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The past few decades have seen great progress in the exploration of nanoparticles (NPs)

as novel tools for cancer treatments and diagnosis. Practical and reliable application

of nanoparticle-based technology in clinical transformation remains nevertheless an

ongoing challenge. The design, preparation, and evaluation of various smart NPs

with specific physicochemical responses in tumor-related physiological conditions have

been of great interests in both academic and clinical research. Of particular, smart

enzyme-responsive nanoparticles can predictively and selectively react with specific

enzymes expressed in tumor tissues, leading to targeted delivery of anti-tumor drugs,

reduced systemic toxicity, and improved therapeutic effect. In addition, NPs interact

with internal enzymes usually under mild conditions (low temperature, aqueous media,

neutral or close to neutral pH) with high efficiency. In this review, recent advances in

the past 5 years in enzyme-responsive nanoparticles for anti-tumor drug delivery are

summarized and discussed. The following contents are divided based on the different

action sites of enzymes toward NPs, notably hydrophobic core, cleavable/uncleavable

linker, hydrophilic crown, and targeting ligand. Enzyme-engaged destruction of any

component of these delicate nanoparticle structures could result in either targeting drug

delivery or controlled drug release.

Keywords: enzyme-responsive, nanomedicine, stimuli-responsive, controlled release, cancer

INTRODUCTION

Cancer is one of the leading threats to human health and one of the main causes of
death worldwide (Siegel et al., 2020). Traditionally, chemotherapy has been given high
priority to treat cancer due to its great potential to cure early-stage cancers, as well as its
possibility to improve the life quality of patients with advanced cancers. However, conventional
chemotherapeutic agents are normally distributed non-specifically in the body and both cancerous
and normal cells are affected, leading to serious side effects and compromised therapeutic
effects. It is true that the lack of this specificity could be overcome by developing molecular
targeted drugs (Ross et al., 2004) but the rapid development of drug resistance during the
treatment is still a tough nut (Morgillo and Lee, 2005). In the past few decades, cancer
nanotherapeutics have been undergoing rapid development. Among them, nanoparticles (NPs),
as novel drug delivery carrier, have been extensively studied to solve the limitations of conventional
chemotherapeutics, such as non-specific biodistribution, poor water solubility, low therapeutic
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indices, and proneness to drug resistance (Cho et al., 2008).
Several therapeutic NPs have been successfully developed and
launched on market, including Abraxane R© and Doxil R© which
were, respectively approved for the treatment of metastatic breast
cancer and pancreatic cancer (Poveda et al., 2005). In addition,
Ontak R©, Onivyde R©, and DepoCyt R© have also been approved
by FDA for clinical use (Ventola, 2017), which indicates the
bright marketing prospect of therapeutic NPs.

Various types of carriers have been used in cancer
nanotherapeutics, including liposomes, polymeric NPs and
micelles, metallic NPs, carbon nanotubes, solid lipid NPs,
niosomes, and dendrimers (Torchilin, 2014). A wide variety
of payloads, such as small molecular drugs, proteins, peptides,
nucleic acids, vaccines, antibody, and so on, can be loaded and
delivered through physical encapsulation, covalent conjugation,
surface attachment or interception (Hans and Lowman,
2002). Diverse formulations based on versatile NPs have been
successfully explored to deliver drugs to lymphatic system,
brain, arterial wall, lung, liver, spleen, and other organs with
long-term circulation and controlled release profile (Hans and
Lowman, 2002). Usually, the size of formulated NPs ranges
from a few nanometers to several 100 nm, which enables
the NPs with passive targeting ability and achieves desired
enrichment of payloads in tumor tissues through the enhanced
permeability and retention (EPR) effect (Haley and Frenkel,
2008). In addition, with the attachment of targeting ligands or
antibodies on the surface of NPs, they are potentially endowed
with positive targeting ability (Kamaly et al., 2012). Both of
these passive targeting ability and positive targeting ability of
NPs are of great importance in reducing the side effects of anti-
tumor drugs loaded and improving their therapeutic efficacy.
Depending on the specific properties of drugs loaded and the
desired delivery pathways, a few strategies for the design and
preparation of NPs have been presented. In general, the typical
structure of multifunctional, drug-loaded NPs can be roughly
illustrated as follows: core (usually hydrophobic), cleavable or
not linker, hydrophilic crown, and targeting ligand, as illustrated
in Figure 1.

