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Abstract
Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into

five different classes, which are thought to be regulated in different manners. To better un-

derstand differences in transcriptional regulation of the five dehydrin classes, de novomotif

discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant ge-

nomes. Overrepresented motifs were identified in the promoters of five dehydrin classes.

The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well

as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters

contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that

match elements connected with cold/dehydration, abscisic acid and light response. YnKn

dehydrin promoters contain motifs that match abscisic acid and light response elements,

but not cold/dehydration response elements. Conserved promoter motifs are present in the

dehydrin classes and across different plant lineages, indicating that dehydrin gene regula-

tion is likely also conserved.

Introduction
Plants have developed specific mechanisms that allow them to prepare for and survive drastic
changes in their environment. One of the better-studied mechanisms is cold acclimation,
which allows plants to develop freezing tolerance [1,2]. During exposure to low non-freezing
temperatures gene expression is modulated and numerous solutes, known as osmoprotectants,
and protective proteins accumulate in plant tissues. Dehydrins or dehydration proteins,
(DHN) belong to group II LEA (late embryogenesis abundant) proteins. They are often found
among those protective proteins and they are ubiquitous in transcriptomes of plants under os-
motic stress, such as cold, drought and high salinity [3–7]. All dehydrins contain a 15 amino
acid K-segment, rich in lysine residues, represented by EKKGIMDKIKEKLPG conserved se-
quence [8]. The K-segment forms an amphipathic α-helix that allows dehydrins to stabilize
plant membranes and proteins during dehydration stresses [9–12]. In addition to the K-
segment, dehydrins can contain a Y-segment (T/VDEYGNP) and an S-segment (3+ serines)
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[13]. The S-segment is thought to be involved in ion binding and dehydrin phosphorylation,
which induces a conformational change in dehydrins [14,15]. Currently, the function of the Y-
segment is unknown. The dehydrins are categorized into 5 subclasses (Kn, KS, SKn, YnKn and
YnSKn) based on the presence and location of the 3 conserved segments [13]. Members of each
subclass are expressed in response to a different set of stimuli. However, there is no clear link
between subclass types and expression triggers [16].

As defined by Close, 1997, dehydrins must contain a K-segment. According to that defini-
tion, dehydrins are only found in plants. There are other proteins described as dehydrins, for
example from Escherichia coli (GenBank: AAB18249.1), a fungus Pneumocystis carinii (Gen-
Bank: CAC43457.1) [4] or from whitish truffle Tuber borchii (GenBank: ABC33908.1) [17].
However, these proteins do not contain the K-segment or any of the other conserved dehydrin
segments and therefore should not be considered to be proper dehydrins.

Stress response in plants can be regulated in an abscisic acid (ABA) dependent and/or inde-
pendent manner [18]. Multiple transcription factors, such as C-repeat binding factor/dehydra-
tion responsive element binding protein (CBF/DREB) and ABA response element binding
protein (AREB), participate in water stress response, by binding to cis-regulatory elements in
the promoters of their respective regulons. The CBF1-3 are transcription factors that partici-
pate in ABA independent cold and dehydration induced gene expression [19] and they bind a
C-repeat (CRT) cis-regulatory element core (CCGAC), also known as dehydration response el-
ement (DRE). Members of the CBF regulon include well-studied A. thaliana genes, such as
LTI78/COR78 [20], COR15A and COR47 (an SKn dehydrin) [21]. However, not all members
of the CBF regulon have the CRT cis-regulatory element in their promoters [22], hence there
are yet undiscovered motifs that are involved in cold and drought response. Numerous tran-
scription factors participate in the ABA dependent stress response and they bind several cis-
regulatory elements with a TACGTG core [23]. Many members of the CBF regulon are also
upregulated in response to drought and ABA exposure, demonstrating a cross-talk between
stress-induced pathways [24]. For example, in barley (Hordeum vulgare L.), a Kn dehydrin is
strongly upregulated in response to cold, dehydration and ABA, and its promoter contains
CRT and abscisic acid response elements (ABREs) cis-regulatory elements, whereas a barley
SKn dehydrin, whose promoter contains multiple CRTs and no ABREs is only weakly upregu-
lated in response to ABA, but shows a significant upregulation in response to cold [3]. The ex-
pression of CBFs, and, in turn, their regulons, is modulated by photoperiod through
phytochrome B and phytochrome-interacting factors [25,26].

In this study, we tested whether the different classes of dehydrin genes house specific and
conserved cis-regulatory elements in their promoters that could contribute to gene characteri-
zation. De novomotif discovery, a computational approach to identify statistically overrepre-
sented sequence motifs within a promoter sequence, was used to analyze a total of 350
dehydrin promoters. For each of the five dehydrin classes, statistically significant motifs were
identified, and matched to experimentally validated cis-regulatory elements known from litera-
ture. Motifs linked to ABA-dependent and ABA-independent stress response pathways were
detected in the promoters of dehydrin genes from various, distant plant lineages, which indi-
cates that the stress response pathways regulating dehydrin expression are conserved.

