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Abstract
Withaferin A (WA), a major bioactive component of the Indian herbWithania somnifera,
induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular

mechanism underlying this cytotoxicity remains elusive. We report here that 2 μMWA

induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocar-

cinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate

adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3

cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly

increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145,

but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and

reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as

HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated deple-

tion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely

that these heat-shock genes were involved in protecting against cell death. Moreover, WA

induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in nor-

mal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA

disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expres-

sion and c-FLIP(L) suppression. These observations suggest that multiple events followed

by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.

Introduction
Withaferin A (WA), a major bioactive constituent of the Ayurvedic medicinal plantWithania
somnifera, induces cell death in many tumor cells [1–3]. Specifically, WA dose-dependently
induces apoptotic cell death mediated by the unfolded protein response (UPR), which is trig-
gered by accumulation of misfolded proteins in the endoplasmic reticulum (ER), and it also
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causes apoptosis mediated by reactive oxygen species (ROS) in human renal cancer (Caki) cells
[4], [5]. WA exerts potent antiproliferative effects by inhibiting Hsp90 chaperone activity,
thereby inducing degradation of Hsp90 client proteins in pancreatic cancer cell lines Panc-1,
MiaPaCa2, and BxPc3; this effect is reversed by the proteasome inhibitor MG132 [6]. WA sup-
presses expression of human papillomavirus E6/E7 oncogenes, restores p53 pathway activity,
and induces apoptosis in cervical cancer CaSki cells [7]. WA causes cell-cycle arrest at G2/M
phase in prostate cancer cell lines [8], and induces apoptosis in human melanoma cells by gen-
erating ROS and down-regulating Bcl-2 [9].

WA binds directly to vimentin by covalently modifying a cysteine residue (Cys328), causing
vimentin filaments to aggregate and colocalize with F-actin and thereby disrupting the vimen-
tin cytoskeleton [10], [11]. WA-induced vimentin aggregation is accompanied by changes in
cell shape, decreased motility, and elevated vimentin phosphorylation at Ser38 [12]. These
observations suggest that WA could be used to target metastatic tumor cells [12], [13].
Although WA inhibits the epithelial–mesenchymal transition (EMT) by suppressing vimentin
function [14], the effect on vimentin alone cannot account for all of the WA-mediated subcel-
lular events that lead to cell death. Indeed, WA also binds β-tubulin, inducing severe disruption
of normal spindle morphology [15], and also disrupts the cellular organization of several other
intermediate filament (IF) networks, including peripherin, neurofilament-triplet protein, and
keratin [12]. Therefore, to fully understand the molecular mechanism of WA-induced cell
death, we must identify additional molecular targets of WA.

The oncogenic transcription factor c-Fos regulates gene expression, in association with Jun
or other basic leucine-zipper proteins, as a component of the activator protein 1 (AP-1) dimer
complex. Although c-Fos exerts anti-apoptotic functions, recent reports suggest that it may
also promote apoptosis [16], [17]. Activated c-Fos/AP-1 primes PC-3 and LNCaP prostate can-
cer (PCa) cells to undergo apoptosis by directly binding the promoter region of the anti-
apoptotic gene c-FLIP(L), thereby repressing its transcription [18]. Apoptosis also requires
activation of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)/Apo-2L;
this TRAIL-induced apoptosis is barely detectable in normal cells [18].

The pathogenesis of prostate tumors is initially androgen-dependent; however, many
patients progress to metastatic castration-resistant (androgen-independent) PCa (mCRPC)
[19]. Androgen-independent PCa cells (e.g., PC-3 and DU-145) exhibit stem-like characteris-
tics, whereas androgen-responsive PCa cells (e.g., LNCaP) do not [20–22]. Annexin A1, a
phospholipid-binding protein and regulator of glucocorticoid-induce [23]. NANOGP8, a ret-
rogene encoding a NANOG1-like protein, also plays a role in regulating stem-like PCa cells
[24]. Side-population cells from human PCa cell lines and xenograft tissues undergo more
complete EMT and are more aggressive than homologous bulk-population cells [25]. Thus, the
EMT appears to be closely associated with the development of mCRPC. To date, no drugs have
been developed that effectively and potently kill mCRPCs but not normal cells.

In this study, we sought to investigate whether WA can kill mCRPCs but not normal cells,
and if so, to identify the essential molecular target of WA. We found that WA (2 μM) selec-
tively induced cell death in androgen-independent PC-3 and DU-145 PCa cells, but not in
LNCaP androgen-responsive PCa cells or TIG-1 normal fibroblasts. DNA microarray and
western analyses revealed novel molecular targets of WA that may define the distinct responses
of these cell lines to WA. Because WA killed PC-3 cells in spheroid-forming cultures, we pro-
pose that WAmay serve as a starting molecule for the development of drugs that induce cell
death in cancer stem cells (CSCs).
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Results

TIG-1 and LNCaP are less sensitive to WA than PC-3 and DU-145
We first found that WA effectively induced cell death in PC-3 and DU-145, but LNCaP were
less sensitive to WA treatment (Fig 1). To determine whether normal human fibroblasts (TIG-
1) also show altered resistance to WA, we compared the viability of TIG-1 exposed to 2 μM or
4 μMWA to the viabilities of LNCap, PC-3 and DU-145. Viability of PC-3 and DU-145
decreased significantly 8 h after 4 μMWA treatment (pink arrows in Fig 1A). By contrast, via-
bility of TIG-1 remained high, at a level similar to that of LNCaP, up to 8 h after 4 μMWA
treatment, when more than half of PC-3 and DU-145 had died (green arrows in Fig 1A). Cell
viability of DU-145 was higher than that of PC-3 at 4, 8, and 24 h.