MULTIFUNCTIONAL AND
STIMULI-SENSITIVE NANOPARTICULATE
DRUG DELIVERY SYSTEM

Different from traditional NPs, stimuli-responsive nanoparticles
(SRNPs) have been considered as promising carriers because
of their unique bio-responsive physicochemical characteristics
and numerous successful applications of SRNPs have been
demonstrated. These “smart” SRNPs can react in a predictable
and specific way to external or internal stimuli (Karimi et al.,
2016), as illustrated in Figure 2. In response to a range of
endogenous stimuli, such as changes in pH (Lee et al., 2005; Ko
et al., 2007, 2010; Lee E. S. et al., 2008; Min et al., 2010; Yang
G. B. et al., 2018), hypoxia (Lin et al., 2013; Lee et al., 2017;
Ihsanullah et al., 2020), enzyme-specific expression (Lee S. et
al., 2008; Lee et al., 2009; Choi et al., 2011, 2014; Zhao et al.,
2019), redox state (Li et al., 2012; Shi et al., 2014; Xu et al.,

FIGURE 1 | Multifunctional and drug-loaded nanoparticles contain part or all

of these components: core (usually loaded with drug), linker, hydrophilic

crown, and targeting ligand.

2018), reactive oxygen species (Kim et al., 2014; Deepagan et al.,
2016; Yang Z. et al., 2018) in diseased tissues or intracellular
compartments, SRNPs undergo changes in molecular structure,
solubility, and surface properties, shape and self-association
or dissociation behaviors, which can facilitate cellular uptake,
improve endosomal escape or trigger either intracellular or
extracellular drug release. In addition, SRNPs can also respond to
exogenous stimuli, such as laser irradiation (Han et al., 2016) and
temperature changes (Kono, 2001; Li et al., 2013; Limmer et al.,
2014), to generate an off/on activation of imaging or therapeutic
function. Furthermore, well-designed smart nanoparticles can
even respond to combinations of multiple stimuli to further
improve their specificity for targeted drug delivery and controlled
drug release (Cheng et al., 2013; Chen et al., 2020; Hou et al.,
2020; Yu et al., 2020). This specificity allows nanoparticles to
release their payload precisely in a temporal or spatial pattern in
response to specific pathological triggers present in the diseased
tissues, which is supposed to reduce side effects, achieve dosing
on demand, and increase therapeutic efficacy (Mura et al., 2013).

Among them, enzyme-responsive nanoparticles have been
considered as one of the most promising smart stimulus-
responsive nanoparticles. First of all, changes in the expression
of specific enzymes, such as proteases, phosphatases, and
glycosidases, can be observed in tumor or inflammatory regions,
which can be exploited to achieve targeted accumulation of drugs
at the desired biological location via enzyme-mediated drug
release (Mura et al., 2013). For example, it is reported that the
expression level of prostate-specific membrane antigen (PSMA,
also known as glutamate carboxypeptidase 2) in prostatic cancer
cells is 100-fold to 1000-fold to normal prostate epithelial cells
(Troyer et al., 1995; Silver et al., 1997; Bostwick et al., 1998;
Mannweiler et al., 2009; Maurer et al., 2015). Cathepsin B is
overexpressed in various types of cancers including breast, lung,
prostate, colorectum, and endometrium (Aggarwal and Sloane,
2014). Moreover, enzymes, as triggers, have many advantages,
including high chemical selectivity and substrate specificity (de
la Rica et al., 2012), and usually enzyme-catalyzed reactions
proceed efficiently under mild conditions (low temperature,
aqueous media, neutral or close to neutral pH) (Ulijn, 2006;
Hu et al., 2012). For example, phospholipase A2 (sPLA2)
can degrade the fatty ester group at the sn-2 position of
glycerophospholipids with extremely high selectivity (Dennis
et al., 2011). Plasmin can preferentially catalyze the hydrolysis of
peptide bonds formed by arginine or lysine (West and Hubbell,
1999; van Dijk et al., 2010). Only at neutral pH, Cathepsin B
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FIGURE 2 | The mechanism of drug release from stimuli-responsive nanoparticles. Nanoparticles penetrate into the tumor tissues through EFR effect or with the

assistance of targeting ligands. External or internal stimuli induce structural collapsion of the nanoparticles, which prompts the release of drug at target location.

can act as an endopeptidase and catalyze the hydrolysis of large
peptide substrates (Aggarwal and Sloane, 2014). Active tumor-
targeting nanoparticles integrated with site-specific enzyme-
triggered moieties are able to significantly achieve enhanced
accumulation at the tumor site, reduced undesired uptake by
non-targeted tissues, as well as site-specific controlled drug
release (Allen, 2002).

In this review, we will focus on significant progress in the
field of enzyme-responsive nanoparticles for anti-tumor drug
delivery in the past 5 years. We will initially introduce the
general mechanism for controlling enzyme-responsive drug
release from nanoparticles. And then, key examples of drug
delivery and disease diagnosis systems based on enzyme-
responsive nanoparticles will be presented, which will be
organized based on different installation sites of specific enzyme
bioactive functionalities on nanoparticles. Critical discussion and
an outlook for these systems will also be provided.

GENERAL MECHANISM FOR
ENZYME-RESPONSIVE CONTROLLED
DRUG RELEASE FROM NPs

In human body, every biological and metabolic process seriously
relies on the actions of enzymes. Drug release from NPs
in an enzyme-responsive way is origin from the specific
enzyme-catalyzed chemical reactions which lead to degradation,
dissociation, or morphological transitions of the parent NPs
(Torchilin, 2014). In order to achieve controlled release profile
of drugs, severe degradation of NPs exposed to enzymes, which
usually leads to burst release of drugs, is neither necessary nor
preferred. In tumor microenvironment with the presence of
specific enzymes, controlled changes in macro-scale structure of

NPs usually afford desired controlled release of drugs (Kamaly
et al., 2016; Wang et al., 2019).

