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Scattering of nanowire surface 
plasmons coupled to quantum dots 
with azimuthal angle difference
Po-Chen Kuo1, Guang-Yin Chen2 & Yueh-Nan Chen1,3

Coherent scatterings of surface plasmons coupled to quantun dots have attracted great attention in 
plasmonics. Recently, an experiment has shown that the quantum dots located nearby a nanowire can 
be separated not only in distance, but also an angle φ along the cylindrical direction. Here, by using 
the real-space Hamiltonian and the transfer matrix method, we analytically obtain the transmission/
reflection spectra of nanowire surface plasmons coupled to quantum dots with an azimuthal angle 
difference. We find that the scattering spectra can show completely different features due to different 
positions and azimuthal angles of the quantum dots. When additionally coupling a cavity to the dots, 
we obtain the Fano-like line shape in the transmission and reflection spectra due to the interference 
between the localized and delocalized modes.

Surface plasmons (SPs), or surface plasmon polaritons (SPPs), are propagating excitations of charge-density 
waves associated with the electromagnetic fields along the interface between a metal and a dielectric medium1–6. 
Surface plasmons in metallic nanostructures possess many advantages, such as enhanced transmission through 
subwavelength apertures7,8, amplification by stimulated emission of radiation9,10, enhanced photoluminescence 
from quantum wells11, enhanced fluorescence12–15, and surface-enhanced Raman scattering12,16. Moreover, there 
are many potential applications such as subwavelength imaging1,17,18, waveguiding devices below the diffraction 
limit19,20, biosensing21, and biological detection22. Therefore, designing and fabricating subwavelength optical 
devices using SPs23 open up new horizons of the research in this field.

With the tunable luminescence properties, such as localized surface plasmon resonances (LSPRs)24, 
plasmon-induced fluorescence enhancement15, broad excitation spectra, narrow emission spectra, and 
size-dependent emission25, quantum dot (QD) has recently attracted much attention for its ability to act as a 
photon detector25 or being an excellent single photon source26–28. On the other hand, metallic nanowire (MNW) 
is also an important class of plasmonic nanostructure for the SPs29–34, resonators30, sub-diffraction limit plasmon 
wave31, and plasmon lasers10.

Owing to the numerous advantages of both QD and MNW, QD that couples to MNW has emerged as an 
appealing system for coherent single-photon transport35 and long-range energy transfer with a high efficiency36. 
By the virtue of coherent transport, there are many extended applications, such as transistors37, plasmonic nanola-
ser38, quantum switch39,40, single-photon source41, biological sensing42,43, and nanoantennas44,45. Furthermore, the 
hybrid systems with exciton-plasmon interaction can reveal the features of cavity quantum electrodynamics46–51 
and have applications in quantum information processing5,52–55.

A variety of experimental33,36,41,56–62 and theoretical works9,35,39,40,42,47,48–51,63–77 have been focused on the pho-
ton transport properties in the NW-QD systems. Recently, an experiment has reported that two QDs located 
nearby the NW are separated not only with a distance d, but also with an angle φ along the azimuthal direction60. 
Therefore, the difference in the angles between the QDs should be taken into account when investigating the 
scattering properities33,34,48,78.

In this work, we study the scattering spectra of the nanowire SPs coupled to double QDs with an azimuthal 
angle difference. We also consider the system comprising N QDs. Taking into account the angle difference 
between the dots, we study the scattrering properties of the SPs by using the transfer matrices. Compared to the 
double-dot case, we find the transmission/reflection profile reveals the periodic behavior for the three-dot case58 
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when rotating each QD along ϕ̂ direction. We further study the scattering spectra of the Hybrid Quantum System 
(HQS) consisting of QDs and a metal nanoparticle79–81. It can be viewed as a cavity82–85 coupled to the NW-QD 
system. We find that the spectra reveal sharp and asymmetric response line shapes in the hybrid configuration. 
We analyze the results and provide explanations for the appearance of the Fano resonance.