After treatment with 2 μMWA, viability of PC-3 was reduced at 4, 8, and 24 h, whereas
DU-145 became inviable only at 24 h (red arrows in Fig 1B). By contrast, TIG-1 and
LNCaP remained viable at 24 h (blue arrows in Fig 1B). Incubation of these cells for longer
periods demonstrated that TIG-1 remained viable even at 96 h, whereas LNCaP became
inviable at 72 h (S1A and S1C Fig), suggesting that 2 μMWA treatment does not induce the
death of TIG-1 but the death of LNCaP was only delayed. Another human normal fibroblast
line (KD) also showed resistance to 2 μMWA treatment (S1B Fig). Taken together, these
results suggest that TIG-1 and LNCaP cells are more resistant to WA than PC-3 and DU-145
cells.

Up-regulation of c-Fos after WA treatment correlates with cell viability
To identify genes that were up- or down-regulated in these cell lines following WA treatment,
we examined the transcriptomes of TIG-1, LNCaP, PC-3, and DU-145 using Agilent SurePrint
G3 Human Microarrays. We examined mRNA levels for PC-3 and TIG-1 at 4 h and 24 h,
respectively, after 2 μMWA treatment, and for LNCaP and DU-145 at 4 h and 8 h, respec-
tively, after 4 μMWA treatment (yellow arrows in Fig 1A and 1B). Fold changes in gene
expression were determined by comparing hybridization signal intensities between samples
treated with WA and those treated with dimethyl sulfoxide (solvent). S1 Table shows a list of
differentially expressed genes, arranged in descending order of fold change in PC-3; all genes
listed were also up-regulated by more than 4-fold in DU-145. Scatterplots indicate that the
mRNA levels of analyzed genes were high enough (raw signal intensity> 10) to allow physio-
logically significant comparisons (S2 Fig).

Because overexpression of c-Fos induces apoptosis in human colorectal carcinoma cells
[17], we focused on the c-Fos and FosB genes, which were conspicuously up-regulated in PC-3
and DU-145, but were weakly up-regulated in TIG-1 and even less so in LNCaP (S1 Table;
pink and turquoise arrows in S2 Fig). In PC-3, these proteins were significantly up-regulated at
4 h after 4 μMWA treatment, followed by a gradual increase thereafter (Fig 2A). In DU-145, c-
Fos was conspicuously up-regulated at 4 h, but its expression decreased gradually afterwards; a
similar pattern was observed in TIG-1, although the up-regulation was less conspicuous than
in DU-145 (Fig 2A). In LNCaP, the c-Fos level was very low, and was detectable only at 24 h.
Notably, the ranked order of cell viability (see Fig 1A) was identical to the order of the c-Fos
expression level at 8 h after 4 μMWA treatment (LNCaP> TIG-1> DU-145> PC-3). More-
over, after 2 μMWA treatment, a similar pattern of c-Fos up-regulation was observed in both
PC-3 and DU-145; however, very little c-Fos expression was observed in TIG-1 and LNCaP
(Fig 2B); thus, WA-induced c-Fos expression was correlated with cell viability. By contrast,
FosB and FosB2 were not significantly up-regulated, and their expression levels were not corre-
lated with cell viability (Fig 2A).
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Fig 1. Cell viability of TIG-1, LNCaP, DU-145, and PC-3 cells after WA treatment. (A, B) Cell viability was measured at 4, 8, and 24 h after 2 μM (A) or
4 μM (B) WA treatment. NT, non-treated. Green and blue arrows indicate bars for surviving cells, whereas pink and red arrows indicate bars for cells that died
under the same conditions. Yellow arrows indicate the samples used for DNAmicroarray analysis. Bars represent means ± SEM for three independent
experiments. Purple arrows indicate significant reductions in cell viabilities (*, P < 0.05; **, P < 0.01).

doi:10.1371/journal.pone.0134137.g001

Withaferin A Induces c-Fos

PLOS ONE | DOI:10.1371/journal.pone.0134137 July 31, 2015 4 / 20



Fig 2. c-Fos and FLIP play a role in induction of cell death. (A, B) Western blot analysis to detect c-Fos (FosB) in TIG-1, LNCaP, DU-145, and PC-3 cells
at 4, 8, and 24 h after treatment with 4 μM (A) or 2 μM (B) WA. NT, non-treated. (C) Western blot analysis to detect c-Fos, PARP, FLIP and GAPDH in PC-3
cells at 12 h after 4 μMWA treatment in the presence (+) or absence (-) of three different siRNAs (X–Z) from OriGene. (D) Viability of PC-3 cells after siFos
treatment. Data are represented as means ± SEM of three independent experiments; pink arrows indicate a statistically significant reduction in cell number
following siFos treatment (**, P < 0.01). (E) Population of apoptotic, necrotic, and live cells distinctly stained with Annexin V–EnzoGold, 7-AAD-Red, and
GFP. Data are represented as means ± SEM of three independent experiments; red, blue, and green arrows indicate statistically significant changes (**,
P < 0.01). (F) Western blot analysis of c-Fos, PARP, FLIP, and GAPDH in DU-145 at 12 h after 4 μMWA treatment in the presence (+) or absence (-) of
siRNAs; siFos or siGL2 (siControl). (G) Viability of DU-145 cells after exogenous overexpression of pcDNA3-FLIP or vector alone in the presence of DMSO
(solvent) or 4 μMWA.

