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Abstract

China implemented an aggressive nationwide lockdown procedure immediately after the 

COVID-19 outbreak in January 2020. As China emerges from the impact of COVID-19 on 

national economic and industrial activities, it has become the site of a large-scale natural 

experiment to evaluate the impact of COVID-19 on regional air quality. However, ground 

measurements of fine particulate matters (PM2.5) concentrations do not offer comprehensive 

spatial coverage, especially in suburban and rural regions. In this study, we developed a 

machine learning method with satellite aerosol remote sensing data, meteorological fields and 

land use parameters as major predictor variables to estimate spatiotemporally resolved daily 

PM2.5 concentrations in China. Our study period consists of a reference semester (1 November 

2018–30 April 2019) and a pandemic semester (1 November 2019–30 April 2020), with six 

modeling months in each semester. Each period was then divided into subperiod 1 (November 

and December), subperiod 2 (January and February) and subperiod 3 (March and April). The 

reference semester model obtained a 10-fold cross-validated R2 (RMSE) of 0.79 (17.55 μg/m3) 

and the pandemic semester model obtained a 10-fold cross-validated R2 (RMSE) of 0.83 (13.48 

μg/m3) for daily PM2.5 predictions. Our prediction results showed high PM2.5 concentrations in 

the North China Plain, Yangtze River Delta, Sichuan Basin and Xinjiang Autonomous Region 

during the reference semester. PM2.5 levels were lowered by 4.8 μg/m3 during the pandemic 
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semester compared to the reference semester and PM2.5 levels during subperiod 2 decreased most, 

by 18%. The southeast region was affected most by the COVID-19 outbreak with PM2.5 levels 

during subperiod 2 decreasing by 31%, followed by the Northern Yangtze River Delta (29%) and 

Pearl River Delta (24%).
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1. Introduction

In December 2019, a cluster of patients infected with a novel betacoronavirus was reported 

in Wuhan, China [1]. The isolated virus, named SARS-CoV-2 [2], is highly infectious and 

rapid human-to-human transfer has been confirmed widely [1,3,4]. The coronavirus disease 

2019 (COVID-19) posed global challenges for public health. As of 23 January 2020, one 

day before the Chinese New Year, at least 1975 cases had been reported [5] since the 

first hospitalized patient on 12 December. In order to contain the outbreak, China raised 

its national public health response to the highest state of emergency and implemented 

massive public health interventions. Wuhan, the epicenter of the outbreak, was the first 

city locked down and its neighboring cities started control thereafter. The central and 

local governments coordinated and implemented stringent social distancing measures and 

mobility restrictions [6]. The draconian interventions included isolation of suspected and 

confirmed cases, banning of public gatherings and close of schools as well as unnecessary 

commercial operations. In addition, the governments prohibited travelling in and out of 

cities and suspended public transport by bus and subway [7].

In addition to containing the spread of COVID-19, the lockdown and traffic restriction 

measures may have additional health benefits. In previous evaluations, declines of fine 

particulate matters (PM2.5) and other anthropogenic air pollutants such as ozone and 

nitrogen dioxide had been observed. For example, from one month before and after the 

lockdown, Wuhan showed a decline of 36.9% in PM2.5 levels compared with corresponding 

periods from 2015–2019 [8]. He et al. found similar results in which PM2.5 levels in 

locked-down cities were brought down by 7.05 μg/m3 relative to the previous year [9]. 

PM2.5 is a major public health concern and its exposure has been linked to many health 

issues. Previous studies suggested strong positive relationships between PM2.5 exposure and 

excess mortality [10], cardiovascular disease [11-13], respiratory symptoms [14], adverse 

pregnancy outcomes [15,16], influenza-like illness risk [17] and others. Recent studies found 

that each 1 μg/m3 increase of long-term exposure to PM2.5 is associated with 8% increase in 

the COVID-19 mortality rate [18].