As we mentioned above, the delicate structure of NPs is
normally consisted of four components and decomposition of
any component can potentially result in the destruction of
integrity of NPs, followed by the release of drugs encapsulated.
This lies in the premise for the design of enzyme-responsive
nanoparticles and any component is possible to be attached
with enzyme-sensitive moiety which is usually a substrate or a
substrate mimic of the enzyme. In addition, a second component
is responsible for changes in the internal interactions, which
can eventually lead to macroscopic transitions and drug release
from NPs (Karimi et al., 2016). Principally, depending on the
drug delivery and release demand, the action site of enzyme
can be located on any component of NPs carriers, as long as it
bears enzyme-sensitive functionality. Therefore, the examples in
this review will be divided into the following four patterns and
discussed in detail.

ENZYME-RESPONSIVE NANOPARTICLES

Nanoparticles With Enzyme-Responsive
Core
Within the core of NPs are located the active drugs, which
are entrapped via physical interactions or chemical covalent
conjugation. Upon the action of enzymes toward functionality
installed in the core, the release of drugs can be triggered
by changes in structure, such as disintegration, macroscopic
deformation, charge switching, breakage of covalent bonds, and
so on (Zhou et al., 2019).

One of the most commonmethods of preparing nanoparticles
with enzyme-responsive core is by self-assembly of peptides
with enzyme-cleavable sequences or covalent conjugation of
proteinase-sensitive peptides to therapeutic or diagnostic agents.

Frontiers in Chemistry | www.frontiersin.org 3 July 2020 | Volume 8 | Article 647

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Enzyme-Responsive Nanoparticles

FIGURE 3 | (A) Schematic illustration and action mechanism of APNPs which were self-assembled from protease-sensitive peptides. Therapeutic peptide was

released with the hydrolysis of substrate peptides. (B) Schematic illustration of preparation of nanoparticles through assembly of amphipathic Pep-Cy5 with two

hydrophobic drugs and disintegration under the action of MMP-2.

In this case, matrix metalloproteinases (MMPs), a family of
over 20 calcium-dependent zinc-containing proteinases, have
been demonstrated the ability to catalyze the core degradation
of peptide-based NPs. Among them, MMP-2 and MMP-9
are of particular importance for the development of enzyme-
responsive anti-tumor drug delivery systems due to their proved
correlation with cancer cell invasion and metastasis formation
(Egeblad and Werb, 2002; Yoon et al., 2003). For example, Zhou

and coworkers developed novel enzyme-responsive activatable
protein nanoparticles (APNPs) for the targeting delivery of
therapeutic peptides (Yu et al., 2018). In this study, the
core of these PEG-coated APNPs was constructed by self-
assembly of peptides embedded with therapeutic peptides and
activatable toward proteases with high expression levels in the
microenvironment of diseased tissues, as illustrated in Figure 3A.
It was designed to achieve extended circulation time in vivo,
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reduced systemic toxicity, targeted delivery, and controlled
release of therapeutic peptides. Melittin (Mel), a promising
anticancer agent as cargo, was used to evaluate this delivery
platform, in which the peptides were specifically engineered
with MMP-responsive PLGLAG sequences. It was demonstrated
that, compared with free melittin, these finely tuned Mel-
APNPs exhibited limited toxicity. However, desired comparable
cytotoxicity was observed after exposure to MMP-2 due to the
enzyme-triggered release of active melittin from Mel-APNPs.
These delicate Mel-APNPs were further upgraded to TfR-Mel-
APNPs with targeting ability. Targeted delivery and controlled
release of melittin in vivo were successfully achieved, making
clinical transformation of these therapeutic peptides possible.

Similarly, in one case, the MMP-2 cleavable peptide
sequence GPLGVRGE was attached to hydrophobic near-
infrared dye Cy5, affording an amphiphilic multifunctional
molecule Pep-Cy5 (Yang et al., 2016). Through self-assembling,
this belt-shaped amphiphilic molecule would form water-soluble
nanoparticles with hydrophobic anti-tumor drugs that could
be a combination of different drugs, making it potential
for synergistic administration, as illustrated in Figure 3B. In
this study, anti-tumor drugs camptothecin and trans-retinoic
acid were cooperatively entrapped in enzyme-responsive NPs,
which exhibited a desired MMP-2-triggered degradation process
and achieved reduced side effects, enhanced intertumoral
accumulation, and improved anti-tumor efficacy.