Methods

Plant genomes used in the computational analyses
Permission to use data from genomes that are not published was obtained from members of se-
quencing consortia, where stated. In other cases, published data was used.
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The following genome sequences were obtained from Phytozome v10 (http://phytozome.jgi.
doe.gov) [27] using BioMart [28]: Amborella trichopoda [29], Aquilegia coerulea (Aquilegia
coerulea Genome Sequencing Project, http://www.phytozome.net/, permission obtained from
Dr. Scott Hodges), Arabidopsis halleri (Arabidopsis halleri v1.1, DOE-JGI, http://www.
phytozome.net/ahalleri), Arabidopsis lyrata [30], Arabidopsis thaliana [31], Boechera stricta
(Boechera stricta v1.2, DOE-JGI, http://www.phytozome.net/bstricta), Brachypodium distach-
yon [32], turnip mustard (Brassica rapa L.) [33,34], papaya (Carica papaya) [35], Capsella
grandiflora and Capsella rubella [36], clementine (Citrus clementina) and, sweet orange (Citrus
sinensis) [37], cucumber (Cucumis sativus) (permission obtained from Dr. YiqunWeng), Euca-
lyptus grandis [38], Eutrema salsugineum (formerly Thellungiella halophila) [39], strawberry
(Fragaria vesca) [40], soybean (Glycine max) [41], cotton (Gossypuim raimondii) [42], flax
(Linum usitatissimum) [43], apple (Malus domestica) [44], cassava (Manihot esculenta) [45],
barrel medic (Medicago truncatula) [46], monkey flower (Mimulus guttatus) [47], rice (Oryza
sativa) [48], swtichgrass (Panicum virgatum v1.0, DOE-JGI, http://www.phytozome.net/
pvirgatum), common bean (Phaseolus vulgaris L.) [49], moss (Physcomitrella patens) [50],
peach (Prunus persica) [51], poplar (Populus trichocarpa) [52], castor bean (Ricinus communis)
[53], foxtail millet (Setaria italica) [54], Shrub willow (Salix purpurea v1.0, DOE-JGI, http://
phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Spurpurea), tomato (Solanum lycoper-
sicum) [55], potato (Solanum tuberosum) [56], greater duckweed (Spirodela polyrhiza) [57],
cocoa (Theobroma cacao) [58], grape (Vitis vinifera) [59], maize (Zea mays) [60].

The following genomes were obtained from other sources: kiwifruit (Actinidia chinensis) [61],
sugar beet (Beta vulgaris) [62]; pigeonpea (Cajanus cajan) [63] http://www.icrisat.org/gt-bt/iipg/
genomedata.zip; pepper (Capsicum annuum) [64]; chickpea (Cicer arietinum) [65] http://www.
icrisat.org/gt-bt/ICGGC/genomedata.zip; Lotus japonicus [66] ftp://ftp.kazusa.or.jp/pub/lotus/
lotus_r2.5/; banana (Musa acuminata) [67];Oryza brachyantha [68]; date palm (Phoenix dactyli-
fera, Draft Sequence Version 3) [69] http://qatar-weill.cornell.edu/research/datepalmGenome/
download.html; Norway spruce (Picea abies) [70]; loblolly pine (Pinus taeda) [71].

Identification of dehydrin genes
A custom solution was used to identify all dehydrin genes found in the plant genomes de-
scribed above. Amino acid sequences of several known dehydrins were obtained from NCBI
GenBank [72] and sequences of their K-segment were used to populate a seed FASTA file. A
Python script was written that used Biopython [73] Motif module to scan all amino acid se-
quence for proteins containing a sequence similar to the K-segment, based on its position fre-
quency matrix (PFM). After each round of search new K-segment sequences were added to the
original FASTA file. The Y-segment sequence file was constructed in a similar manner using
identified dehydrin protein sequences. Identified dehydrins were categorized based on the oc-
currence of conserved segments using either their PFMs (K- and Y-segments) or a regular ex-
pression that described a simpler S-segment. All identified dehydrins were divided into five
categories: Kn, KS, SKn, YnKn, YnSKn and 1000 bps upstream of the transcription start site
(where data was available, otherwise upstream from the start site) were obtained from Phyto-
zome BioMart or they were directly extracted from the genomes using custom scripts. Oxytro-
pis arctobia and Oxytropis splendens KS dehydrin gene sequences were obtained from NCBI
GenBank (accessions: AEV59613 and AEV59617, respectively [6]). 1000 bp of O. arctobia and
O. splendens promoters were obtained by amplifying GenomeWalker libraries and sequencing
PCR products (Zolotarov et. al., unpublished).

To validate that the identified genes can actually be considered dehydrins, phmmer, as im-
plemented on the HMMER web server [74] was used to search sequences on UniProt
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Knowledgebase [75] that have a significant similarity to putative dehydrins discovered using
our custom method. The top ten significant hits were taken for each putative dehydrin and
their domain annotation was extracted. Additionally, Needleman-Wunsch [76] pairwise align-
ment was used to compare 15 putative KS dehydrin to a known Arabidopsis KS dehydrin
(AT1G54410). The closest match to every putative dehydrin in the NCBI GenBank non-
redundant database was searched for using BLAST [77].