Results
The Model.  Lets us consider two identical QDs near a cylindrical metal nanowire. Assuming that they have 
the same separation from the metal wire, both with energy spacing ħω0, separated not only with a distance d, but 
also with an angle φ as shown in Fig. 1. Since the propagating modes are along the x̂ and ϕ̂ directions, the phase 
differences acquired by the second dot are ikx and inφ, where k and n are the wave number and quantum number 
governing the x and ϕ components, respectively. Under the rotating wave approximation, the interactions 
between the propagating photons and quantum dots can be described by the Hamiltonian,
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( )  represents the rasing operator. Here, †ak n,  (ak,n) is the creation (annihilation) operator of the 
SP. We assume a SP is incident from the left with energy Ek =​ vgk for the nth mode. Here, vg and k are the group 
velocity and wave number of the incident SP, respectively. Since the SPs are confined on the surface of the cylin-
drical nanowire, the summation of n in Eq. (1) stands for the contributions from all the possible n modes, and g 
is the coupling constant between the SP and QD exciton. Note that Γ​′​ ≡​ γ0 +​ Γ​0 is the total dissipation including 
the decay rate into free space γ0 and other dissipative channels Γ​0. By using the Fourier transform, each term in 
Eq. (1) can be easily represented in real space
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where ϕ ϕ† †C x C x( , )[ ( , )]R L  is a bosonic operator creating a right-going (left-going) SP at x and ϕ. The stationary 
state of the above QDs-NW coupled system with the energy matching condition Ek =​ vgk can be written as

Figure 1.  Schematic diagram of the two-QD model. Schematic diagram of the model: a metal nanowire 
coupled to two semiconductor QDs. A single surface plasmon injected from the left can be scattered by the two 
QDs which are placed on top of the nanowire with a inter-dot distance d along the x̂ direction and an azimuthal 
angle φ along the ϕ̂ direction.
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where |g1, g2〉​ |0〉​sp denotes that both the QDs are in their ground states with zero SP state, and ξk j
 is the probability 

amplitude that the jth QD jumps to its excited state. Suppose that a SP is incident from the left, the scattering 
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where t and r are the transmission and reflection amplitude, respectively. Here, a and b represent the probability 
amplitudes of the SP between x =​ 0 and d, ϕ =​ 0 and φ, respectively. Besides, θ(x) is the unit step function. From 
the eigenvalue equation, H|Ek〉​ =​ Ek|Ek〉​, one can obtain the following relations for the coefficients:
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 is the detuning between the incident SP energy with Ek and the QD exciton energy ω0. By solving 
Eq. (5), the exact forms of the transmission and reflection amplitudes, t and r, are given by
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transmission and reflection probabilities of the SP are defined as T =​ |t|2 and R =​ |r|2, respectively, as shown in Fig. 2.

Figure 2.  Effect from azimuthal angle difference in transmission spectra. The transmission probabilities |t|2 
(dashed line) and reflection probabilities |r|2 (solid line) of the surface plasmon scattered by two QDs with 
azimuthal angle diference as a function of detuning 


δ ω≡ −E

0
k . When d =​ 0 (here, it means the inter-dot 

distance is very small compared with the wavelength of incident fields), the two QDs are assumed to be at the 
same position.
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Plasmon Scattered By N Quantum Dots.  We now consider further a general model consisting of N 
identical QDs coupled to the SP. Under the rotating wave approximation, the interaction Hamiltonian becomes
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where d(j) is the distance between the first dot and jth dot, and φj is the angle of jth QD with respect to the first QD 
along the ϕ̂ direction when setting d1 and φ1 being zero. On the other hand, the scattering property of a nanowire 
coupled to N identical QDs can also be studied by applying the transfer-matrix method. Let us briefly review the 
transmission amplitude t and the reflection amplitude r for the case of a single-dot coupled to the nanowire:
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Figure 3.  Schematic diagram of the three-QD model. Schematic diagram of the three QDs coupled to a metal 
nanowire with azimuthal angle difference along the ϕ̂ direction.

Figure 4.  The interference of the azimuthal differences for the three-QD case. Analysis of the scattering 
probabilities of three quantum dots with the azimuthal angle differences between the second QD (φ2) and 
third QD (φ3) for the mode n =​ 1, k =​ 1, d2 =​ π, d3 =​ 2π and δ/Γ​pl =​ 1. Here, the red regions indicate the high 
transmission probability around unity.
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where F has been defined in Sec. II. By making use of the transmission and reflection coefficients in Eq. (8), the 
transfer matrix Tq of the NW coupled to a single-QD can be written as

Figure 5.  Schematic diagram of the QD-wire-nanoparticle hybrid system. Schematic diagram of the hybrid 
quantum system comprising QDs-wire and metal nanoparticle. The coupling strengths between the metal 
nanoparticle and QD-1, QD-2 are J1 and J2, respectively. The metal nanoparticle can be viewed as a special 
“cavity” in the strong coupling regime.

Figure 6.  Schematic sketch of the effective hybrid model: common cavity. Schematic sketch of the effective 
hybrid model. Both QD-1 and QD-2 are coupled to a common cavity with a loss rate κ of the cavity photons. 
The transmission spectrum shows the Fano lineshape due to the interference between different channels. Here, 
the coupling strengths between cavity and QD-1, QD-2 are J1 and J2, respectively.