In another case, Zhang et al. reported an immunotherapy
strategy for triple-negative breast cancer based on enzyme-
responsive and structure-transformable nanoparticles, as
illustrated in Figure 4A (Xu et al., 2019). Firstly, peptides
containing anti-tumor agents cisplatin (Pt) and adjudin (ADD)
and MMP-2-recognizable sequences were synthesized and then
self-assembled into spherical nanoparticles with diameters less
than 100 nm. It was demonstrated that after accumulation in
the tumor bed with overexpressed MMP-2, these spherical
nanoparticles underwent structural transformation into rod-like
nanoparticles with prolonged drug retention time and deep
tumor penetration capability. In addition, by adding WKYMV
(a kind of FPR-1 agonist), further development of MMP-2-
responsive NPs with three active components and additional
hydrophilic PEG chains was realized, and similar structural
changes from sphere to rod were observed. Remarkably, this
enhanced version of nano-platform exhibited further improved
antitumor immunity by synergistic activation and promotion of
immunogenic cell death.

Like MMP, overexpression of proteinase for albumin
catabolism in tumors has also been approved, which can be
utilized to design proteinase-responsive NPs for antitumor
drug delivery. For example, Zhang N. et al. (2016) developed
a proteinase K involved multi-triggered nanoparticles based
on human serum albumin, which was successfully applied for
photodynamic tumor ablation. In this study, human serum
albumin was used with synthetic polypeptide poly-L-lysine to
prepare nanoparticles via electrostatic assembly and PEG was
attached onto the surface of NPs, as illustrated in Figure 4B.
The in vitro triggered release profile of photosensitizer Chlorin
e6 from these NPs was evaluated in PBS solutions, which

indicated that, compared with other stimuli, proteinase K
significantly promoted the release of Chlorin e6 due to the
accelerated degradation of NPs. Interestingly, the presence of
combined multiple triggers including pH, glutathione (GSH)
and proteinase K exhibited the fast release rate of Chlorin e6.

As a number of strategies have emerged to explore
enzymes closely associated with specific diseases for biomedical
applications, together with the high intrinsic complexity of
enzyme-responsive NPs and subtle interactions between these
delivery systems and diseased cells, it is quite necessary to
establish a general mode for the rational design of enzyme-
responsive delivery systems. As we mentioned above, MMPs
are among those enzymes with top interest to researchers.
Especially, MMP-9 was drawn from a cross-section of MMPs
by Ulijn (2006), who presented guidance for the design of
a customizable peptide-based NPs with excellent therapeutic
effects (Son et al., 2019). They started with the design of
peptide amphiphiles with ionic hydrophilic section, MMP-9-
cleavable section and hydrophobic section. And then, they
systemically studied the compatibility of the cleavable section
with the entire nanoparticle system, the susceptibility of the
nanoparticle to the scissorMMP-2, and the relationships between
the morphology of the nanoparticle pre- and post-cleavage
and its pharmacodynamic effects. Eventually, they demonstrated
that surface charge, supramolecular organization and enzyme
specificity of peptide-based nanoparticles could be customized by
switching a few amino acids in the peptide sequences.

Nanoparticles With Enzyme-Responsive
Crown
Surface modification of nanoparticles with hydrophilic moieties
is usually essential for its applications in drug delivery, in
order to increase water-solubility, prevent drug leakage, avoid
reorganization by the reticuloendothelial system (RES), improve
interactions with cells, and facilitate cellular uptake. A wide range
of materials with high hydrophilicity have been investigated,
among which proteins or peptides, hyaluronic acid (HA), and
synthetic polymers cross-linked by peptides are of great interest
for the development of NPs with enzyme-responsive crown.
Ideally, this hydrophilic auxiliary of NPs is supposed to slip off
after the NPs reach the targeting action sites and facilitate the
release of active drugs encapsulated. In this way, it will be highly
desired for the development of enzyme-triggered deshielding
approaches due to the close association of enzymes with specific
diseases, especially tumors.

Enzyme-cleavable peptides are of high priority for
this consideration. For example, Callmann et al. (2015)
successfully constructed amphiphilic block copolymers
via ring-opening polymerization of norbornene analogs,
which were functionalized with hydrophobic paclitaxel and
hydrophilic MMP-responsive peptide (GPLGLAGGERDG) via
biodegradable ester bonds and amide bonds, respectively. The
resulting amphiphilic block copolymers assembled into micellar
nanoparticles coated with hydrophilic peptides which were
cleaved upon exposure to MMP presented in the diseased tissue,
as illustrated in Figure 5A. As a result, the open hydrophobic
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FIGURE 4 | (A) Schematic illustration of the construction of nanoparticles capable of structural transformation activated by MMP-2 in tumor microenvironment.

Rod-shaped particles were uptaken by the cell and drugs were released under the trigger of pH change and GSH. (B) Schematic illustration of construction of the

nanoparticles via electrostatic assembly from proteinase substrate human serum albumin and poly-L-lysine. Photosensitizer was released under combined multiple

triggers including proteinase K.