All the scripts and sequence data used in this paper are available from https://github.com/
zolotarov/dehydrin_promoters

Intrinsic disorder and hydrophilicity analysis
The identified dehydrin sequences were compared for intrinsic disorder and hydrophilicity
with random plant protein sequences to assess the classification as a dehydrin. To calculate the
grand average of hydrophilicity, Biopython ProtParam module was used. To calculate disorder
proportion, IUPred [78] scores were calculated for each amino acid. The proportion of amino
acids with the score above 0.5 (indicating disorder) was calculated. Statistical comparison was
performed using t-test implemented in the scipy library [79,80]. The same number of random
protein sequences was obtained for each species as the number of dehydrins used in this study.
The sequences were downloaded using NCBI Entrez Direct E-utilities [81].

De novo motif discovery
Motifs were discovered using MEME v4.9.1 [82], Seeder v0.01 [83] and Weeder v1.4.2 [84],
and using the five sets of sequences as separate input. Significant motifs were selected based on
following parameters: E-value� 0.05 for MEME, Q-value� 0.01 for Seeder and the top 3 mo-
tifs recommended by Weeder adviser. All promoters that were available through Phytozome
BioMart from all species included in the analyses, was used as a background set (a total of
1029220 promoters). A separate parser was written to extract significant PFMs from result
files produced by each program. The PFMs produced for each dehydrin class were entered into
the STAMP [85] website to group matrices by similarity and to identify significant (E-
value� 0.05) matches in PLACE [23]. A representative member from a tree node of matrices
grouped by similarity was selected and its sequence logo was generated using WebLogo 3.3
[86].

Results and Discussion
In order to further understand how different dehydrins are regulated in response to environ-
mental stress, motifs corresponding to conserved cis-regulatory elements were detected in the
upstream regions of dehydrin genes in all five subclasses. Dehydrin proteins are by nature un-
structured, and a custom identification strategy was employed to retrieve as many dehydrin
genes with up to 1000 bp upstream region as possible. In total, 340 dehydrin promoters of size
1000 bp and eight dehydrin promoters of shorter length were retrieved from 51 plant genome
sequences. In addition, two promoters from dehydrin genes isolated from two Oxytropis spe-
cies were also included (Table 1, S1 Table). Out of the queried genomes, 10 were from mono-
cotyledonous plants, 37 from dicotyledonous plants, one from a basal angiosperm (Amborella
trichopoda), two from gymnosperms (Picea abies and Pinus taeda) and one from moss (Physco-
mitrella patens). The 350 sequences identified were confirmed to also match annotated dehy-
drins. For 330 out of 350 sequences, at least half of the top ten significant hits had “Dehydrin”
as domain annotation. For the remaining 20 putative dehydrins, less than half of the top ten
significant hits carried that annotation. Out of those, three were annotated as either a dehydrin
or similar to dehydrin on NCBI GenBank and two were annotated as having a dehydrin
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Table 1. Number of analyzed dehydrin promoters per species.