doi:10.1371/journal.pone.0134137.g002
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siRNA-mediated knockdown of c-Fos (siFos) rescues cell death in PC-3 [18]. Hence, we
investigated what type of cell death (i.e., apoptosis or necrosis) is rescued by siFos. For these
experiments, we used siFos_Z (Fig 2C). First, we confirmed in PC-3 that viability significantly
decreased at 48 h and 72 h after WA treatment (Fig 2D). FACS analysis (S3 Fig) revealed that
the rate of necrosis was lower in siFos-treated cells than in cells treated with siGL2 (negative
control) 8 h after treatment with either DMSO alone or WA (2 μM or 4 μM), suggesting that
overexpression of c-Fos induced by WA plays a role in inducing necrotic cell death (red arrows
in Fig 2E-i). By contrast, under the same conditions, viability decreased (blue arrows in Fig 2E-
ii) and the percentage of apoptotic cells increased (green arrows in Fig 2E-iii and 2E-iv). Thus,
overexpression of c-Fos correlates with WA-induced cell death in PC-3. It remains elusive if c-
Fos is involved in the determination of cell viability or just converts the cell death mode from
apoptosis to necrosis without affecting the induction of cell death. We could not examine this
in DU-145 because both siGL2 and siFos caused cell death at a similar level.

c-Fos exerts its proapoptotic function in PC-3 and LNCaP cells in part by repressing expres-
sion of c-FLIP(L), which we will refer to as ‘FLIP’ hereafter [18]. The FLIP level was reduced
following WA treatment in all cells tested (Fig 2B); the reduction of FLIP was especially
remarkable in DU-145, particularly at 24 h after 2 μMWA treatment (Fig 2B, lane 16), relative
to the reductions in TIG-1, LNCaP, and PC-3 (Fig 2B, lanes 4, 8, and 12). This observation sug-
gests that WA-mediated cell death occurs in part due to reduced expression of FLIP. Western
blot analysis indicated that the level of FLIP was not reduced by siFos_Z treatment in PC-3
(Fig 2C, lane 6), whereas siFos_X or siFos_Y treatment slightly reduced the FLIP level (Fig 2C,
lanes 4 and 5). In DU-145, the FLIP level was similarly reduced by treatment with siControl or
siFos_Z (Fig 2F, lanes 3 and 4). These results suggest that modulation of the c-Fos level is
somehow related to but does not directly affect the reduced FLIP level. Nonetheless, exogenous
expression of FLIP in DU-145 rescued WA-induced cell death (Fig 2G). Taken together, these
results suggest that WA caused two independent events, namely, an increase in the c-Fos level
and a reduction in the FLIP level, to induce cell death.

Expression of HSP genes is up-regulated after WA treatment
Next, we noticed that 11 heat-shock protein (HSP) genes (HSPA6, DNAJA4,HMOX1,
HSPA1B,HSPA1L, HSPA1A, DNAJB1, DNAJB4,HSPH1, and SERPINH1) were among the 45
most up-regulated genes in PC-3 (S1 Table). HSPs are molecular chaperones that are subjected
to rapid and strong induction by stress. In PC-3 and DU-145, HSPA6 was abruptly up-regu-
lated 4 h after WA treatment, whereas in TIG-1 and LNCaP, the level of HSPA6 protein was
very low (Fig 3A). By contrast, expression levels of DNAJA4 (HSP40 hereafter) and HSPA1B
(HSP70 hereafter) exhibited similar gradual increases in these cells (Fig 3A).

To reduce the level of HSPA6 protein in WA-treated cells, we performed siRNA-mediated
knockdown in PC-3 (Fig 3B-i). We confirmed successful knockdown by western blotting (Fig
3B-ii). However, we observed little change in cell viability in siHSPA6-treated cells relative to
cells treated with a negative control RNA (siGL2) (red arrows in Fig 3B-iii), suggesting that
overexpression of HSPA6 is not the cause of cell death after WA treatment.

We next performed siRNA-mediated knockdown of heat-shock factor protein 1 (HSF1), the
major transcription factor involved in up-regulation of the HSF genes [26], using a similar
experimental design (Fig 3C-i). Western analysis confirmed that HSF1 knockdown using
siHSF1 decreased expression of both HSF1 and HSPA6 (Fig 3C-ii). By contrast, the levels of
HSP40 and HSP70 were unaltered (Fig 3C-ii), probably due to the high baseline levels of
endogenous HSP40 and HSP70 (see Fig 3A). Nonetheless, treatment of PC-3 cells with siHSF1
increased cell death (green and blue arrows in Fig 3C-iii), although the increase was not
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conspicuous. These results suggest that unknown proteins up-regulated by HSF1 protect PC-3
cells against cell death.

Four of the early growth response (EGR) genes were ranked among the top 40 WA-induced
genes (S1 Table). The levels of EGR-1 and EGR-3 remained constant following WA treatment
(S3 Fig); therefore, we ignored these proteins in subsequent analyses. Contrary to a previous
report [27], prostate apoptosis response-4 (PAR-4) was not up-regulated after WA treatment
at either the mRNA (green arrowheads in S1 Fig) or protein level (S3 Fig). Therefore, these
genes may not be involved in determining cell viability (see Fig 1).

Fig 3. Expression of HSP genes is up-regulated after WA treatment. (A) Western blot analysis to detect HSPA6, HSP40, HSPA70, EGR-1, PAR-4, and
GAPDH (loading control) in TIG-1, LNCaP, DU-145, and PC-3 cells at 0, 4, 8 and 24 h after 4 μMWA treatment. Arrow indicates the band for bona fide EGR-
1. (B) Influence of siHSPA6 expression on PC-3 cell growth. (i) Schematic for this experiment. (ii) Western blot analysis to confirm the knockdown of HSPA6
protein by siHSPA6, relative to cells treated with siGL2 (negative control). (iii) Influence of siHSPA6 and siGL2 on PC-3 cell growth, with or without WA
treatment. Arrow highlights the reduction in PC-3 cell growth. (C) Influence of siHSF-1 expression on PC-3 cell growth. (i) Schematics for this experiment. (ii)
Western blot analysis to confirm the knockdown of HSP protein by siHSF-1, relative to cells treated with siGL2 (negative control), and to determine whether
HSF-1 knockdown affected HSP protein levels by detection of HSPA6, HSP40, HSPA70, and GAPDH in PC-3 cells. (iii) Influence of siHSF-1 and siGL2 on
PC-3 cell growth, with or without WA treatment. Arrow highlights the reduction in PC-3 cell growth. Data are represented as means ± SEM of three
independent experiments; pink, green, and blue arrows indicate significant decreases in cell viabilities (*, P < 0.05; **, P < 0.01).

