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Abstract
The progress of cancer treatment methods in the last decade has significantly reduced mortality rate among these 
patients. Nevertheless, cancer is still recognized as one of the main causes of human deaths. One of the main reasons 
for the high death rate in cancer patients is the late diagnosis in the advanced tumor stages. Therefore, it is necessary 
to investigate the molecular biology of tumor progressions in order to introduce early diagnostic markers. MicroRNAs 
(miRNAs) have an important role in regulating cellular processes associated with tumor progression. Due to the high 
stability of miRNAs in body fluids, they are widely used as non-invasive markers in the early tumor diagnosis. Since, 
deregulation of miR-98 has been reported in a wide range of cancers, we investigated the molecular mechanisms of 
miR-98 during tumor progression. It has been reported that miR-98 mainly inhibits the tumor growth by the modulation 
of transcription factors and signaling pathways. Therefore, miR-98 can be introduced as a tumor marker and therapeutic 
target among cancer patients.

Keywords  MicroRNA-98 · Diagnosis · Tumor suppressor · Cancer

1  Introduction

Tumor therapy improves the life expectancy among cancer patients. However, ineffectiveness of conventional therapeutic 
modalities highlights the importance of utilizing tumor-specific therapeutic approaches [1]. Since, most of the tumors 
are diagnosed in advanced tumor stages; early detection can improve the efficacy of therapeutic strategies to reduce 
mortality rate among cancer patients [2, 3]. MicroRNAs (miRNAs) are promising options for the early tumor detection [4, 
5]. They act as tumor suppressors or oncogenes and play pivotal roles in tumor cell apoptosis, differentiation, prolifera-
tion, and stem cell differentiation [6–9]. High stability in body fluids and tissue specificity suggest the miRNAs as reliable 
non-invasive markers for the early tumor diagnosis and detection of metastatic tumors origin [10, 11]. MiR-98 belongs to 
the let-7 family of miRNAs that is aberrantly expressed in different malignancies [12–14]. It has critical roles in regulation 
of cell proliferation, drug resistance, differentiation, metabolism, and angiogenesis [15–18]. Therefore, we investigated 
the role of miR-98 during tumor progression and invasion to suggest that as a novel tumor marker and therapeutic target 
among cancer patients (Table 1).
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1.1 � PI3K/AKT, MAPK, and JAK/STAT signaling pathways

PI3K/Akt and MAPK signaling pathways has critical functions in cell proliferation, death, metabolism, and neoplastic 
transformation [19–21]. It has been shown that miR-98 has a key role during tumor progression by modulation of PI3K/
AKT and MAPK pathways (Fig. 1). MiR-98-5p repressed cervical tumor cell progression by inhibition of PI3K/Akt pathway 
[22]. IGF1R is a receptor tyrosine kinase (RTK) that activates MAPK and PI3K/Akt pathways to modulate neoplastic trans-
formation, survival, and proliferation of tumor cells [23, 24]. There were remarkable miR-98 down regulations in OSCC 
cells and tissues. MiR-98 repressed OSCC cell migration and invasion by IGF1R targeting [25]. Inhibition of LINC01287 
repressed the p-ERK1/2 and p-MEK1/2 expressions. LINC01287 exerted oncogenic functions in breast cancer via regulat-
ing the miR-98/IGF1R/MEK/ERK axis [26]. There was a relationship between reduced miR-98 expression levels and worse 
prognosis in retinoblastoma (RB) patients. MiR-98 suppressed RB progression and development through suppressing the 
IGF1R/MEK/ERK axis. It significantly reduced the levels of Bcl-2 expressions, while up regulated Bax and CASP-3. MiR-98 
also decreased RB cell invasion and EMT process by CDH2, VIM, and FN1 down regulations while CDH1 up regulation. 

Fig. 1   Role of miR-98 during tumor progression by regulation of signaling pathways. (Created with BioRender.com)
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Moreover, miR-98 decreased p-ERK1/2, p-Raf1, p-MEK1/2, and k-Ras in RB cells [27]. About 20–25% of breast cancer (BC) 
patients are HER2 positive [28, 29]. Herceptin as an anti-HER2 drug considerably increases survival in HER2-positive BC 
patients. A subset of BC patients indicates poor response to treatment, resulting in tumor recurrence. This group con-
stitutes around 90% of BC mortalities [30]. Insulin-like growth factor 2 (IGF2) promotes PI3K/Akt and MAPK pathways 
to regulate tumor cell proliferation and invasion [31, 32]. There was miR-98-5p down regulation in HER2-positive BC 
samples that was associated with reduced overall survival. MiR-98 enhanced Herceptin sensitivity in HER2-positive BC 
cells by IGF2 targeting [33]. Inhibition of HEIH sensitized HCC cells to sorafenib through the modulation of miR-98-5p/
PI3K/AKT axis [34].