Accurate estimation of PM2.5 concentrations is a prerequisite to quantify health benefits of 

reduced air pollution from COVID-19 control measures. China was a suitable study domain 

for air pollution research under the pandemic for two reasons. It was the first country 

attacked by COVID-19 epidemic and it implemented stringent countermeasures to prevent 

infections. In addition, PM2.5 is a major public health burden in China, with estimates 
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suggesting that the air pollution contributes to 1.6 million deaths/year (0.7–2.2 million 

deaths/year at 95% CI), roughly 17% of the total deaths [19]. If COVID-19 control measures 

substantially improved the air quality in China, a greater magnitude of implied health 

benefits will be observed in China than in countries with lower initial air pollution levels. 

While many studies provided changes of PM2.5 levels during the COVID-19 pandemic, they 

used ground-based measurements [8,9,20,21]. Ground-based central PM2.5 monitors in the 

regulatory network in China are unable to capture the fine scale patterns of exposure and 

they lack coverage in rural areas. In addition, previous studies conducted in China were at 

city-scale or only focused on urban areas [8,9,22,23]. There was a lack of spatiotemporally 

resolved PM2.5 estimates during the COVID-19 outbreak and a comprehensive assessment 

of PM2.5 levels.

In this study, we developed a machine learning model with a method, the random forest 

algorithm, and used a large number of datasets as predictor variables. We validated the 

model with 10-fold cross-validation and predicted reliable daily PM2.5 concentrations over 

5 km × 5 km grid cells across China during the study period, with a total length of 363 

days. We estimated the impact of COVID-19 pandemic on PM2.5 levels by comparing 

concentrations in different periods. Our spatiotemporally resolved daily PM2.5 estimates 

allow epidemiologists to further quantify the health benefits of reduced air pollution with 

higher accuracy.

2. Materials and Methods

2.1. Study Area and Time Periods

The study domain includes mainland China, Hong Kong and Taiwan (Figure 1). It covers 

an area of 9.597 million km2 and has a population of approximately 1.4 billion (http://

data.stats.gov.cn/index.htm, accessed on 20 March 2021). We created a 0.05° (approximately 

5 km) resolution modeling grid covering this study area for data integration, with a total 

of 399,513 grid cells. Our study period consists of a reference semester, from 1 November 

2018 to 30 April 2019, and a pandemic semester, from 1 November 2019 to 30 April 2020. 

Each period was then divided into subperiod 1 (November and December), subperiod 2 

(January and February) and subperiod 3 (March and April). The pandemic subperiod 2 was 

considered as the COVID-19 outbreak period due to high number of cases reported and the 

implementation of stringent control measures [6,7].

2.2. Data

A summary of the datasets adopted to develop our spatial-temporal random forest models in 

this study is shown in Table S1 and described in detail below.

2.2.1. PM2.5 Monitoring Data—Hourly PM2.5 concentration measurements were 

published by the China National Environmental Monitoring Center (CNEMC, http://

www.cnemc.cn, accessed on 20 March 2021) and were downloaded from PM25.in (http://

pm25.in/, accessed on 20 March 2021), with 1534 air monitoring sites in mainland China 

from 2018 to 2020. We obtained PM2.5 measurements in Hong Kong and Taiwan from 

the Hong Kong environmental protection department (http://epic.epd.gov.hk/, accessed on 
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20 March 2021) and the Taiwan environmental protection agency (http://taqm.epa.gov.tw/, 

accessed on 20 March 2021), respectively. We calculated daily averaged PM2.5 at every 

monitoring station and assigned monitoring stations to our modeling grid. PM2.5 within 

the same grid cell was averaged, and we got as many as 1252 grid cells with PM2.5 

measurements.