doi:10.1371/journal.pone.0134137.g003
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WA induces the stress response initiated at the ER and mitochondria in
prostate cancer cells
WA induces apoptosis mediated by ER stress in human renal carcinoma cells [4] and Xenopus
laevis A6 kidney epithelial cells [28]. Gene Ontology analysis of the DNAmicroarray data (S5
Fig) using the NextBio system confirmed that the top-ranked enriched gene sets contained ER
stress–related UPR genes (ID, GO:0006986; S4 Fig). To determine whether ER stress was
induced to different degrees in TIG-1 and PC-3 after WA treatment, we performed western
analysis at 2, 4, and 8 h after 4 μMWA treatment. In PC-3, induction of CHOP expression and
activation of caspase 3 and PARP cleavage were observed, which suggests that the ER stress
response via activation of CHOP is important (Fig 4). However, siRNA-mediated knockdown
of CHOP suggest that CHOP does not play a role in the activation of caspase 3 (S6 Fig). By
contrast, phosphorylation of eIF2α at Ser51 was inefficient, possibly due to weak activation of
PERK; consequently, downstream events such as caspase 3 activation and PARP cleavage were
barely detectable in TIG-1 (leftmost panels in Fig 4). This weak response to ER stress may
explain why TIG-1 is resistant to WA treatment (see Fig 1B). In LNCaP, caspase 3 activation
and PARP cleavage were not observed at 8 h; thus, in this cell line the ER stress response was
activated at a level intermediate between those in TIG-1 and PC-3; the resistance of LNCaP to
WAmay be due to this delay in downstream events. However, although the level of CHOP was
induced after WA treatment in DU-145, little caspase 3 activation and PARP cleavage was
observed (rightmost panels in Fig 4). Thus, apoptotic cell death of DU-145 may be due primar-
ily to increased c-Fos expression and reduced FLIP expression rather than the ER stress
response (see Fig 3).

Ashwagandha leaf extract containing WA causes breast cancer cells to generate ROS, which
is a stress response initiated at mitochondria [29]. We examined if treatment with WA also
induces ROS generation in prostate cancer cells and normal fibroblasts by a fluorescence probe
method. We first confirmed detection of ROS signals when cells were treated with tert-butyl
hydroperoxide (TBHP), an inducer of ROS generation. All tested cells showed cytoplasmic sig-
nals (green) derived from ROS production (S7A Fig). Upon treatment with 4 μMWA for 24 h,
only a low level of cytoplasmic ROS was detected in TIG-1 (Fig 4B-i) and KD (S7B Fig), which
is similar to the finding of a previous report that TIG-3 generate little ROS after WA treatment
[29]. By contrast, strong ROS signals were detected in LNCaP, PC-3, and DU-145 (Fig 4C-ii,-
iii, and-iv). These results suggest that TIG-1 and KD, unlike LNCaP, PC-3, and DU-145, did
not generate ROS after WA treatment, which may explain why TIG-1 and KD are resistant to
WA.

WA induces BAG3-mediated autophagy in PC-3 cells
WA induces autophagy in breast cancer cells, but the detailed mechanism remains elusive [30].
Our DNA microarray data (S1 Table) indicated that the mRNA level of Bcl-2-associated atha-
nogene 3 (BAG3), a member of the BAG co-chaperone family implicated in autophagy [31], is
up-regulated after WA treatment. Thus, we investigated whether WA induced autophagy in
PC-3 by expressing EGFP-tagged microtubule-associated protein light chain 3 (LC3), an
autophagy marker that specifically labels autophagosomal membranes [32]. Indeed, EGFP-LC3
puncta appeared after 2 μM or 4 μMWA treatment (Fig 5A) at a frequency similar to that in
serum-starved cells (Fig 5B).

To determine whether WA-mediated autophagy affects cell viability, we added pharmaco-
logical inhibitors of class III phosphatidylinositol 3-kinases, 3-methyladenine (3-MA) or wort-
mannin, which suppresses canonical autophagy, to PC-3 cells in the presence (+) or absence
(−) of 4 μMWA treatment. Western analysis indicated that WA induced LC3 expression
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Fig 4. Expression profiles of ER stress–related proteins followingWA treatment. (A) Western blot analysis to detect IRE-1α, PERK, pS51-eIF2α,
CHOP, caspase 3, PARP, BiP, and GAPDH (loading control) in TIG-1, LNCaP, DU-145, and PC-3 cells at 4, 8, and 24 h after 4 μMWA treatment. NT: non-
treated. (B) Schematic representation of the analyzed proteins in the apoptotic pathway induced by ER stress. (C) Typical fluorescence images of TIG-1 (i),
LNCaP (ii), PC-3 (iii), and DU-145 (iv) that were treated with 4 μMWA for 24 h and subsequently treated with ROS detection reagents using the Image-iT
LIVE Green ROS Detection Kit. Merged images are shown of cytoplasmic ROS signals (green) and nuclear DNA signals stained with Hoechst33342 (blue).
Green bar, 100 μm. Black bar, 10 μm.

doi:10.1371/journal.pone.0134137.g004
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Fig 5. WA induces BAG3-mediated autophagy in PC-3 cells. A) Observation of EGFP and EGFP-LC3 signals by immunofluorescence microscopy. Bar,
10 μm. (B) Bar graphs showing the percentage of cells containing punctate EGFP-LC3; arrows show that the values gradually increased under the indicated
conditions. Data are represented as the means ± SEM of three independent experiments; green arrows indicate statistically significant increases (**,
P < 0.01). (C) Western blot analysis to detect LC-3 and GAPDH (loading control) in PC-3 under the indicated conditions. (D) Bar graphs showing cell viability
(%) under the indicated conditions. (E) Western blot analysis to detect BAG3, LC-3, and GAPDH (loading control) in PC-3 cells in the presence of the
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regardless of the presence of 3-MA or wortmannin (Fig 5C). Moreover, neither drug sup-
pressed the reduction in cell viability (Fig 5D).