Figure 7.  Schematic sketch of the effective hybrid model: individual cavity. Schematic draw of the model for 
each QD is individually coupled to different cavities with the same loss rate κ of the cavity photons.
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represents the transfer matrix of free propagation with χ φ φ≡ − + −− −k d d n[ ] [ ]j j j j( ) ( 1) ( 1) . Consequently, the 
total reflect and transmit amplitudes with N QDs can be obtained:

Figure 8.  Scattering spectra for the two QDs coupled to common nanoparticle. (a) The transmission 
(dashed) and reflection (solid) probabilities as a function of detuning  Γ =/ 1pl , = .I 0 51  and = .I 0 72  when 
kd1 +​ nφ2 =​ mπ with m being an odd (red) or even (black) integer. (b) When m is an odd integer and I1 is close 
to I2 with appropriate value of ϵ/Γ​pl, the typical transmission spectra present more distinct Fano resonance for 
the first case. For Γ​′​ =​ 0 and κ =​ 0, we plot the transmission probabilities T1(red-dashed), T2(green-solid), 
T3(blue-dot-dashed), T4(black-dotted) with the detuning ϵ/Γ​pl =​ 0.05, 0.6, 1.2, 3 when = . .I 0 25, 1, 1 5, 21 , 
= . . .I 0 15, 0 8, 1, 1 52 , respectively. (c) The transmission probabilities T as a function of ϵ/Γ​pl =​ 1, = .I 0 72  for  

Γ​′​ =​ 0 and κ =​ 0 when = . . . .I 0 7, 0 9, 1 2, 1 51 , respectively.
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In order to make a comparison to the double-dot case, we specifically consider the three-dot case58 as shown 
in Fig. 3. By solving the eigenvalue equation with N =​ 3 in Eq. (7) or Eq. (12), the transmission and reflection 
amplitudes can be obtained. For simplicity, we only show the transmission amplitudes
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where we have defined the phase terms ζ ≡​ 2nφ2, α ≡​ 2[kd3 +​ n(φ2 +​ φ3)], β ≡​ 2(kd2 +​ 2nφ2) and 
γ ≡​ 2[k(d3 −​ d2) +​ nφ3], respectively. Here, we are interested in the scattering spectra resulting from the varying 
angles of QD-2 and QD-3. Figure 4 shows the scattering spectra as functions of the angles φ2 and φ3. We find that 
the transmission (reflection) coefficient reveals the periodic maximum (minimum) value 1 (0), when keeping one 
QD fixed at the certain angle along the ϕ̂ direction.

QDs-NW System Coupled To Cavity.  Recently, hybrid quantum system (HQS) has attracted renewed 
attention for its prospect of applications in future quantum devices. Here, we consider the HQS of the QDs (with 
nanowire) coupled to a metal-nanoparticle (MNP) as shown in Fig. 5. it was reported82–87 that, for the very small 
separation between a quantum emitter and a metal nanoparticle, the spectral density of the surface electromag-
netic fields of the nanoparticle becomes Lorentzian. This indicates that the emitter-nanoparticle system can form 
an effective cavity quantum electrodynamics (QED) system. We therefore study the scattering spectra of two 
kinds of HQS comprising the cavity coupled to two QDs. For the first case, we assume both QD-1 and QD-2 are 
coupled to the same cavity as shown in Fig. 6. In real space, the Hamiltonian of the cavity photon with a loss rate 
κ can be written as
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Figure 9.  Analysis of Fano resonance. The transmission (dashed) and reflection (solid) probabilities as a 
function of = .I 0 51 , = .I 0 72  for Γ​′​ =​ 0 and κ =​ 0 when (a) ϵ/Γ​pl =​ 0.2, 0.3, 0.5, (b) ϵ/Γ​pl =​ 1.2, 1.5, 2, 
respectively. The position of the Fano lineshape can be shifted from the right to the left along the δ/Γ​pl axis when 
increasing the detuning ϵ/Γ​pl.
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where σ = e ee e c c,c c
 is the diagonal element of the cavity operator, and †a a( )c c  is the bosonic creation(annihila-