Species Kn KS SKn YnKn YnSKn Total

Actinidia chinensis 2 1 4 0 2 9

Amborella trichopoda 0 1 2 0 0 3

Aquilegia coerulea 1 1 2 1 1 6

Arabidopsis halleri 0 0 3 1 2 6

Arabidopsis lyrata 1 1 5 1 2 10

Arabidopsis thaliana 1 1 4 1 3 10

Beta vulgaris 0 0 2 0 2 4

Boechera stricta 1 1 4 0 3 9

Brachypodium distachyon 0 1 4 0 5 10

Brassica rapa 0 1 6 0 4 11

Cajanus cajan 0 1 2 1 1 5

Capsella grandiflora 1 1 6 0 1 9

Capsella rubella 1 1 4 0 3 9

Capsicum annuum 0 2 2 0 5 9

Carica papaya 0 1 1 0 2 4

Cicer arietinum 0 2 1 1 1 5

Citrus clementina 1 0 1 0 2 4

Citrus sinensis 0 1 2 0 3 6

Cucumis sativus 0 1 1 0 2 4

Eucalyptus grandis 1 0 1 0 4 6

Eutrema salsugineum 0 1 4 1 3 9

Fragaria vesca 0 0 1 0 5 6

Glycine max 0 4 1 2 3 10

Gossypium raimondii 1 0 3 1 3 8

Linum usitatissimum 0 1 6 2 2 11

Lotus japonicus 0 0 2 1 1 4

Malus domestica 0 0 2 2 5 9

Manihot esculenta 0 2 1 0 2 5

Medicago truncatula 0 1 1 1 1 4

Mimulus guttatus 0 1 1 0 2 4

Musa acuminata 0 2 1 0 1 4

Oryza brachyantha 0 1 1 0 5 7

Oryza sativa 0 1 1 0 6 8

Panicum virgatum 0 3 2 0 5 10

Phaseolus vulgaris 0 1 1 1 1 4

Phoenix dactylifera 2 1 2 0 1 6

Physcomitrella patens 4 0 0 0 0 4

Picea abies 4 0 9 0 0 13

Pinus taeda 8 0 10 0 0 18

Populus trichocarpa 3 1 1 0 2 7

Prunus persica 0 0 2 2 2 6

Ricinus communis 0 1 1 0 3 5

Salix purpurea 5 1 2 2 0 10

Setaria italica 0 0 2 0 5 7

Solanum lycopersicum 0 0 1 0 4 5

Solanum tuberosum 0 1 1 0 3 5

Sorghum bicolor 0 1 1 0 3 5

(Continued)
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domain on UniProtKB. The rest of the sequences were all short putative KS dehydrins. In these
cases, all significant phmmer hits were analyzed. From 14.2% to 30.1% of significant hits had
“Dehydrin” domain architecture, for sequences with lowest and highest number of significant
hits with “Dehydrin” annotation, respectively. The rest of significant hits had no architecture
annotation. When Needleman-Wunsch pairwise alignment was used to compare 15 putative
KS dehydrin to a known Arabidopsis KS dehydrin (AT1G54410), sequence similarities ranged
from 59.0% to 98.0%. This evidence supports the notion that the sequences extracted for the
analyses can be classified as dehydrins.

Biochemical properties of dehydrins
Dehydrins are known to be intrinsically disordered and hydrophilic [87], making it difficult, if
not impossible, to identify them by overall sequence homology. These properties are, however,
important for their hypothesized function in protein stabilization through interaction with
water molecules, as well as for their subcellular location in the cytosol and the nucleus and not
within membranes [87,88]. To assess the identification of the dehydrins included in this study,
the grand average of hydropathicity (GRAVY, [89]) and the proportions of amino acids in the
disordered regions were compared between dehydrins and random plant proteins. It was
found that the 350 dehydrin amino acid sequences analyzed, were significantly more hydro-
philic than 350 random plant protein sequences (GRAVY -1.3470 for dehydrins, -0.2938 for
random plant proteins, p-value< 0.001). The level of structural disorder indicated that in the
dehydrins analyzed, the average proportion of amino acid sequences in the state of disorder
was 99.32% compared to 15.95% in random plant proteins (p-value< 0.001).

Promoters of KS dehydrins have one conserved GATAmotif
In total, 47 KS dehydrin promoters were included in the de novomotif discovery (Table 1).
Using the de novomotif discovery tool Seeder [83,90], one single putative conserved regulatory
motif was discovered in all 47 promoter sequences (Motif 1, Table 2, S2 Table). A similar motif
was also discovered with Weeder [84]. The KS dehydrins are known to be expressed in re-
sponse to cold and dehydration, as well as being constitutively expressed [6,91–93]. Although
the single identified overrepresented motif in KS dehydrin promoters does not directly match
any typical cold or dehydration-related cis-regulatory elements in the PLACE database [23], it
does match two motifs involved in light regulation and one involved in sugar regulation
(Table 2): IBOXCORENT (I-box core) [94], REBETALGLHCB21 [95] and SREATMSD [96],
respectively. These three experimentally validated motifs share four nucleotides (GATA).

Table 1. (Continued)

Species Kn KS SKn YnKn YnSKn Total

Spirodela polyrhiza 1 0 0 0 0 1

Theobroma cacao 1 1 1 0 2 5

Vitis vinifera 0 0 0 0 2 2

Zea mays 0 2 2 0 3 7

Oxytropis splendens* – 1 – – – 1

Oxytropis arctobia* – 1 – – – 1

Total 39 47 120 21 123 350

* Only one promoter was obtained per species, using genome walking.

doi:10.1371/journal.pone.0129016.t001
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One of these motifs, the I-box (GATAAGR) can form a light-responsive conserved DNA
modular array (CMA) together with a G-box (CACGTGGC) when located in close proximity to
one another. In transgenic Arabidopsis and tobacco (Nicotiana tabacum) plants, the presence
of this CMA in a promoter, drives GUS reporter gene expression when exposed to light. Inter-
estingly, this expression seems to be mediated by phytochrome and cryptochrome photorecep-
tors [94].

Another of the motifs matching the motif discovered in the KS dehydrin promoters, the
REBETALGLHCB21, also called REβ (CGGATA), was first identified in gibbous duckweed
(Lemna gibba) [95]. It is involved in phytochrome-mediated repression of promoter activity in
darkness, when located in close proximity with REα (AACCAA). Although REα was not identi-
fied as a significantly overrepresented motif, it is found in 26 out of the 47 KS dehydrin pro-
moters analyzed. The GATA part of the REβ was shown to be absolutely necessary for
darkness-induced repression [95]. Furthermore, in Arabidopsis, C-repeat (CCGAC, CRT)-
linked cold and dehydration induced gene expression is mediated by phytochrome [25]. While
CRT was not found to be significantly overrepresented within the set of KS dehydrin promot-
ers, it is noteworthy that 27 out of the 47 KS dehydrin promoters contain one or more copies of
CRT or its reverse complement. Sixteen of the promoters contain both REα and REβ.