2.2.2. MAIAC AOD Data—We downloaded Terra (overpass at 10:30 local time) and 

Aqua (overpass at 13:30 local time) multi-angle implementation of atmospheric correction 

(MAIAC) AOD retrievals at 0.55 μm wavelength at 1 km resolution from NASA 

EarthData (https://search.earthdata.nasa.gov, accessed on 20 March 2021). Aerosol optical 

depth (AOD) is the measure of light extinction due to the presence of aerosols in the 

atmospheric column [24,25]. Many studies have investigated the relationship between AOD 

and ground PM2.5 measurements and AOD has been widely applied in PM2.5 modeling 

[26,27]. MAIAC is an advanced algorithm used to retrieve daily atmospheric properties 

at 1 km resolution based on the measurements of the Moderate Resolution Imaging 

Spectroradiometer (MODIS). It uses time series analysis and a combination of pixel- and 

image-based processing to improve accuracy of cloud detection, aerosol retrievals and 

atmospheric correction [28].

2.2.3. Meteorological Parameters—Meteorological parameters during the study 

period were obtained from the Goddard Earth Observing System Data Assimilation System 

GEOS-5 Forward Processing (GEOS 5-FP) at a 0.25° latitude × 0.3125° longitude resolution 

(Lucchesi 2013). The temporal resolution was hourly for two-dimensional products and 

thrice-hourly for three-dimensional products (Lucchesi 2013). The meteorological data were 

downscaled to a 5 km grid cell by inverse distance weighting. We averaged hourly and 

thrice-hourly GEOS 5-FP data from 10:00 to 16:00 local time, respectively, to get the 

average weather conditions between Aqua and Terra overpass time. The full list of 15 

meteorological variables used in this study can be found in the supplementary material 

(Table S1).

2.2.4. Land Use Data—We obtained the land cover data from the ESA Climate 

Change Initiative (CCI) global land cover at 300 m resolution (https://www.esa-landcover­

cci.org, accessed on 20 March 2021). The elevation data were extracted from the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) version 3 at 30 m resolution (https://asterweb.jpl.nasa.gov/

gdem.asp, accessed on 20 March 2021). In addition, we obtained the population density data 

from the LandScan Global population database (http://landscan.ornl.gov/, accessed on 20 

March 2021) at 1 km resolution.

2.3. Data Integration

All predictors with various spatial resolutions were fitted into our 5 km modeling grid. The 

MAIAC Aqua and Terra AOD data were processed and matched to the 5 km modeling grid 

using nearest neighbor approach in Python (version 3.7.6). The average of Aqua and Terra 

measurements was calculated for daily PM2.5 predictions. For days without Terra data, Aqua 

data were used to estimate the missing Terra values [29]. We multiplied Aqua values by an 
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adjustment factor to account for diurnal variations [30]. Then we conducted aggregation of 

the MAIAC AOD dataset by averaging multiple AOD pixels within the same modeling grid. 

For the meteorological fields, the inverse distance weighting method was employed using R 

software (version 3.6.3). For each grid cell, the population density, elevation and land cover 

data were processed using ArcGIS software (version 10.7.1).

2.4. Spatial Cluster Analysis

Our study domain was divided into seven subregions to better characterize geographical and 

anthropogenic emission variations: Northeast, North, Northwest, West, Northern Yangtze 

River Delta (NYRD), Southeast and Pearl River Delta (PRD) (Figure 2). We fitted the 

same model structure in each cluster and used spatial prediction pattern for discussion. The 

creation of subregions followed the method of Xiao et al. [31] but we aligned clusters more 

closely along provincial boundaries. The Northeast subregion consisted of three northeastern 

provinces, i.e., Heilongjiang, Jilin and Liaoning, as well as eastern Inner Mongolia, where 

there is a long winter/heating season and large presence of heavy industry including iron 

and steel industry, machinery manufacturing, automobile manufacturing, oil processing, 

etc. [32-34]. The North China Plain and western Inner Mongolia constituted the North 

cluster, characterized by its coal consumption and stagnant weather, with weak wind and 

relatively low boundary layer height [35]. Xinjiang province constituted the Northwest 

cluster, characterized by substantial dust emissions from the Taklamakan Desert. Tibet 

plateau, Qinghai, Sichuan, Yunnan and Gansu province constituted the West subregion with 

a high altitude and low population density. The Yangtze River Delta was divided into two 

subregions: the northern Yangtze River Delta (NYRD) with central heating in winter and 

the relatively warm south without central heating (Southeast). The Pearl River Delta (PRD) 

was another subregion, located on the coast with warm weather. The PRD and Southeast 

subregions also produce more hydroelectricity than other regions. The subregion map was 

fitted into our 5 km modeling grid and each grid cell was assigned to a subregion.