Frontiers in Chemistry | www.frontiersin.org 6 July 2020 | Volume 8 | Article 647

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Enzyme-Responsive Nanoparticles

FIGURE 5 | (A) Schematic illustration of nanoparticles prepared via self-assembling of amphiphilic block copolymers and drug release in response to MMPs. (B)

Schematic illustration of the preparation of hybrid nanoparticles via assembly and self-cross-linking formation. Drugs were released in response to MMP-2 and

GSH-triggered degradation of crown.
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FIGURE 6 | The nanoparticles were composed of nanovesicles as core and MMP-2 responsive polymeric network as crown. The crown disassembled in the tumor

microenvironment, enhancing the penetration and internalization of nanovesicles.

core turned accessible to hydrolysis and the active paclitaxel
was effectively released, leading to enhanced accumulation of
drugs and improved therapeutic efficacy. Moreover, in another
case, the peptide-based crown was further stabilized by forming
a cross-linking network structure without interference of its
enzyme-sensitivity (Peng et al., 2019). In this study, the peptides
with MMP-2-cleavable sequence in the middle were cross-linked
by N, N

′
-bis (acryloyl) cystamine, as shown in Figure 5B. This

was proved to be crucial for high drug loading capacity of these
NPs and enhanced penetration due to the presence of additional
GSH-responsive disulfide bonds.

Instead of being composed entirely of peptides, the crown
can also be consisted of synthetic hydrophilic polymers cross-
linked by enzyme-cleavable peptides. In this way, triggered-
release of drugs could be achieved via partial degradation of

polymeric crown. Chen et al. reported a delivery platform based
on nanoparticles bearing synthetic PEGs as hydrophilic crown.
It was further functionalized with MMP-2 responsive peptides
GPLGVRGK and tumor-targeting ligand CRGDK peptides, as
illustrated in Figure 6 (Liu et al., 2015). The presence of PEGs
was supposed to extend the circulation time in blood and the
installation of GPLGVRGK peptides was designed to provide
additional prevention from undesired drug leakage and enzyme-
triggering sites. The nanoparticles accumulated in the tumor
location through the EPR effect, followed by the breakage of
the crown in response to the over-expressed MMP-2 in the
tumor microenvironment. With the navigation effect of the
tumor-targeting ligand CRGDK peptide, enhanced deep-tissue
penetration and cellular internalization were achieved, which
significantly improved the therapeutic efficacy.
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FIGURE 7 | (A) Schematic illustration of MMP-responsive nanocarriers prepared by in situ polymerization and their applications for extracellular delivery of therapeutic

peptides. (B) Schematic illustration of the decoration of Dox-loaded MSN with HA and HAase-triggered release of drugs.
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FIGURE 8 | (A) Schematic illustration of the construction of HACT NPs through “layer-by-layer assembly” strategy. HA crown decorated with peptides allowed

pinpointed delivery of siRNAs along with Dox. (B) Schematic strategy of using outer-frame-degradable nanovehicles with NIR dual luminescence to monitor the

biological distribution of nanoparticles and the release of therapeutic proteins.
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Different from being active in diseased cells, extracellularly
functional protein drugs with high safety and excellent specificity
have recently emerged as important alternatives for clinical
applications. However, like other protein-based drugs, the
intrinsic fragility and susceptibility of these drugs to complex
in vivo conditions make their clinical practice formidable. And
thus, it is highly desirable to develop weakly cell-interacted,
nanosized, and enzyme-responsive NPs. Lu and coworkers have
developed a mild in situ polymerization process to construct
nano delivery platforms of protein drugs with controllable
enzyme-response capabilities, as shown in Figure 7A. In 2015,
they reported the fabrication of nanocapsules with plasmin-
responsive crown via in situ polymerization (Zhu et al., 2015).
The monomers contained peptide linkages made from different
enantiomers of amino acids. Spatiotemporal control of these
nanocapsules in response to plasmin could be achieved by
changing the chirality of peptide linkages in the crown. In
their follow-up study, MMP-2-responsive peptides with highly
hydrophilic zwitterionic phosphorylcholine were utilized to
modify the crown of NPs (Li et al., 2019). By optimizing
the filling rate of phosphorylcholine in crown, the interaction
between NPs and cells could be effectively weakened and thus the
undesired internalization by tumor cells and the loss of enzyme-
recognizable peptides could be avoided. Recently, this platform

was further improved to deliver monoclonal antibodies for brain
tumor treatment (Han et al., 2019). In this case, the crown of
nanocapsules was constructed via in situ polymerization of 2-
methacryloyloxyethyl phosphorylcholine (MPC) and MMP-2-
cleavable peptide crosslinker.