Because BAG3 activates noncanonical autophagy elicited by proteasome inhibitors such as
MG132 [33], we investigated whether siRNA-mediated knockdown of BAG3 would affect PC-
3 cell viability. siBAG3 successfully suppressed BAG3 expression compared to siGL2, a nega-
tive control (top panel of Fig 5E). As expected, LC3 expression was suppressed by siBAG3 after
either treatment with DMSO, 2 μMMG132, 20 μMMG132, or 4 μMWA (middle panel of Fig
5E). Furthermore, cell viability was reduced by siBAG3 followingWA treatment (Fig 5F), prob-
ably due to inhibition of the anti-apoptotic activity of BAG3. Taken together, these results sug-
gest that WA-induced BAG3 mediates noncanonical autophagy, which protects PC-3 cells
against cell death.

Western blot analysis showed that the intensity of the ~70 kDa band of BAG3 (arrow in Fig
5G) was decreased in TIG-1 at 24 h after WA treatment (Fig 5G, lane 4), whereas its level was
already high (lanes 9 and 13) and unchanged after WA treatment in PC-3 (lanes 10–12) and
DU-145 (lanes 14–16). Moreover, the ~62 kDa band of BAG3 (a putative processed form of
BAG3) was conspicuously increased in PC-3 and DU-145 (arrowhead in Fig 5G); it remains
elusive if 62 kDa BAG3 is more active than 70 kDa BAG3 or is inactive. These results indicate
that the BAG3 protein level is higher in PC-3 and DU-145 than in TIG-1 and LNCaP. None-
theless, the LC3 level was low in PC-3 and DU-145 (middle panels in Fig 5G), suggesting that a
regulatory mechanism linking BAG3 activity and LC3-II production was altered in these cells.
Indeed, a recent report showed that DU-145 cannot produce LC3-II due to a genetic
impairment of the autophagy pathway [34]. By contrast, LC3 expression was high in TIG-1
and LNCaP (middle panels in Fig 5G). It remains to be analyzed if these results suggest that
these cells are somehow protected fromWA-induced cell death similar to the protection of
Caco-2 cells from oxaliplatin-induced cell death [35].

TIG-1 and PC-3 exhibit distinct patterns of subcellular vimentin
localization following WA treatment
WA associates with vimentin and causes rapid reorganization of vimentin intermediate fila-
ments (VIF) into perinuclear aggregates in BJ-5ta human fibroblasts [12]. Although mRNA
levels of vimentin were high and unaltered after WA treatment in TIG-1, LNCaP, PC-3, and
DU-145 (black arrows in S1 Fig), western analysis indicated that vimentin protein levels were
elevated following WA treatment in PC-3 (Fig 6A). By contrast, vimentin level was already
high before WA treatment, and remained high, in DU-145 (Fig 6A). In TIG-1, the vimentin
level was reduced, with cleavage products of vimentin [10] evident at 24 h (arrowheads Fig
6A), whereas no vimentin band was detected in LNCaP (Fig 6A). These observations are con-
sistent with the fact that PC-3, but not LNCaP, underwent the EMT to acquire vimentin
expression.

Immunostaining at 2, 4, and 8 h after 4 μMWA treatment caused vimentin aggregation
around the plasma membrane in TIG-1 (pink arrows, Fig 6B-i). By contrast, PC-3 exhibited a
homogeneous distribution of vimentin, with no such aggregates (Fig 6B-i and 6B-ii); this

indicated conditions of siBAG3 or siGL2 (negative control). (F) Bar graphs showing cell viability (%) at the indicated conditions. (D, F) Data are represented
as means ± SEM of three independent experiments; red arrows indicate statistically significant reductions in cell viability (**, P < 0.01). (A–F) Samples were
collected at 4 h after WA treatment. (G) Expression profiles of the autophagy-related proteins BAG3 and LC3 in PC-3 cells at 4, 8, and 24 h after treatment
with 4 μMWA. NT: non-treated.

doi:10.1371/journal.pone.0134137.g005
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Fig 6. Protein levels and localizations of vimentin and F-actin followingWA treatment. (A) Western blot
analysis to detect vimentin and actin in TIG-1, LNCaP, PC-3, and DU-145 at 4, 8, and 24 h after treatment
with 2 μM or 4 μMWA. NT: non-treated. (B) Typical images of TIG-1 (i) and PC-3 (ii) stained with anti-
vimentin antibody, phalloidin (for F-actin), and Hoechst 33342 (for DNA) at 2, 4, and 6 (h) after WA treatment.
NT: non-treated. Pink and yellow arrows indicated colocalized vimentin and F-actin aggregates. Merged
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suggests that vimentin expressed after the EMT in PC-3 serves a different function than it does
in mesenchymal cells. Notably, the cytoplasmic volume of PC-3 was smaller than that of TIG-
1. The percentage of cells harboring these aggregates increased conspicuously in TIG-1 (Fig
6C-i) relative to PC-3 (Fig 6C-ii).