The motif discovered in the KS dehydrin promoters also matched a sugar-repressive ele-
ment, SREATMSD (TTATCC, SRE), shown to be involved in sugar mediated gene repression
in Arabidopsis [96]. Sugars are known osmoprotectants that are produced by plants in re-
sponse to cold [97]. One of the suggested roles of dehydrins is in the stabilization of protein
conformation. Sugars, such as sucrose and trehalose, can replace water molecules on the sur-
face of a protein and can thus conserve its conformation. This allows cells to restore their func-
tion after rehydration [98].

Motifs discovered in promoters of Kn match abscisic acid and low
temperature response elements
A total of 39 Kn dehydrin promoters were included in the de novo regulatory motif discovery
analysis (Table 1). The Kn dehydrins are expressed in response to high salinity, abscisic acid
(ABA), cold and dehydration [3,5,99,100]. A total of three putative regulatory motifs were
identified in this set of promoters (Table 3, S2 Table)—two were discovered using MEME

Table 2. Selected de novomotifs found in KS dehydrin promoters and their putative function identified through PLACE database.

Match in PLACE5

De novo motif Sequence Name E-value6 Function

1. Seeder1 AWTCGGATAA2 (47/473,
8.8e-074)

GATAAGR IBOXCORENT 1.4e-08 Found in light-responsive conserved DNA modular arrays

TTATCC SREATMSD 1.2e-07 Sugar-repressive element (SRE) found in genes down-regulated
after main stem decapitation

CGGATA REBETALGLHCB21 1.8e-07 Required for phytochrome regulation

1Number of the motif and the de novo discovery software that was used to locate that motif.
2Motif consensus sequence in IUPAC nucleotide code.
3Occurrence is the number of promoters containing a de novo motif out of the total number of promoters analyzed for a specific dehydrin class, presented

in the parentheses.
4Siginificance of the motif, E-value calculated by MEME, Q-value calculated by Seeder, presented in the parentheses.
5PLACE matches were identified using STAMP, only significant matches with E-value < 0.05 are presented.
6E-value of the match with PLACE motif.

doi:10.1371/journal.pone.0129016.t002
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(Motif 2: GGCAGGAC/GTGGTGCC; and Motif 3: ATGTCGGC/GCCGACAT) and one using
Seeder (Motif 4: TCGCCGACAT/ATGTCGGCGA). Motif 2 (GGCAGGAC) has a significant
match to the SITEIIBOSPCNA (TGGTCCCAC) motif in the PLACE database. This motif is
linked with meristematic tissue-specific gene expression in rice (Oryza sativa) [101] and it was
found in 31 out of the 39 promoters. Motifs 3 and 4, found in all analyzed Kn dehydrin promot-
ers, match DREDR1ATRD29AB motif (TACCGACAT) [102] and LTREATLTI78 (ACCGACA)
[103], two low temperature response elements (LTREs) involved in cold response in A. thali-
ana. Additionally, Motif 3 matches an ABRE found in wheat and rice- ABREOSRAB21
(ACGTSSSC) [104]. The presence of both LTREs and an ABRE indicates that Kn dehydrins,
similarly to SKn and YnSKn dehydrins, could be expressed in ABA-dependent and independent
manner in response to osmotic stresses.

SKn dehydrins contain multiple cold/dehydration, abscisic acid and light
regulated response elements
A total of 120 SKn dehydrin promoters were analyzed (Table 1). Six de novo discovered puta-
tive regulatory motifs are presented in Table 4 and S2 Table. MEME and Seeder each discov-
ered three motifs. The SKn dehydrins are known to be expressed in response to cold, ABA,
dehydration and salt [3,5,14,105]. Three out of six motifs (motifs 5–7) have matches in PLACE
that are known ABREs. Motif 5 (CCACGTGTC/GACACGTGG) matches ABREs from wheat
(Triticum aestivum) [103] and canola (Brassica napus) [106]. Motif 6 (CCGACGCG/
CGCGTCGG) matches ABREs from maize [107], and rice [108]. Motif 7 (CCAACGCG/
CGCGTTGG) matches an ABRE from barley [109] and rice [107]. Motifs 6, 8 (CACCGACC/
GGTCGGTG) and 9 (TGGTCGGT/ACCGACCA) match low temperature response elements
known as C-repeats (CRT, consensus sequence: RCCGAC), found in numerous species
[110–112].

Table 3. Selected de novomotifs found in Kn dehydrin promoters and their putative function identified through PLACE database.