tion) operator of the cavity mode. Here, Jj represents the coupling strength between the cavity and jth QD. The 
transmission and reflection coefficients can be written as
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Here, we have defined the function κ≡ − ΓG i( 2 )/ pl , ≡ Γ ΓI I J J( ) / ( / )pl pl1 2 1 2 , and the phase term 
ς φ≡ +kd n( )1 2 . The detuning between the incident SP energy (with Ek) and the cavity resonant frequency (ωc) 
is labeled by the symbol ε. For the second case, we study the configuration that each QD is individually coupled 
to its own cavity as shown in Fig. 7. Here, we have assumed the two cavities are identical for simplicity. The 
Hamiltonian of the composite system can be rewritten as
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Figure 10.  Scattering spectra for the two QDs coupled to individual nanoparticles. For the second case, we 
set = .I 0 51 , Γ​′​ =​ κ =​ 0, and kd1 +​ nφ2 =​ mπ with m being an integer. (a) The transmission (dashed) and 
reflection (solid) probabilities as a function of = .I 0 72  and ϵ/Γ​pl =​ 0.07. This panel shows a standard Breit-
Wigner lineshape without the Fano resonance for two QDs. (b) The transmission probabilities as a function for 
= .I 0 52  (red-dashed), 0.7 (green-solid), 0.9 (blue-dot-dashed), 1.1 (black-dotted), respectively with ϵ/Γ​pl =​ 0.1. 

By adjusting coupling strength between each QD to the cavity, the position of each peak along the δ/Γ​pl axis can 
be controlled. (c) When = = .I I 0 61 2 , the overlap of two peaks makes the two QDs act like a single QD in 
transmission(dashed) and reflection(solid) probabilities with ϵ/Γ​pl =​ 0.07.
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where σe e,ci ci
 represents the diagonal element of the ith cavity operator, and †a a( )c cj j

 is the bosonic creation(annihi-
lation) operator of the jth cavity mode. Also, the scattering coefficients can be obtained by solving eigenvalue 
equation:
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We plot in Figs 8, 9 and 10 the transmission probabilities T =​ |t|2 (dashed lines) and reflection probabilities 
R =​ |r|2 (solid lines) as a function of the detuning for the both cases. In plotting Fig. 8, we find that when 
kd1 +​ nφ2 =​ πm with m being an integer and I1 being close to I2 with appropriate value of ϵ/Γ​pl, the transmission 
and reflection spectra have a more distinct Fano-type line shapes. In Fig. 9, when increasing the detuning ϵ/Γ​pl, 
the position of the Fano-type line shapes would be shifted from the right to the left along the δ/Γ​pl axis. For the 
second case, however, we can only observe two peaks with the absence of asymmetric Fano-type line shape as 
shown in Fig. 10. When increasing the detuning ϵ, the inter-peak separation is reduced rapidly.

Discussion
Since the Fano resonance only occurs in the first case, it is interesting to ask: What makes the two cases differ-
ent? To answer this, let us note that, in Fig. 8(b), the stronger coupling strength of the two QDs to the cavity, the 
larger detuning ϵ is required to form the Fano-type line shapes for the first case. Contrarily, when J1 coincides 
with J2, the Fano resonance vanishes rapidly. In this regard, the Fano resonance arises from the constructive and 
destructive interference between the localized and delocalized channels by the virtue of the coupling of the two 
QDs to the same cavity. Here, the localized channel represents the single QD mode, and the delocalized channel 
denotes the hybridization mode of the cavity photon and the two dots88. The surface plasmons passing through 
the two channels carry different phases and result in the interference. On the other hand, we can easily control 
the position of each peak along the δ/Γ​pl axis by adjusting the coupling strength between each QD to the cavity in 
the second case as shown in Fig. 10. When J1 =​ J2, the overlapping of two peaks makes the two QDs collectively 
act like a single QD. The notable feature of these results indicates that the Fano-type line shape can’t be created 
due to the individual coupling to each own cavity. In other words, the difference between J1 and J2 is the primary 
cause of the Fano resonance.

In conclusion, the real-space Hamiltonians and transfer-matrix method are used to obtain the transport prop-
erties of SPs propagating on the surface of a silver NW coupled to QDs. The transmission and reflection spectra 
of the SPs depend not only on the position, but also on the azimuthal angle of the QDs. For the double-dot case, 
even the two QDs are placed at the same position in the x̂-axis, changing the angle of a QD along ϕ̂ direction also 
affects the reflection (transmission) spectra. For the triple-dot case, the transmission (reflection) coefficient 
reveals the periodic maximum (minimum) value when keeping one QD fixed at the certain angle along the ϕ̂ 
direction. Moreover, when there is an additional cavity coupled to QDs, the Fano-type line shape can be created 
if both the QDs are coupled to the same cavity. The appearance of Fano resonances is attributed to the interference 
between the localized and delocalized modes.
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