2.5. PM2.5 Modeling

After integrating all datasets, we developed two separate random forest models to predict 

daily PM2.5 concentrations for reference year and pandemic year, respectively. Random 

forest models generated rankings of variable importance, which helped us simplify the 

models and better understand which parameters should be refined to further improve 

model performance [36]. We trained the learner with ground PM2.5 measurements as 

the dependent variable. Independent variables included Aqua and Terra AOD, the day 

of the year, meteorological fields (precipitation, surface albedo, latent heat flux, surface 

evaporation, planetary boundary layer height, relative humidity, specific humidity, surface 

pressure, surface skin temperature, surface incident shortwave flux, surface velocity scale, 

air temperature, eastward wind component, northward wind component) and land use 

parameters (population density, land cover and elevation). Then we used trained models 

and predictor variables to predict daily PM2.5 in each 5 km × 5 km grid cell. We developed 

two separate random forest models for reference semester and pandemic semester. Random 

forest models are a combination of tree predictors, and each tree is constructed using the 

best split for each node among a subset of predictors randomly chosen at that node [37,38]. 

Both models had the same predictor variables while differing in their variable important 
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rankings. By comparing the results with different settings, we set mtry and ntree as 7 and 

500, respectively, to achieve the best prediction accuracy. Highly correlated variables and 

predictors with low importance rankings were eliminated from the model. The final PM2.5 

prediction model is expressed as:

PM2.5st = f (Aqua and Terra AODst, surface albedost, latent heat fluxst, surface evaporationst, planetary
boundary layer heightst, surface incident shortwave fluxst, surface velocity scalest, eastward wind componentst,
northward wind componentst, surface pressurest, air temperaturest, skin temperaturest, precipitationst,
relative humidityst, specific humidityst, land covers, population densitys, elevations) .

where s represents the location of a grid cell and t represents the day of an observation. 

Variables with low importance values were discarded from the models following the variable 

selection strategy [37].

To assess model prediction performance, we applied 10-fold cross-validation techniques. 

The reference year model and pandemic year model were validated separately. Each model 

training dataset was randomly split into 10 groups with 10% of the total data in each 

group. During each round of cross-validation, we used nine groups to fit the random forest 

models and used the remaining one group as testing samples. The validation process was 

repeated 10 times until every group was tested. We calculated various statistical indicators 

such as the coefficient of determination (R2), mean absolute percentage error (MAPE) 

and root mean square error (RMSE) between cross-validated predictions and observations. 

A comparison was conducted between the CV and model fitting statistics to test for 

potential model overfitting. All statistical analyses were performed using cross_var_score, 

DecisionTreeRegressor and RandomForestRegressor libraries in Python software, version 

3.7.6.

3. Results

3.1. Descriptive Statistics

The reference semester model dataset had 181 sample days with 61 days, 59 days and 61 

days in subperiods 1, 2 and 3, respectively. The pandemic semester dataset had 182 sample 

days with 61 days, 60 days and 61 days in every subperiod. As shown in Table S2, the mean 

PM2.5 concentrations for the reference semester were 41.30 μg/m3 and 36.52 μg/m3 for the 

pandemic semester.

During the reference year, the mean PM2.5 concentration in subperiod 2 (45.54 μg/m3) 

was noticeably higher than subperiod 1 (42.15 μg/m3) and 3 (36.22 μg/m3). The PM2.5 

concentrations increased during subperiod 2 probably because of the Chinese New Year 

migration and celebration activities such as firecracker burning [39]. In the pandemic 

semester model dataset, the mean PM2.5 concentration during subperiod 2 (36.88 μg/m3) 

was comparable to the other two periods (36.52 and 36.88 μg/m3).