Match in PLACE5

De novo motif Sequence Name E-
value6

Function

2. MEME1 GGCMCCAC2 (31/393,
1.2e-064)

TGGTCCCAC SITEIIBOSPCNA 4.3e-07 Involved for meristematic tissue-specific expression in rice

3. MEME AYGTCGGY (39/39,
3.7e-05)

TACCGACAT DREDR1ATRD29AB 6.4e-11 Response to drought, low temperature and high salinity. Bound by
CBF1 in Arabidopsis

ACCGACA LTREATLTI78 5.5e-09 LTRE

ACGTSSSC ABREOSRAB21 3.3e-05 ABRE found in wheat and rice

4. Seeder WNRCCGACAT (39/39,
2.1e-05)

ACCGACA LTREATLTI78 3.7e-07 LTRE

TACCGACAT DREDR1ATRD29AB 4.9e-08 Response to drought, low temperature and high salinity. Bound by
CBF1 in Arabidopsis

1Number of the motif and the de novo discovery software that was used to locate that motif.
2Motif consensus sequence in IUPAC nucleotide code.
3Occurrence is the number of promoters containing a de novo motif out of the total number of promoters analyzed for a specific dehydrin class, presented

in the parentheses.
4Siginificance of the motif, E-value calculated by MEME, Q-value calculated by Seeder, presented in the parentheses.
5PLACE matches were identified using STAMP, only significant matches with E-value < 0.05 are presented.
6E-value of the match with PLACE motif.

doi:10.1371/journal.pone.0129016.t003
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In addition, motif 5 matches an element from tomato and Arabidopsis light-regulated genes
[113,114] and motif 10 (GTGGGACC) matches an element from pea involved in light-induced
repression [115].

The presence of these significantly overrepresented motifs indicates that the SKn dehydrins
are regulated at the transcriptional level and their expression is modulated in response to cold
and ABA. SKn dehydrins should also be expressed in response to drought, since CRT, which is
also called dehydration responsive element [116], is found in their promoters. The circadian
clock controls cold induction of C-repeat binding factors (CBFs), which in turn bind CRT/
DRE elements [117]. Phytochrome and cryptochrome genes are also regulated by a circadian
clock in Arabidopsis [118]. COR27, a cold-induced gene, is regulated by circadian clock related
evening elements (EE) [119]. In addition to EE, the COR27 promoter also contains multiple
ABREs and G-boxes, to which motifs 5 and 6 also match. The core EE (AATATCT) [120] is

Table 4. Selected de novomotifs found in SKn dehydrin promoters and their putative function identified through PLACE database.

Match in PLACE5

De novo motif Sequence Name E-value6 Function

5. Seeder1 MCACGTGTC2 (120/
1203, 9.2e-194)

GGACACGTGGC ABRETAEM 6.5e-13 ABRE found in wheat

TGACACGTGGCA HY5AT 2.4e-12 Bound by HY5, involved in light regulation of
transcriptional activity

TCCACGTGTC SGBFGMGMAUX28 1.1e-13 Recognized by G-box binding factors in soybean.
Found in auxin-responsive genes

MCACGTGGC GBOXLERBCS 8.1e-12 Sequence found in promoters of light-regulated genes

CGCCACGTGTCC ABREBNNAPA 2.4e-21 ABRE found in Brassica napus

6. MEME CCGACGCG (120/120,
1.2e-50)

CCCACGTGGC ABREAZMRAB28 3.0e-05 ABRE, ABA and water-stress responses. Binding site of
CBF2.

GCCGCGTGGC ABREMOTIFIIIOSRAB16B 4.0e-05 ABRE Motif III found in rice

CCACGTGGCC LTRECOREATCOR15 5.3e-06 LTRE

7. Seeder SCAACGCG (120/120,
2.0e-10)

TCCACGTCTC ABRE3HVA1 2.3e-05 ABRE found in barley

GCCGCGTGGC ABREMOTIFIIIOSRAB16B 6.0e-05 ABRE Motif III found in rice

8. MEME CACCGACC (119/120,
3.8e-59)

RCCGAC DRECRTCOREAT 1.9e-08 DRE/CRT found in genes expressed in response to cold
and dehydration

CCCACCTACC ACIPVPAL2 3.8e-07 Required for vascular specific expression

ACCGACA LTREATLTI78 3.1e-07 LTRE

9. Seeder KKGTCGGY (120/120,
4.9e-07)

ACCGACA LTREATLTI78 8.4e-07 LTRE

RCCGAC DRECRTCOREAT 2.4e-08 DRE/CRT found in genes expressed in response to cold
and dehydration

10. MEME GTGGGVCC (61/120,
2.5e-22)

GGTCCCAT GGTCCCATGMSAUR 8.3e-09 Auxin RE found in soybean

CTCCCAC BOXCPSAS1 3.9e-06 Involved in light-induced repression

1Number of the motif and the de novo discovery software that was used to locate that motif.
2Motif consensus sequence in IUPAC nucleotide code.
3Occurrence is the number of promoters containing a de novo motif out of the total number of promoters analyzed for a specific dehydrin class, presented

in the parentheses.
4Siginificance of the motif, E-value calculated by MEME, Q-value calculated by Seeder, presented in the parentheses.
5PLACE matches were identified using STAMP, only significant matches with E-value < 0.05 are presented.
6E-value of the match with PLACE motif.

doi:10.1371/journal.pone.0129016.t004
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found in 18 out of 73 SKn gene promoters analyzed. Motifs involved in light-induced regula-
tion of gene expression found in the promoters of SKn genes could participate in modulation of
these genes by the circadian clock. It has been shown previously, using bioinformatics methods,
that the promoters of cold-regulated genes contain CRTs and ABREs [112,121] and our data
also support those findings.