Immuno-electron microscopy revealed vimentin signals at IFs in the cytoplasm in the
absence of WA treatment (S8A Fig), confirming the mesenchymal origin of TIG-1. Notably,
many vimentin signals shifted to the peripheral region of the cytoplasm near the plasma mem-
brane, in a pattern that reflected the presence of the aforementioned vimentin aggregates (see
Fig 6B-i), after 4 h of 4 μMWA treatment (S8B Fig). By contrast, only sparse vimentin signals
were observed in PC-3 in the absence of WA treatment (S8C Fig); this observation is similar to
those obtained by immunostaining (see Fig 6B-ii). Moreover, the vimentin signal was low in
PC-3 treated with 4 μMWA for 4 h, at which point the cytoskeletal structure was disrupted
(S8D Fig), suggesting that following an increase in the vimentin level after EMT, these proteins
are not properly structured in PC-3 (S5 Fig) and that this disruption induces the expression of
HSPs and c-Fos.

Next, we noticed that F-actin, another cytoskeletal component detected by phalloidin, was
also aggregated in TIG-1 (yellow arrows in Fig 6B-i), and these bodies colocalized with the
vimentin aggregates. By contrast, PC-3 cells (Fig 6B-ii) contained few F-actin aggregates. F-
actin levels remained constant in these cells (Fig 6A). Moreover, when we added jasplakinolide,
a cyclo-depsipeptide that promotes polymerization and stabilization of actin filaments [36], to
PC-3 cells after 4 μMWA treatment for 8 h (Fig 6D-i), the reduction in cell viability (red arrow
in Fig 6D-ii) was significantly suppressed (blue and green arrows in Fig 6D-ii), suggesting that
WA induces abnormal F-actin polymerization and stabilization. Taken together, these results
suggest that the distinct responses of the cytoskeletal architecture to WA treatment may
explain, at least partly, the differences in viability between these cell lines (see Fig 1).

PC-3 in serum-free medium exhibited similar chemoresistance to WA
The results shown above suggest that WA kills even the mCRPCs. Notably, PC-3 [21] and DU-
145 [22] possess cancer stem cell (CSC)–like properties and form spheroids in serum-free
medium (SFM) culture [37]. Indeed, PC-3 and DU-145 formed large (>100 μm) spheroids at
rates similar to that of SAS (Fig 7A), a human tongue cancer cell line known to form large
spheroids [37]. By contrast, TIG-1 and LNCaP failed to form large spheroids in SFM culture
(Fig 7A). Furthermore, cell viability of SAS was significantly reduced after 2 μM or 4 μMWA
treatment (Fig 7B); this cell line was even more sensitive to WA than PC-3 or DU-145 (see Fig
1). c-Fos, HSPA6, and HSP70 were induced, while FLIP(L) was reduced, following WA treat-
ment, and apoptotic markers (PARP and caspase-3) appeared 24 h after 2 μM or 4 μMWA
treatment (Fig 7C). These results suggest that WA is herapeutically useful to cure the mCRPCs.

images are shown in the bottom row. Bar, 10 μm. (C) Percentage of all observed cells containing dots of
aggregated or non-aggregated vimentin are shown for TIG-1 (i) and PC-3 (ii). Cells harboring over 10
vimentin aggregates were scored as “aggregated”, whereas cells with non-aggregated vimentin were scored
as “non-aggregated”. Data are represented as means ± SEM of three independent experiments; asterisks
indicate statistically significant changes in cell viability (**, P < 0.01; ***, P < 0.001). (D) Jasplakinoloide
(Jsp) did not influence PC-3 cell viability. (i) Schematic of the experimental design. (ii) Bar graphs showing
cell viability (%) in the presence (+) or absence (-) of 4 μMWA or Jasp 8 h after the addition of WA. NT: non-
treated. Bar graphs represent means ± SEM for three independent experiments. Pink, blue, and green arrows
indicate statistically significant reductions in cell viability (*, P < 0.05; **, P < 0.01).

doi:10.1371/journal.pone.0134137.g006
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Like other CSC lines, SAS exhibits higher chemoresistance to cisplatin than adherent cells
[37]. Hence, we asked whether SAS and PC-3 in SFM culture also exhibited higher chemoresis-
tance to WA (Fig 7D-i and 7D-iii). Indeed, neither SAS nor PC-3 in SFM culture was more
resistant to WA than adherent cells (Fig 7D-ii and 7D-iv), suggesting that WA efficiently over-
comes the chemoresistance barrier of CSCs. This result is similar to that of a recent report that
sphere formation protects against cell death induced by integrin inhibition [38]. Taken
together, WA may be useful for the development of drugs that induce cell death in CSCs.

Discussion
Here, we showed that 2 μMWA treatment induced cell death in PC-3 and DU-145, but not in
TIG-1 or LNCaP (Fig 1); TIG-1 and KD remained resistant to 2 μMWA treatment for up to 96
h, but LNCaP died at 72 h (S1 Fig). We investigated transcriptome profiles to identify the
molecular mechanisms that determine the differential sensitivity of PC-3/DU-145 and TIG-1/

Fig 7. Sphere-forming PC3 and SAS cells had higher resistance to cisplatin, but not to WA, than adherent cells. (A) Frequency of spheres larger than
100 μm (i) and typical images (ii) after incubation of TIG-1, LNCaP, PC-3, DU-145, and SAS cells in sphere-formation medium for 10 days. (B) Viability of
SAS cells after WA treatment. Bars represent means ± SEM of three independent experiments. Cell viability was measured at 4, 8, and 24 h after treatment
with 2 μM (blue bars) or 4 μM (red bars) WA. NT, non-treated. Data are represented as means ± SEM of three independent experiments; red arrows indicate
statistically significant reductions in cell viability (**, P < 0.01). (C) Western blot analysis to detect c-Fos, HSPA6, HSP40, HSP70, PARP, and GAPDH
(loading control) in SAS cells at 4, 8, and 24 h after treatment with 2 μM or 4 μMWA. NT: non-treated. (D) Comparison of sensitivity to cisplatin between
parental cells and spheres of PC-3 (i and ii) and SAS (iii and iv) after 48 h of incubation following treatment with indicated cisplatin concentrations.