3.2. Model Performance and Variable Importance

The 10-fold cross-validation results for the reference semester model and pandemic semester 

model are presented in Figure 3. For the reference semester model, the cross-validated 
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(CV) R2 between fitted and observed PM2.5 concentrations was 0.79. The MAPE and 

RMSE were 0.28 μg/m3 and 17.55 μg/m3, respectively. For the pandemic semester model, 

the CV R2 increased to 0.83. The MAPE and RMSE decreased to 0.26 μg/m3 and 13.48 

μg/m3, respectively, demonstrating a good agreement between CV predictions and ground 

observations. Figure 3 also shows that both models underestimated PM2.5 concentrations at 

high concentration levels. The random forest algorithm presented the relative importance of 

predictor variable in the two prediction models by calculating %IncMSE. %IncMSE is the 

increase in mean square error of predictions (estimated with out-of-bag-CV) as a result of 

variable j being permuted (values randomly shuffled). A higher %IncMSE indicates greater 

importance of a variable in the prediction. For the reference semester model, the AOD 

parameter ranked highest in terms of importance. Meteorological parameters such as surface 

incident shortwave flux, planetary boundary layer height and latent heat flux, as well as the 

elevation, also ranked high. For the pandemic semester model, the Aqua and Terra AOD and 

meteorological variables still ranked highest but land use parameters (population density, 

elevation and land cover) ranked low in terms of importance.

3.3. PM2.5 Predictions

The spatial distribution of mean PM2.5 predictions during subperiods 1, 2 and 3 by the 

reference semester model and pandemic semester model is presented in Figure 4. The 

reference semester model had a spatial coverage of 95% for subperiod 1, 87% for subperiod 

2 and 96% for subperiod 3. The mean PM2.5 concentrations in every subperiod (1, 2 and 3) 

were 41.25 μg/m3, 45.54 μg/m3 and 36.22 μg/m3, respectively. For the reference semester 

model, maps showed similar spatial patterns of PM2.5 concentrations in subperiods 1 and 

2. The mean PM2.5 distribution maps during these two periods (Figure 4A,B) show regions 

with elevated PM2.5 levels in the North China Plain, including Beijing, Tianjin, Hebei 

province and Henan province, as well as the NYRD region. The NYRD region had the 

highest PM2.5 concentrations during subperiods 1 and 2; 68.72 μg/m3 and 74.35 μg/m3, 

respectively, compared to other regions (Table 1). The rapid urbanization, high population 

density and local economic growth were main driving forces of high PM2.5 concentrations 

in East China [40,41]. There were also some hotspots in the Sichuan Basin, especially in 

two megacities: Chengdu and Chongqing [42]. The Sichuan Basin is completely encircled 

by high mountains and plateaus. It is also characterized by persistently high relative 

humidity as well as low wind speeds [43,44]. The discharge of anthropogenic pollutants in 

combination with the special topography and meteorological conditions limits the diffusion 

of pollutants in this region [42,45,46]. In addition, high levels of PM2.5 pollution were 

found in the northwestern region, especially in the southern Xinjiang Autonomous Region 

where the Taklamakan Desert covers 60% of this region. The mean PM2.5 concentrations 

during subperiods 1 and 2 in the northwestern region were 57.45 μg/m3 and 60.66 μg/m3, 

respectively. The accumulation of dust particles in the winter contributed to the high 

level of PM2.5 pollution in this region [35,47]. During subperiod 3 (Figure 4C), PM2.5 

concentrations stayed high in the northwestern region (56.29 μg/m3) but substantially 

decreased in the NYRD region (44.58 μg/m3).