Recently, HA has been frequently reported due to its
potential multiple roles in the development of anti-tumor
therapy. First of all, similar as PEG, the high hydrophilicity,
non-toxicity, and biodegradability of HA make it ideal for
the coating of anti-tumor drug delivery NPs. In addition,
it has been demonstrated that HA is of strong and specific
targeting ability toward CD44, a transmembrane glycoprotein
overexpressed on various tumor cells. Furthermore, HA is
composed of enzyme-degradable N-acetylglucosamine and
D-glucuronic acid disaccharide units, rendering it a good
candidate for fabricating NPs with hyaluronidase (HAase)-
responsive crown. For example, Zhang and coworkers prepared
mesoporous silica nanoparticle (MSN)-based delivery vehicles
coated with biotin-modified HA, achieving targeted delivery
and controlled release of anti-tumor agent doxorubicin
hydrochloride (Dox) in the tumor cells with overexpression
of HAase, as shown in Figure 7B (Zhang M. Z. et al., 2016).
The benefit of this enzyme-responsive strategy was approved
by in vitro analyses, which showed that the simultaneous

FIGURE 9 | Schematic illustration of the decoration of water-sensitive and Dox-loaded ACC with lipase-responsive monostearin. Drugs were released under the

trigger of lipase and water.
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presence of biotin and HAase significantly facilitated the release
of Dox.

In another study by Min group, similar MSN with a hallow
and rattle structure (rmSiO2 NPs) were utilized for the codelivery
of siRNAs and Dox in an enzyme-responsive fashion (Ding
et al., 2017). In order to effectively load both hydrophilic
negatively charged siRNAs and hydrophobic Dox, a “layer-by-
layer assembly” strategy was adapted for the fabrication of
NPs with HA on the top surface. These NPs were further
functionalized with breast tumor cell homing and penetrating-
peptide PEGA-pVEC, as illustrated in Figure 8A. The resulting
novel NPs with cascade targeting capabilities showed enhanced
selective accumulation in tumor microenvironment and HAase-

triggered controllable release of drugs in the targeted tumor cells.
As more and more NPs with therapeutic proteins or peptides as
payloads have been exploited for tumor treatment, it is urgent

to fully reveal the mechanism and pharmacological efficacies in
tumor therapy via real-time tracking of therapeutic proteins. For
this reason, the same group artfully designed and prepared an

outer-frame-degradable nanovehicle by coupling upconversion
nanoparticles (UNCPs) with fluorophore-doped macroporous

silica (DS). It was finally coated with enzyme-responsive HA
crown, as illustrated in Figure 8B (Zhang et al., 2019). As
expected, in vitro and in vivo evaluation demonstrated that both
biodistribution of nanovehicles and the HAase-induced release of

protein could be visually monitored at different NIR fluorescence
channels. Interestingly, in addition to be a monitoring platform,
this nanovehicles with cytochrome loaded also showed excellent
anti-tumor therapeutic efficacy.

Quite similar to HAase-responsive HA/MSN
nanodelivery systems discussed above, lipase-triggered
monostearin/amorphous calcium carbonate (MS/ACC) NPs
loaded with Dox have been reported by Wang et al. (2018), as
shown in Figure 9. In this case, a new kind of enzyme-responsive
combination MS/lipase has been introduced, along with protein
or peptide/protease and HA/HAase. It is noteworthy that the
MS/ACC NPs exhibited additional water-sensitivity due to the
high degradability of ACC in aqueous media, which proved
to be crucial to induce a neighboring effect and enhance drug
penetration. With Dox loaded, MS/ACC-Dox nanoparticles
showed a significant effect on inhibiting tumor growth on
SKOV3 xenografted nude mice.

Nanoparticles With Enzyme-Responsive
Linker
Normally, cleavable linkers are an essential component of NPs.
They can be utilized to attach drugs to the hydrophobic core,
or connect hydrophobic core with hydrophilic crown, or modify
the hydrophilic surface with targeting ligands. Ideal cleavable
linkers should ensure the auxiliary of NPs remains attached

FIGURE 10 | Schematic illustration of construction of the siRNA and paclitaxel loaded micelle PPTN and subsequent activation in response to MMP-2/9.
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FIGURE 11 | Schematic illustration of the fabrication of the nanoparticles and the proposed mechanism of pH and legumain-responsive release of therapeutic

peptides T4.

during circulation but cleaves rapidly after NPs reach the
targeting action sites. It is desirable if the cleavable-linker can be
endowed with enzyme-responsive capability (Bohme and Beck-
Sickinger, 2015). In this context, peptides with specific protease
responsibility are considered as the most common candidates for
fabricating NPs with enzyme-responsive linkers.

MMPs are among the most studied proteases for applications
in antitumor drug delivery systems and some cases with MMP-
degradable peptides as linkers have been reported. For example,
Yin and coworkers designed and prepared a nanoparticle with
highly hydrophilic PEG as cationic charge shielding surface.
It was attached to active agents-loaded core via an MMP-
degradable peptide linker Pro-Leu-Gly-Leu-Ala-Gly (PLGLAG),
as illustrated in Figure 10 (Tang et al., 2016). In this study,
it was demonstrated that these long circulating NPs could be
passively localized in the tumor tissues via the EPR effect. In

the presence of PLGLAG-sensitive MMP-2/9, the PEG layer fell
off and the resulting exposure of positive charges promoted
the uptake of NPs by the tumor cells. In another study, NPs
fabricated in a similar way was reported by Zhang et al. (2019).
In this approach, fragile hydrophobic therapeutic small peptides
T4 (NLLMAAS) were rationally modified with PEG via an
enzyme-responsive linker of amino acid sequence AAN, as
illustrated in Figure 11. The linker is cleavable in tumor cells
and tumor-related microenvironment with overexpression of
cysteine protease legumain.