doi:10.1371/journal.pone.0134137.g007
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LNCaP to WA-induced cell death. We first noticed that WA increased both mRNA (S1 Table)
and protein (Fig 2A) levels of c-Fos in PC-3 and DU-145, but not in TIG-1 or LNCaP (Fig 2A).
As expected, suppression of c-Fos by siRNA (siFos) decreased necrotic cell death (Fig 2E-i).
However, siFos increased the frequency of apoptotic cell death in PC-3 (Fig 2E-ii and 2E-iii),
suggesting that WA-induced cell death is not solely due to c-Fos induction. Gene Ontology (S4
Fig) and western blot (Fig 4) analyses indicated that the ER stress response is activated in PC-3,
suggesting that ER stress is responsible for cell death in PC-3, but not TIG-1 or LNCaP (Fig 4).
WA also induced up-regulation of HSPs (S1 Table and Fig 3) and autophagy (Fig 5); these
pathways appear to protect cells against WA-induced cell death. Moreover, LNCaP, PC-3, and
DU-145, but not TIG-1 or KD, efficiently generated ROS after WA treatment (Fig 4B, S7 Fig),
which may explain why TIG-1 and KD are resistant to WA.

TNF and TRAIL are proapoptotic factors in many cancers, but some tumors acquire resis-
tance and decrease the clinical utility of these agents [38]. TRAIL-induced apoptosis is down-
regulated by a mammalian cellular homologue of FLIP, whose transcription is repressed by
direct binding of c-Fos to its promoter region [18]. A previous study showed that ectopic
expression of c-Fos in LNCaP reduced FLIP, but did not promote cell death [18]; this conclu-
sion is similar to ours, in that an increased c-Fos level and a reduced FLIP level are independent
events caused by WA (Fig 2C and 2F). Thus, we propose that c-Fos is efficiently activated by
WA in DU-145, but not in TIG-1 or LNCaP, which indirectly leads to a reduced level of FLIP.

We also observed differences in the reorganization of the vimentin and F-actin cytoskele-
tons following WA treatment in PC-3 (Fig 6B-i and 6B-ii) relative to TIG-1. Specifically,
vimentin and F-actin formed colocalized aggregates in TIG-1 (Fig 6B-i), whereas these aggre-
gates were absent in PC-3 (Fig 6B-ii). Disorganization of the F-actin cytoskeleton has also been
reported in frog kidney cells [28]. The partial rescue of cell viability by the actin-stabilizing
toxin, jasplakinolide, suggests that WA-induced dysregulation of F-actin is at least partially
responsible for WA-induced apoptosis (Fig 6D-ii). Moreover, immuno-electron microscopy
using anti-vimentin antibody revealed that cytoskeletal structure was disrupted in PC-3 follow-
ing WA treatment (S5 Fig). Exposure of WI-38 human diploid lung fibroblasts to cytochalasin
B, a membrane-permeable inhibitor of actin polymerization, also antagonizes WA-induced
cytotoxicity [39], likely because WA binds covalently to the Annexin A2 core domain, stimu-
lating its basal F-actin cross-linking activity and ultimately causing alterations in the cytoskele-
tal architecture [40], [41]. These reports support our conclusion and suggest that the insult to
cytoskeletal architecture caused by WAmay result in the induction of HSPs and c-Fos, thereby
leading to ROS generation and apoptosis.

Many cancer patients experience recurrence following chemotherapy. CSCs within the
tumor mass are proposed to mediate this chemoresistance, and this capability to regenerate
tumors distinguishes CSCs from other cancer cells [42]. The mechanisms of CSC chemoresis-
tance identified to date include elevated ATP-binding cassette (ABC) transporter activity, alde-
hyde dehydrogenase (ALDH) activity, and enhancement of the DNA damage response [43].
PC-3 and SAS, which possess CSC-like properties [21], [22] exhibit higher chemoresistance to
cisplatin as spheroids than as adherent cells (Fig 7D-i and 7D-ii) [37]. By contrast, PC-3 and
SAS exhibited similar chemoresistance to WA as spheroids and adherent cells (Fig 7D-ii and
7D-iv).

Taken together, these data demonstrate that WA targets vimentin and promotes cell death
in prostate cancer cells, but not in normal fibroblasts, through increased c-Fos level, reduced
FLIP level, and/or enhanced ROS generation probably via WA-mediated disruption of the
cytoskeletal architecture. Thus, WAmay serve as a starting molecule for the development of
drugs that effectively kill CSCs.
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Materials and Methods

Antibodies and reagents
Antibodies against the following proteins were purchased from the indicated companies:
α-Tubulin (Sigma-Aldrich); BAG3 (OriGene); BiP, Caspase-3 (8G10), c-Fos, CHOP, EGR-3,
eIF2α, eIF2αx-pS51, FLIP (D16A8), FosB, HSF-1, HSP40, HSP70, IRE1α, PARP, PAR-4,
PERK, TAZ, and YAP (Cell Signaling); EGR-1 and Withaferin A (Santa Cruz Biotechnology);
GAPDH (Fitzgerald); HSPA6 (Abcam); LC3 (MBL); and vimentin (ARP).