For the pandemic semester model, the spatial coverage for mean PM2.5 concentrations 

during subperiods 1, 2 and 3 were 96%, 79% and 96%, respectively. The mean PM2.5 
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distribution map for subperiod 1 (Figure 4D) indicates high PM2.5 concentrations in the 

North China Plain, Yangtze River Delta, Sichuan Basin and northwestern region. During 

subperiod 2 and 3 (Figure 4E,F), there were fewer hotspots in eastern China and Sichuan 

Basin while PM2.5 concentrations significantly increased in the northwestern region. Then, 

mean PM2.5 concentrations in the northwestern region in each subperiod (1, 2 and 3) were 

46.74 μg/m3, 54.18 μg/m3 and 68.67 μg/m3, respectively.

4. Discussion

Our machine learning method had strong potential to estimate PM2.5 concentrations and 

presented spatial and temporal variability during the COVID-19 outbreak. Our model 

demonstrated high prediction accuracy on a national scale and yielded a similar CV 

R2 to previous studies conducted in China [31,46]. Additionally, our study domain is 

geographically broad, which allowed us to explore spatial variations across China. Many 

studies examining changes in PM2.5 pollution during the pandemic relied solely on ground 

measurements, which failed to provide comprehensive spatial coverage, especially in 

suburban and rural regions. As a result, previous studies could only focus on certain cities or 

one city-cluster region [8,23].

Our reference semester model showed high PM2.5 concentrations in the North China Plain, 

northern Yangtze River Delta, Sichuan Basin and Xinjiang Autonomous Region. Overall, 

the levels of PM2.5 pollution were higher in the northern regions than in the southern 

regions. Our predictions showed similar spatial distributions and variations compared 

with other studies in these regions [27,46,48-51]. The intensive human activities (i.e., 

industrial activities, fossil fuel combustion and agricultural waste burning) and unfavorable 

meteorological conditions (low boundary layer height and weak wind) led to high PM2.5 

concentrations in the North China Plain [41,46,51]. The main reasons for the serious 

PM2.5 pollution in the Yangtze River Delta were high population density and rapid 

urbanization [40]. The Sichuan Basin had high PM2.5 pollution due to its unique topography. 

Persistent temperature inversion and stagnant air circulation always occurs in this region 

[51]. Additionally, the dust storms in the desert region led to serious PM2.5 pollution in 

Xinjiang Autonomous Region [47]. Low PM2.5 pollution occurred in the northeastern region 

characterized by its dense vegetation cover. The southern region generally had low PM2.5 

concentrations because it benefits from its favorable meteorological conditions (i.e., high 

precipitation and southerly flow) for atmospheric dispersion [52].

Our model predictions allowed us to explore the impact of COVID-19 on PM2.5 levels 

during the pandemic semester. PM2.5 levels were lowered by 4.8 μg/m3 during the pandemic 

semester as compared to the reference semester. We also calculated the relative difference 

between the reference semester model and semester year model predictions. Compared 

with the reference semester, PM2.5 levels in pandemic subperiods 1 and 2 decreased 

by 13% and 18% but increased slightly by 0.48% in subperiod 3 (Figure 5). During 

the pandemic subperiod 1, COVID-19 transmissibility had not been confirmed and no 

control measure had been implemented. PM2.5 concentrations decreased most in Northeast, 

Northwest and Qinghai–Tibet regions by 18%, 17% and 15%, respectively (Table 2). 

The decrease of PM2.5 levels in these regions of low population density was likely due 
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to favorable meteorological conditions. China meteorological administration observed a 

significant increase in precipitation in Tibet and denser vegetation cover in the Northeast 

region (http://www.cma.gov.cn, accessed on 20 March 2021). The increased green space was 

able to regulate microclimatic conditions and reduce pollutants through filtration [53-55]. 