Like silica-and calcium carbonate-based nanoparticles,
inorganic quantum dots (QDs) have also been explored as
platforms for drug delivery, for which surface modification
with hydrophilic motifs are deemed essential. Jin et al. reported
CdSe/ZnS QDs-based NPs for the delivery of anti-pancreatic
cancer therapeutic gemcitabine (GEM) (Han et al., 2017). In
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FIGURE 12 | Schematic illustration of preparation of QDs-based nanoparticles and their enzyme-triggered behavior.

this study, commonly used PEG was utilized to decorate the
surface of QDs through the linkage of MMP-9 substrate peptide
GGPLGVRGK. In addition, a second cathepsin B-sensitive
peptide linker GFLG was installed between QDs and GEM, as
illustrated in Figure 12. It is well demonstrated that MMP-9
is overexpressed in the pancreatic tumor microenvironment
while cathepsin B is up-regulated in the pancreatic tumor
cells. This novel NPs delivery system with two sequential
enzyme-responsive linkers showed enhanced accumulation of
the activated form of GEM, reduced side effects, and superior
tumor suppression ability.

MSN-based drug delivery systems have also been successfully
modified with enzyme-responsive peptide linkers. van Rijt et al.
developed a novel approach for controllable release of anti-
tumor therapeutics mediated by MMP-9 (van Rijt et al., 2015).
Firstly, the external surface of the MSNs was coated with biotins
via heptapeptide linkers, which bear MMP-9-recognizable and
cleavable sequence RSWMGLP. After loading therapeutics, the
outer surface of the NPs was readily covered with hydrophilic
avidins which are of high affinity for biotins, as shown in
Figure 13A. The resulting well-armed NPs induced significant
apoptosis of tumor cells in lung tumor regions of mice, while
showing non-toxicity in tumor-free tissues or in healthy mice.

Another interesting example involving MSNs was presented
by Gayam et al. (2016). In this study, a new kind of enzyme-
responsive combination quinone/quinone oxidoreductase 1

(NQO1) was introduced and utilized for the design of enzyme-
triggered drug delivery system, because overexpression of NQO1
in several human tumor cells has been demonstrated. Strictly
speaking, it is not the enzyme-stimuli cleavage of linker that
directly leads to the release of drugs. In this case, as illustrated
in Figure 13B, the Dox loaded in MSNs was capped by an α-
cyclodextrin with a stalk going through. The end of the stalk
was functionalized with a benzoquinone, which acts both as a
stopper to lock the α-cyclodextrin and a reactive site toward
NQO1/NADH. Interestingly, in the presence of NQO1, the
stopper benzoquinone was reduced to hydroquinone, followed
by self-cleavage from the stalk. As a result, the gatekeeper α-
cyclodextrin was freed and thus DOX was released. This delicate
drug delivery system successfully avoided the premature release
of drugs.

Nanoparticles With Enzyme-Responsive
Ligand
In order to achieve precise delivery of anti-tumor drugs and
provide with personalizedmedicine due to the high heterogeneity
degree of tumor cells, the strategy to arm the delivery vehicle
with a targeting ligand has been accepted and implemented. The
design and selection of targeting ligands mostly depend on the
receptors overexpressed in diseased tissues. In current clinical
studies, a wide variety of targeting ligands have emerged. Peptides

Frontiers in Chemistry | www.frontiersin.org 14 July 2020 | Volume 8 | Article 647

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Enzyme-Responsive Nanoparticles

FIGURE 13 | (A) Schematic illustration of MMP-9 mediated release of MSN nanoparticles. In this system, controlled release of the drug was achieved through avidin

linker which was used to cover the surface with MMP-9 substrate peptides. (B) Schematic illustration of MSN nanoparticles and their NQO1 triggered release

mechanism.

and HA play important roles in the development of targeting
ligands with enzyme-responsive ability.

Non-specific interactions of NPs with healthy tissues can
be largely avoided by using enzyme-responsive materials
as targeting ligands, as ligand-guided dynamic activities
will occur only when NPs are exposed to specific tumor
microenvironments. The aggregation guided by enzyme-
responsive ligand has great importance in facilitating the
penetration of NPs through the blood-brain barrier and
enhancing retention of NPs in brain tumors. For example,
Gao et al. developed gold nanoparticles (AuNPs) capable of
aggregating in brain tumor cells with overexpression of legumain

(Ruan et al., 2016). This nanoplatform was comprised of two
kinds of AuNPs with different ligands, as illustrated in Figure 14.
One ligand was designed to be legumain-specific substrate which
could expose its 1,2-thiolamino groups via legumain-catalyzed
hydrolysis. The other one bearing cyano groups would readily
react with the 1,2-thiolamino groups via click cycloaddition,
leading to the formation of AuNPs aggregates. As a result, the
newly formed AuNPs with expanded size could effectively block
nanoparticle exocytosis and minimize nanoparticle backflow to
the bloodstream.

