as previously described.82,89–91,176 It

was shown that NF-κB activation due to viral and bacterial stimuli

impairs ACE2 expression via miRNA regulation.152 The same miRNA -

miR-200c-3p - was shown to be increased in patients with pneumonia

of various etiologies and to regulate inflammation in the lungs of

H5N1-infected mice, making this miRNA a potential candidate in the

context of SARS-CoV-2.152 Studies focusing on DNA methylation

have shown that sex, diet and underlying diseases can change this epi-

genetic mark and ACE2 expression accordingly.141,142,144,145 Recent

articles have proposed that ACE2 methylation and expression changes

in lupus and cancer may be important in the context of COVID-

19.143,145 Histone PTMs are also being investigated and the studies

have observed that diet, pharmacologic agents and lung disease can

regulate histone PTMs in ACE2.148,149,151 Atorvastatin, which

increased H3 acetylation in the ACE2 locus and its expression in rab-

bits, could be a promising drug to help treat COVID-19.148 There is a

registered clinical trial (NCT04380402) to study the effects of atorva-

statin administration in COVID-19 patients but no results were publi-

shed yet. rhACE2 is also promising since it could, in addition to

potentially rescue ACE2 activity loss in the SARS-CoV-2 infection,

regulate the levels of histone modifiers and promote beneficial meta-

bolic outcomes.149 However, there is not a conclusive study evaluat-

ing whether variations in non-coding RNAs, DNA methylation and

histone PTMs targeting ACE2 are important in COVID-19 patients.

In addition to underlying conditions playing a role in ACE2 epige-

netic regulation, it was shown that coronaviruses are able to induce

expression changes through epigenetic mechanisms in cell culture.177

Remarkably, interferon-stimulated genes (ISGs) – ACE2 is an ISG - are

differentially modulated by respiratory viruses through histone PTMs

and DNA methylation.50,177,178 Indeed, a mice model expressing

human ACE2 (hACE2) in its membranes infected with SARS-CoV-2

revealed that genes related to the cellular response to type I inter-

feron and type I interferon signalling pathway are upregulated as short

as 3 days after infection.179 This study also showed that the infection

is able to regulate DNA methylation in an organ-specific manner.

However, it remains to be determined the factors and pathways that

modulate the epigenetic mechanisms in viral infections and whether

ACE2 is epigenetically regulated by SARS-CoV-2 in humans.
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7 | CONCLUSION

The current pandemic of COVID-19 demands new approaches in the

diagnosis and treatment of the most severely affected patients. To

face the drastic consequences of this disease, detailed knowledge

about the pathogenesis, and the processes that involve the molecular

activity of targets such as ACE2 is essential. ACE2 has vast variability

in the way it can be bioavailable in different organs and tissues. Part

of this variability may be due to epigenetic mechanisms. Although

DNA methylation, histone PTMs and, particularly, miRNAs have been

implicated in ACE2 expression regulation, no comprehensive study

determining these markers has been conducted in COVID-19 patients

yet. Similarly, the studies investigating ACE2 polymorphisms have not

been extensive enough to determine the variants of this gene that

correlate with higher susceptibility or disease severity. In addition to

this, finding ways to maintain ACE2 expression in face of infection

may be important, given the protective actions peptides converted by

this enzyme promote. Thus, the careful study of the forms of genetic

and epigenetic regulation of this protein, such as SNPs and miRNAs,

can be of great importance.
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