During subperiod 2, a significantly greater reduction in PM2.5 levels (18%, p < 0.05) was 

observed due to the COVID-19 outbreak, when lockdown and stringent traffic restrictions 

were implemented by the governments. PM2.5 levels in the Southeast region decreased most 

by 31%, followed by NYRD (29%) and PRD (24%). Yangtze River Delta and Pearl River 

Delta were major economic city-clusters in China. As they entered Level I public health 

response period (24 January–25 February), cities reduced the number of people and vehicles 

in public places and closed all industrial enterprises, construction sites and recreational 

operations [22]. Other studies focused on these two regions showed similar results. Li et 

al. (2020) found concentrations of PM2.5 decreased by 31.8% during the Level I period 

in the NYRD region compared with 2019 [22]. He et al. (2020) confirmed a reduction in 

the AQI around 5–10 points, converted to a reduction in PM2.5 around 1.2–2.4 μg/m3, in 

Southern China during the lockdown period relative to the previous year [9]. During this 

period, hotspots of PM2.5 were observed in Beijing–Tianjin–Hebei Region. The increase 

of PM2.5 levels in this region was contrary to the overall decreasing trend in the North 

region by 12%. Other studies that conducted atmospheric and transport model simulations 

in Beijing–Tianjin–Hebei Region showed similar PM2.5 concentration patterns during this 

period. Le et al. (2020) observed severe haze events in Beijing during the outbreak period 

and increased mean surface PM2.5 by 55.1% compared to the same period of 2015 to 

2019 [56]. Unfavorable meteorological conditions such as low wind speed and high relative 

humidity in BTH (Beijing-Tianjin-Hebei) Region might explain increased PM2.5 levels 

[56-58]. During pandemic subperiod 3, cities with low risk of COVID-19 infection started 

to reopen and most activities entered into operation. Compared with the pandemic year 

period 2, PM2.5 levels statistically increased in the Southeast, Northwest, PRD, NYRD and 

North regions. PM2.5 concentrations increased in the Northwest region due to frequent dust 

storms occurring in spring in the desert, semidesert and grassland areas [59]. The temporal 

variability in other regions could be explained by increased human activities and industrial 

emissions in Yangtze River Delta, Pearl River Delta and North China Plain after the reopen. 

During this period, citizens were allowed to travel locally with health code and protection 

measures; commercial and industrial enterprises were allowed to resume work.

We were able to compare changes of PM2.5 levels in different land cover types. As we 

observed an overall decline of PM2.5 concentrations, urban areas had a larger reduction than 

in rural areas during the COVID-19 outbreak (Table 2). Several reasons could explain this 

disparity. First, the mass human migration during the Spring Festival travel led to the change 

of population distribution patterns in China. There was a significant reduction in population 

density in urban areas during the holiday period [60]. Combining with the COVID-19 

control measures, the greater reduction in human activities in urban areas contributed 

to greater decrease in PM2.5 levels. Secondly, the proportion of bulk coal heating users 

increased in the rural areas due to the return of migrant workers and the lack of central 

heating. The increasing emissions may have mitigated reductions resulting from COVID-19 

control measures. Moreover, life-essential industrial facilities such as power plants are 

Li et al. Page 9

Remote Sens (Basel). Author manuscript; available in PMC 2021 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cma.gov.cn/


located in rural areas and stayed in operation during the COVID-19 outbreak, while other 

industrial facilities and entertainment operations were closed in urban areas.

One limitation of this study is the incomplete spatial coverage due to cloud and snow cover, 

especially in northeastern China, which may introduce region-specific sampling biases when 

estimating mean PM2.5 levels in each period. We will address this issue in the future with a 

gap-filling method. Overall, we have a high spatial coverage and these missing values will 

not significantly alter our results. Another limitation of this study is the uneven distribution 

of ground monitoring measurements across the study domain. There are fewer monitoring 

locations in the Northwest and Qinghai–Tibet compared to other regions. Although our 

models reached high prediction accuracy, the lack of ground measurements for model 

training possibly influences the model performance in these two regions. We will address 

this issue in future research by fitting separate models in every cluster.