Motifs 5 and 10 match an auxin response element found in soybean GmAux28 [122] and
SAUR15A promoter, respectively [123]. It has been shown previously that numerous genes re-
lated to auxin response in Arabidopsis are modulated in response to cold, such as auxin re-
sponse factor ARF7 or the PINOID-binding protein 1 that is involved in hormone signaling
and stress response [124].

YnSKn dehydrins promoters contain multiple ABREs, light REs and a
CRT
YnSKn dehydrins represent the largest subclass out of the five dehydrin classes analyzed. A
total of 123 YnSKn gene promoters were analyzed (Table 1). The YnSKn dehydrins are express-
ed in response to ABA, dehydration and high salinity [3,5,100]. The two motifs presented in
Table 5 and S2 Table (Motifs 11 and 12) match numerous elements in the PLACE database
and both were discovered using a Seeder. Motif 11 (GACACGTGGC) is very similar to Motif 5
(GACACGTGT), found in the SKn dehydrin promoters and they both match several of the same
motifs in PLACE database, namely ABREs, G-box and light response elements. Motif 13
(CACCGAC) is almost identical to Motif 8 (CACCGACC) discovered in the SKn dehydrin pro-
moters, which matches CRT/DRE necessary for CBF mediated cold and dehydration response
[116]. Overall, motifs found YnSKn dehydrin promoters are very similar to those found in SKn

dehydrin promoters indicating that they possibly have a similar function, and that these two
classes may have diverged more recently than the other classes. While the function of the Y-
segment in the gene products of YnSKn and YnKn dehydrins is not known, it shows similarity

Table 5. Selected de novomotifs found in YnSKn dehydrin promoters and their putative function identified through PLACE database.

Match in PLACE5

De novo motif Sequence Name E-value6 Function

11. Seeder1 SACACGTGG2 (123/
1233, 4.8e-384)

GGACACGTGGC ABRETAEM 1.1e-16 ABRE found in wheat

TCCACGTGTC SGBFGMGMAUX28 2.5e-13 Recognized by G-box binding factors in soybean. Found in
auxin-responsive genes

CGCCACGTGTCC ABREBNNAPA 6.7e-16 ABRE found in rapeseed

TGACACGTGGCA HY5AT 6.7e-16 Bound by HY5, involved in light regulation of transcriptional
activity

MCACGTGGC GBOXLERBCS 7.3e-14 Sequence found in promoters of light-regulated genes

12. Seeder CRCCGAC (123/123,
3.1e-11)

RCCGAC DRECRTCOREAT 2.3e-09 DRE/CRT found in gene expressed in response to cold and
dehydration

RYCGAC CBFHV 1.4e-07 CRT found in barley (Hordeum vulgare)

1Number of the motif and the de novo discovery software that was used to locate that motif.
2Motif consensus sequence in IUPAC nucleotide code.
3Occurrence is the number of promoters containing a de novo motif out of the total number of promoters analyzed for a specific dehydrin class, presented

in the parentheses.
4Siginificance of the motif, E-value calculated by MEME, Q-value calculated by Seeder, presented in the parentheses.
5PLACE matches were identified using STAMP, only significant matches with E-value < 0.05 are presented.
6E-value of the match with PLACE motif.

doi:10.1371/journal.pone.0129016.t005
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to the nucleotide binding domain of plant chaperones [125]. The gene products of the other
dehydrin classes do not have any such domains. In addition, there are evolutive constraints on
the Y-segment in a dehydrin from arctic Oxytropis species compared with temperate species
[126], suggesting that the Y-segment might carry an important function that differentiates
YnSKn from SKn dehydrins. Some of the published data shows that YnSKn dehydrins are not
expressed in response to cold [3,5], however there is evidence that after a period of acclimation
they do accumulate in Red-Osier Dogwood (Cornus sericea L.) [127] and apple trees [128]. It is
possible that cold-induced YnSKn dehydrin expression was not detected in some data sets due
to a limited time of exposure to low temperature.

YnKn dehydrins promoters contain ABREs and light REs
YnKn dehydrins represent the smallest subgroup, with only 21 members found in 51 plant ge-
nomes (Table 1). YnKn dehydrins are known to be expressed in response to cold [129,130], and
two motifs were detected in their promoters (Table 6, S2 Table). One was identified using Seed-
er and the other using MEME. Both motifs match several ABREs and light REs in the PLACE
database. Motif 13 (TAACACGTGTC/GACACGTGTTA) is similar to motif 11 (GACACGTGGC/
GCCACGTGTC) identified in YnSKn dehydrins and it matches the some of the same motifs in
PLACE. Motif 14 (ACGTGGCA/TGCCACGT) is similar to motif 11 (GACACGTGGC) found in
YnSKn dehydrin. The lack of CRTs in the promoters of YnKn dehydrins suggests that they
might be expressed in response to cold in ABA-dependent manner, not linked with the CBF
transcription factors [18].