ERK pathway has a key function in promoting tumor cell invasion by facilitating the degradation of the extracellular 
matrix through the activation of MMPs [35, 36]. There was a significant linc00665 up regulation in lung adenocarcinoma 
(LUAD) tissues that was associated with shorter recurrence-free survival. Linc00665 enhanced LUAD cell invasion via 
miR-98 sponging that resulted in AKR1B10/ERK activation [37]. MAP4K4 is a ser/thr kinase that is involved in cytoskeleton 
rearrangement, cell motility, and cell proliferation [38–40]. MAP4K4 overexpression has been found as a prognostic bio-
marker in multiple cancers [41–45]. Inhibition of MAP4K4 was also observed to promote cell cycle arrest and apoptosis 
while suppressing cell growth, invasion and migration in various cancer cells [43, 46–48]. Moreover, MAP4K4 induced 
tumor growth by activation of Notch, JAK-STAT, MAPK, and NF-κB pathways [40, 43, 47, 48]. MAPK/ERK pathway has been 
implicated in PDAC progression and development [49, 50]. There was miR-98-5p down regulation in PDAC tissues that 
was correlated with tumor size, TNM stage, and lymph node invasion. MiR-98-5p reduced PDAC cell invasion through 
MAP4K4 targeting and subsequent MAPK/ERK inhibition [51]. MAP4K3 can be activated by TNF-α and ultraviolet radia-
tion [52]. MiR-98-5p inhibited mTOR signaling via MAP4K3 suppression in NSCLC cells [53]. NEAT1 promoted NSCLC cell 
invasion by modulating the miR-98-5p/MAPK6 axis [54]. N6-methyladenosine (m6 A) methylation is essential for main-
taining tumor cell properties. M6 A is a dynamic modification process initiated by methyltransferase-like 14 (METTL14) 
and METTL3 that can also be reversed by ALKBH5, FTO, and RNA demethylases [55]. ADAMTS protein family consists of 
metalloproteinases and disintegrins with thrombospondin motifs that participate in cell migration, apoptosis, extracel-
lular matrix degradation, and angiogenesis. ADAMTS8 serves as an anti-angiogenic mediator in a variety of cancers [56]. 
There was significant OIP5-AS1 up regulation in papillary thyroid cancer (PTC) tissues in comparison with controls, which 
was correlated with tumor malignancy. OIP5-AS1 promoted PTC cell invasion and proliferation through regulation of 
miR-98/ADAMTS8 axis and subsequent activation of MEK/ERK pathway. METTL14 also suppressed PTC progression by 
inhibiting the OIP5-AS1 and subsequent MEK/ERK pathway [57].

JAK/STAT signaling is a key regulator of cell proliferation and apoptosis that can be regulated by miR-98 during tumor 
progression (Fig. 1). STAT3 activation is correlated with malignant nasopharyngeal carcinoma features such as EMT, 
metastasis, invasion, migration, proliferation, and drug resistance [58, 59]. STAT3 is an important component of JAK/STAT 
pathways that activates HIF-1α to regulate tumor progression during hypoxia [60]. There was DSCR8 up regulation in 
ovarian cancer (OC) tissues that was contributed with poor prognosis. DSCR8 promoted EMT process and OC progression 
via miR-98-5p/STAT3/HIF1a axis [61]. MiR-98 inhibited nasopharyngeal tumor cell migration while promoted apoptosis 
via STAT3 targeting [62]. NF-κB signaling has important roles in inflammation and tumor progression. NF-κB is composed 
of two subunits, commonly known as p50 and p65 that are typically confined to the cytoplasm due to the presence of IºB 
inhibitors. IKK kinases phosphorylate IκB in response to biological stimuli, resulting in ubiquitin-mediated degradation. 
NF-κB is then released to the nucleus, where it stimulates target genes that increase cell invasion and proliferation while 
inhibiting apoptosis [63]. IKKε is implicated in LPS- and TNFα-induced MMP-13 and MMP-3 gene expressions through 
c-JUN activation and phosphorylation [64]. MiR-98 suppressed cell invasion in glioma cells via IKKε targeting. MiR-98 
modulated glioma cell invasion and migration by suppressing IKKε/NF-κB signaling and acting as a tumor suppressor 
by directly inhibiting NF-κB nuclear translocation [65]. TGF-β pathway has key roles in cell proliferation, migration, and 
apoptosis. TGFBR1 is involved in modulation of apoptosis, cell adhesion, differentiation, and proliferation [66–69]. It has 
been demonstrated that miR-98-5p decreased NSCLC metastasis and EMT process through TGFBR1 targeting. There was 
also miR-98-5p down regulation in NSCLC samples compared with controls that was associated with advanced tumor 
stage [70].