5. Conclusions

We developed a machine learning method with satellite-derived data as major predictor 

variables to provide spatiotemporally resolved daily PM2.5 estimates (reference semester 

model: CV R2 = 0.79, and pandemic semester model: CV R2 = 0.83). Our results show 

that the PM2.5 levels were lowered by 4.8 μg/m3 during the pandemic semester compared 

to the reference semester. COVID-19 control measures implemented during subperiod 2 

caused significant reduction in PM2.5 levels by 18%. The Southeast region decreased most 

by 31% and the urban areas decreased more than rural areas. Though PM2.5 concentrations 

dropped significantly during the COVID-19 lockdown, the national average was still three 

times higher than safety levels suggested by the World Health Organization (10 μg/m3 for 

the annual mean). Our paper is useful for future research to understand the full implications 

of this unprecedented event and is informative with regards to more stringent air pollution 

regulations. Our PM2.5 predictions can be used to calculate the decreased disease burden 

resulting from PM2.5 pollution during the COVID-19 pandemic.
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Figure 1. 
Map of the study domain. Ground monitoring stations are shown as red spots. China 

map with province outlines was downloaded from http://www.resdc.cn/, accessed on 20 

March 2021, and the elevation data were obtained from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) 

version 3.

Li et al. Page 14

Remote Sens (Basel). Author manuscript; available in PMC 2021 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.resdc.cn/


Figure 2. 
Seven subregions covering the study domain and spatial distribution of fine particulate 

matters (PM2.5) monitoring sites involved in this study. ArcGIS software was used for 

spatial cluster analysis (version 10.7.1).
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Figure 3. 
(a) Density plot of ground and monitored PM2.5 measurements in μg/m3 based on the 

10-fold cross-validation of the reference semester model; (b) density plot of ground and 

monitored PM2.5 measurements in μg/m3 based on the 10-fold cross-validation of the 

pandemic semester model.
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Figure 4. 
(a) Average PM2.5 distribution in the reference sub-period 1; (b) Average PM2.5 distribution 

in the reference subperiod 2; (c) Average PM2.5 distribution in the reference sub-period 3; 

(d) Average PM2.5 distribution in the pandemic sub-period 1; (e) Average PM2.5 distribution 

in the pandemic sub-period 2; (f) Average PM2.5 distribution in the pandemic sub-period 3. 

ArcGIS was used (version 10.7.1).
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Figure 5. 
(a) Estimated PM2.5 change rates between the reference semester model and pandemic 

semester model predictions in sub-period 1; (b) Estimated PM2.5 change rates between the 

reference semester model and pandemic semester model predictions in sub-period 2; (c) 

Estimated PM2.5 change rates between the reference semester model and pandemic semester 

model predictions in sub-period 3. Beijing–Tianjin–Hebei Region, Yangtze River Delta and 

Sichuan Basin are marked in red, black and purple, respectively.
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Table 1.

Summary statistics of PM2.5 predictions by cluster during modeling periods (μg/m3).

Period 1 Period 2 Period 3

Reference semester

North 47.10 52.41 33.69

Northwest 57.45 60.66 56.29

Northeast 33.65 37.67 28.67

Qinghai–Tibet 33.55 33.97 30.25

NYRD 68.72 74.35 44.58

Southeast 35.23 45.25 31.84

PRD 36.55 46.46 33.39

Pandemic semester

North 40.46 44.53 35.20

Northwest 46.72 54.18 68.67

Northeast 26.73 37.77 27.92

Qinghai–Tibet 27.39 24.76 26.08

NYRD 57.52 51.80 39.48

Southeast 35.45 29.46 32.38

PRD 41.20 32.84 34.51
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Table 2.

Estimated PM2.5 change rates by region and by land type during modeling periods (%).

Region Period 1 Period 2 Period 3

North −12.77 −12.68 5.45

Northwest −16.91 −9.03 20.25

Northeast −18.42 7.03 −0.16

Qinghai–Tibet −15.24 −21.5 −10.08

NYRD −14.56 −29.39 −9.48

Southeast 2.63 −31.05 3.14

PRD 13.92 −23.8 5.35

Urban −13.49 −25.12 −7.33

Rural −9.78 −19.68 1.22
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