Cell culture
Human cells were acquired from the indicated suppliers: PC-3 and DU-145 (RIKEN Biore-
source Center), TIG-1 (Japanese Cancer Research Resources Bank), KD (Japanese Collection
of Research Bioresources Cell Bank) and LNCaP (ATCC). TIG-1 was maintained in 5% CO2 at
35°C in DMEM supplemented with FBS (10%), penicillin (100 U/mL), and streptomycin
(100 μg/mL). For PC-3, DU-145, and LNCaP, DMEM was replaced with RPMI-1640 medium.

siRNA
The following synthesized siRNA duplexes were used for siRNA-mediated knockdown: siGL2,
CGUACGCGGGAAUACUUCGADdTdT (Gene Design); siHSPA6, GGCAGAGAAGGAGGAGUAU
GAGCdAdT (OriGene); siHSF-1, GAGUGAAGACAUAAAGAUCCGCCdAdG (OriGene); siFos,
GCAUUAACUAAUCUAUUGGGUUCdAdT (OriGene); siBAG3, CCUGAUGAUCGAAGAGUAUUU
GAdCdC (OriGene); and CHOP, AGCGUAUCAUGUUAAAGAUGAGCGG (OriGene). These
siRNA duplexes were transfected using Oligofectamine (Invitrogen).

Supporting Information
S1 Fig. Viability of TIG-1, KD, and LNCaP after WA treatment. Cell viability was measured
at 4, 24, 48, 72, and 96 h after 2 μMWA treatment. NT, non-treated. Bars represent
means ± SEM of three independent measurements.
(TIF)

S2 Fig. Scatter plots of highlighted genes in S1 Table. The y-axis shows the log value of
hybridization signal intensity obtained from the microarray data for WA-treated TIG-1,
LNCaP, PC-3, and DU-145 (see yellow arrows in Fig 1B). The x-axis shows the log value of sig-
nal intensity obtained from samples treated with dimethyl sulfoxide (solvent). Dots corre-
sponding to c-Fos, FosB, vimentin (VIM), and Par-4 are indicated by red, turquoise, black, and
green arrows, respectively.
(TIF)

S3 Fig. FACS pattern of PC-3 cells treated with or without siFos and/or WA. FACS analysis
of PC-3 cells transfected with siFos or siGL2 (negative control) after treatment with WA
(4 μM) or DMSO (solvent) alone, using the GFP-Certified Apoptosis/Necrosis Detection Sys-
tem. Apoptosis was detected by Annexin V–EnzoGold, and necrosis by 7-AAD-Red. Upper
left, necrosis; upper right, late apoptosis; bottom right, early apoptosis.
(TIF)

S4 Fig. Protein levels of EGR-1, EGR-3, and PAR-4 are constant following WA treatment.
Western blot analysis for EGR-1, EGR-3, PAR-4, and GAPDH in PC-3 cells either untreated
(NT) or 4, 8, or 24 h after treatment with 4 μMWA.
(TIF)
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S5 Fig. Gene Ontology analysis. (A) Genes differentially expressed between PC-3 cells treated
with DMSO or 2 μMWA (see Fig 1B) were subjected to NextBio analysis to identify biogroups
and studies (biosets) that contain similar genes. List of top five biogroups: “Biogroup name”
signifies a collection of genes associated with a specific biological function, pathway, or similar
criteria. ER stress–related biogroups are highlighted in red font. (B, C) Venn diagrams and bar
graphs of “Response to unfolded protein” (B) and “Response to topologically incorrect protein”
(C). Venn diagrams show the number of common and unique genes in both biosets and
biogroups. “Common genes” indicate the number of overlapping genes between the bioset and
biogroup. Bars at right indicate the significance of the overlap between gene subsets. The scale
of the bar is-log (p-value), i.e., the taller the bar, the higher the significance of the overlap.
(TIF)

S6 Fig. CHOP plays an essential role in the activation of caspase 3.Western blot analysis of
CHOP, caspase 3, and GAPDH (loading control) in TIG-1 and PC-3 at 8 h after 4 μMWA
treatment in the presence (+) or absence (-) of the indicated siRNAs. The arrow and arrowhead
indicate the CHOP and caspase 3 band, respectively.
(TIF)

S7 Fig. Observation of ROS signals under a fluorescence microscope. (A) Typical fluores-
cence images of TIG-1 (i), KD (ii), LNCaP (iii), PC-3 (iv), and DU-145 (v) that were cultured
on glass coverslips and treated with TBHP for 90 min to induce ROS generation. Merged
images are shown of cytoplasmic ROS signals (green) and nuclear DNA signals stained with
Hoechst33342 (blue). Black bar, 10 μm. (B) Typical fluorescence images of KD cells that were
incubated with 4 μMWA for 24 h and then treated with ROS detection reagents using the
Image-iT LIVE Green ROS Detection Kit. To highlight the weak ROS signals (i), the image of
nuclear DNA signals stained with Hoechst33342 (ii) is separately shown. Green bar, 100 μm.
(TIF)

S8 Fig. Anti-vimentin immuno-electron microscopy of TIG-1 and PC-3 before and after
WA treatment. Typical images obtained by immuno-electron microscopy of TIG-1 (A, B) and
PC-3 (C, D) cultured for 4 h in the absence (A, C) or presence (B, D) of 4 μMWA. Multiple
magnifications are shown (i–iii). Scale bars all indicate 1 μm in the corresponding images.
(TIF)

S1 File. Supplementary results, materials, and methods.
(DOCX)

S1 Table. List of up-regulated genes following treatment with 4 μMWA treatment. Genes
were arranged in descending order of fold change in PC-3; only the genes with a fold
change> 4 in DU-145 are listed. HSP-related, EGR-related, Fos-related, and BAG genes are
highlighted in red, green, blue, and pink font, respectively.
(TIF)
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