Not only for the delivery of intracellular active drugs, this
strategy of enzyme-induced NPs aggregation is also applicable
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FIGURE 14 | Schematic diagram showing the design of nanoplatform which aggregated under the action of legumain and achieved good retention in brain tumors.

for the delivery and continuous release of extracellular active
proteins/peptides in tumor tissues since the aggregated NPs as
depots are not easy to be internalized by the cells. Gu group
designed a nanoplatform (CS-NG) which could assemble into
microsized extracellular depots via transglutaminase-catalyzed
cross-linking of human serum albumin (Hu et al., 2016), as
showed in Figure 15. HA matrix loaded with transglutaminase
as an enzyme-responsive ligand and human serum albumin were
collectively coated on the surface of glycerol dimethacrylate-
based core preloaded with therapeutics. After NPs accumulated
in tumor tissues with overexpression of HAase, transglutaminase
was released from HA matrix, which further triggered the
cross-linking of HA and formed microscale “drug-delivery
depots” as reservoir to continuously release therapeutics.

CONCLUSIONS

Aberrantly high expression of tumor-associated enzymes is

a feature of the tumor microenvironment, which can be

utilized to design anti-tumor drug delivery systems based
on nanoparticles with enzyme-response capability. In this

review, four types of enzyme-responsive NPs were introduced

depending on the different components of NPs on which an
enzyme takes action. Different effects, such as better tissue or
membrane penetration, reduced toxicity, extended circulation
time, improved accumulation, and controllable release of active
therapeutics, can be achieved by fabricating NPs with enzyme-
responsive sites. NPs with enzyme-responsive crown are themost
common carriers for antitumor drug delivery because of their
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FIGURE 15 | Schematic diagram depicting the tumor microenvironment-mediated construction and deconstruction of extracellular drug depots for sustained drug

release.

relatively simple structure, easy preparation, and short response
time. More attention should be paid to these NPs due to their
great potential for clinical applications in the future. Among
the enzymes explored and evaluated, proteases with versatile
response abilities toward different enzyme-sensitive components
of NPs have been frequently investigated. Besides as therapy for
tumor treatment, enzyme-responsive NPs have also been used for
tumor monitoring and localization as they can target diseased
tissues and accumulate in tumor microenvironments with
desired sensitivity. In addition, it has been well demonstrated
that codelivery of multiple payloads by these enzyme responsive
systems is quite achievable. For all of these reasons, the
exploration and clinical applications of the enzyme-responsive
NPs applications will undergo considerable expansion.

Although great progress has been made in the design
and application of enzyme-responsive nanoparticles, there are
still many challenges that need to be addressed. First of all,

considering the high complexity of tumor microenvironment,
there is a tremendous variety of enzyme activity dysregulation in
different cancers and even the same cancer at different stages of
progress. It is really difficult to build a general enzyme-responsive
nano delivery platform for anti-tumor therapeutics. And due
to the high heterogeneity degree of cancer, even more difficulty
could be envisioned.

Secondly, targeted and controlled release of drugs from
enzyme-responsive NPs relies on the high reactivity of enzymes
for their substrates with exceptional selectivity. This exclusive
one-to-one relationship between enzyme-responsive NPs and
tumor microenvironment with overexpression of the exact
enzyme is not as solid as assumed. Take MMPs for example,
this family of over 20 proteinases have similar catalytic
mechanisms and thus substrate preferences. NPs modified with
short peptide substrates could be sensitive to various tumor
microenvironments. Therefore, rational chemistry design of
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enzyme-specific substrates for fabricating NPs with precise
enzyme-response ability is required.

Thirdly, compared with improved anti-tumor efficacy of
enzyme-responsive NPs clearly illustrated in vitro investigations,
there is still limited information about the underlying action
mechanism of enzyme-responsive NPs in vivo. In addition,
although positive results have been obtained in animal
models, therapy based on enzyme-responsive NPs is still
far away from being available for clinical use. Rational animal
models should be developed and closer correlation between
developed xenotransplantation models and clinical trials should
be established.

Finally, a wide variety of enzyme-responsive NPs with
sophisticated structures have been developed and some of them
are undergoing clinical trials. Concern about their biosafety
should be the key issue. Furthermore, due to their high structural
complexity and multiple functionalities, enzyme-responsive NPs
in development, especially those with high potential in clinical

applications, might meet standards of homogeneity and the
corresponding formulation techniques should be reproducible.

In summary, enzyme-responsive NPs hold great potential
for more precise diagnosis and more effective treatment of
cancers. There is a long way to go before we, with the
assistance of enzyme-responsive NPs, eventually find a cure
for cancer.
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