Table 6. Selected de novomotifs found in YnKn dehydrin promoters and their putative function identified through PLACE database.

Match in PLACE5

De novo motif Sequence Name E-value6 Function

13. Seeder1 YRACACGTGTCC2 (21/
213, 1.5e-094)

GGACACGTGGC ABRETAEM 4.1-e11 ABRE found in wheat

CGCCACGTGTCC ABREBNNAPA 7.8e-11 ABRE found in rapeseed

CGCACGTGTC ABRE2HVA22 6.3e-09 ABRE2 found in barley HVA22 gene

TCCACGTGTC SGBFGMGMAUX28 6.3e-09 Recognized by G-box binding factors in soybean.
Found in auxin-responsive genes

AACGCGTGTC CE3OSOSEM 1.1e-10 Coupling element 3 found in rice, required for ABA
induced expression

TGACACGTGGCA HY5AT 7.5e-09 Bound by HY5, involved in light regulation of
transcriptional activity

14. MEME ACGTGKCA (21/21, 8.3e-
05)

ACGTGKC ACGTABREMOTIFA2OSEM 1.3e-11 Core of ABRE in rice

ACGTGGCA LRENPCABE 5.7e-13 Positive light RE in tobacco

YACGTGGC ABREATCONSENSUS 7.4e-09 ABRE found in Arabidopsis

RTACGTGGCR ABADESI1 2.0e-11 ABRE and desiccation response in rice

1Number of the motif and the de novo discovery software that was used to locate that motif.
2Motif consensus sequence in IUPAC nucleotide code.
3Occurrence is the number of promoters containing a de novo motif out of the total number of promoters analyzed for a specific dehydrin class, presented

in the parentheses.
4Siginificance of the motif, E-value calculated by MEME, Q-value calculated by Seeder, presented in the parentheses.
5PLACE matches were identified using STAMP, only significant matches with E-value < 0.05 are presented.
6E-value of the match with PLACE motif.

doi:10.1371/journal.pone.0129016.t006
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Conclusions
Numerous dehydrins were identified in 51 plant genomes, many of which are not found in pro-
tein databases such as InterPro or PROSITE, or they are not annotated in Phytozome. The
identified dehydrins were categorized into five subclasses based on the occurrence of conserved
protein segments. Three de novomotif discovery software tools were used to find statistically
significant overrepresented motifs in the promoters of each group of dehydrins. These motifs
were matched to known cis-regulatory elements in the PLACE database to help explain the reg-
ulation of dehydrin expression in response to different environmental stimuli.

Dehydrins are expressed in response to multiple stress stimuli. Although there is overlap in
expression triggers between dehydrin subclasses, there are differences in the pattern of expres-
sion. Some of the dehydrins are expressed constitutively in all tissues [3,5] and more specifical-
ly in seeds [131,132]. The presence of ABREs, CRTs and light REs in the promoters of YnSKn

and SKn dehydrins indicates that they could be expressed in response to dehydration and cold
in both ABA-dependent and independent pathway and that this expression is modulated
by light.

While YnSKn and SKn dehydrin are found in most species, often in several copies, the other
three subclasses are encountered less often. It is probable that they either have specialized func-
tions or they are expressed together with YnSKn and SKn dehydrins to increase the overall pro-
tective effect against dehydration. It is important to note that the number of discovered
dehydrins is probably an underestimation due to incompleteness of genome assembly and er-
rors inherent in sequencing.

Dehydrins play an important role in the survival of plants facing various stresses. Motifs
matching cis-regulatory elements linked to both ABA-dependent and independent stress re-
sponse pathways, as well as light response pathways were detected in dehydrins from many dif-
ferent plant families. The implication of this finding is that the regulation of dehydrins is
conserved in the plant lineages included in this study and that stress-linked selection pressure
preserved cis-regulatory elements in the promoters of dehydrins through stabilizing selection.

Supporting Information
S1 Table. Annotation and meta-data about the dehydrins included in the study. Each iden-
tified dehydrin was further analyzed by BLAST to find the closest match at NCBI GenBank
non-reduntant database. The fields are 1. Species; 2. Gene; 3. Dehydrin subgroup; 4. BLAST
top hit e-value; 5. BLAST top hit accession; 6. BLAST top hit description; 7. K-segment loca-
tion; 8. Y-segment location; 9. S-segment location.
(CSV)

S2 Table. Motif logos of motifs discovered in dehydrin promoters.Weblogos were made for
each of the motifs identified by de novomotif discovery algorithms in five classes of dehydrin
genes. The motif numbers correspond to the motif numbers in Tables 2–6.
(DOCX)
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