1.2 � Transcription factors

MiR-98 has a pivotal role during tumor progression by modulation of transcription factors (Fig. 2). PBX3 belongs to the 
homeobox (HOX) transcription factors that is involved in regulation of tumor cell invasion and migration [71–73]. PBX3 
regulates tumor cell invasion by activation of MAPK/ERK signaling [71]. There was a significant miR-98 down regulation 
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in glioma samples that was contributed with high-grade tumors and PBX3 up regulation. MiR-98 reduced glioma cell 
migration and invasion through PBX3 targeting [74]. Inhibition of HOXA11-AS increased cisplatin sensitivity of naso-
pharyngeal tumor cells via miR-98/PBX3 axis [75]. EBF1 transcription factor could activate TMPO-AS1 transcription, which 
subsequently up regulated EBF1 via miR-98-5p sponging in a positive feedback loop. There was TMPO-AS1 up regulation 
in bladder tumor cells and tissues that was associated with poor prognosis. TMPO-AS1 promoted bladder tumor cell 
migration, while inhibited apoptosis via miR-98-5p/EBF1 axis [76].

E2F transcription factors have essential roles in cell cycle progression [77]. E2F1 enhances chemo resistance by ABCG2 
up regulation [78]. There was miR-98 down regulation in Adriamycin resistant leukemia cells. MiR-98 enhanced Adriamy-
cin response by E2F1 targeting that resulted in ABCG2 and MMP9 down regulations while BAX and p21 up regulations 
[79]. There were SNHG16 up regulations in breast cancer (BC) tissues in comparison with normal specimens, which were 
correlated with increased mobility and worse prognosis. MiR-98 inhibited BC cell migration through E2F5 targeting. E2F5 
up regulated SNHG16 to regulate miR-98/ E2F5 axis in a positive feedback loop [80]. Enhancer of zeste homolog 2 (EZH2) 
is a member of Polycomb protein family and contains a SET domain that regulates transcription at the epigenetic level 
through affecting DNA methylation and histone modification [81]. EZH2 up regulation is significantly associated with 
tumor cell invasion and poor prognosis in various malignancies [82–89]. MiR-98 suppressed HCC cell proliferation through 
the inhibition of EZH2 mediated Wnt/b-catenin signaling [90]. There were remarkable miR-98 down regulations in ESCC 
tissues that were contributed with higher grade, stage, and lymph node metastasis. Inhibition of miR-98 promoted ESCC 
metastasis by EZH2 up regulation [91].

Epithelial-mesenchymal transition (EMT) has a pivotal function in tumor invasion in which an epithelial cell acquires 
mesenchymal cell phenotype by loss of E-cadherin while Vimentin and N-cadherin up regulations [92–94]. TWIST is a 
transcription factor that is widely recognized for its function in EMT, angiogenesis, drug resistance, and metastasis [95–98]. 
There was a positive relationship between the miR-98 expression levels and overall survival in NSCLC patients. TWIST-
activated Akt was implicated in survival, proliferation, and self-renewal characteristics. MiR-98 inhibited NSCLC progres-
sion via regulating TWIST/AKT axis [99]. SALL4 is a zinc finger transcription factor that has crucial roles in maintaining 
the self-renewal ability of embryonic stem cells [100]. There was miR-98 down regulation in HCC tissues in comparison 
with normal margins that was correlated with tumor size and poor overall survival. MiR-98 significantly reduced HCC cell 
invasion through SALL4 targeting. Moreover, it significantly reduced EMT process through CDH2, VIM, and FN1 down 
regulations, while CDH1 over expression [101].

Fig. 2   Role of miR-98 during tumor progression by regulation of transcription factors. (Created with BioRender.com)
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HMGA2 is a transcription factor that is involved in cell aging, differentiation, growth, and apoptosis [102]. MiR‐
98‐5p down regulation was reported in papillary thyroid carcinoma (PTC) specimens that was contributed with 
poor prognosis. MiR-98-5p suppressed PTC cell migration and growth while inducing apoptosis via regulating the 
HMGA2/Bax/CASP3 axis [103]. Inhibition of NEAT1 suppressed prostate tumor cell invasion and proliferation through 
miR-98-5p/HMGA2 axis. There was also significant NEAT1 up regulation in prostate cancer tissues that was associ-
ated with advanced TNM stage and higher Gleason score [104]. MiR-98 down regulation was reported in laryngeal 
squamous cell carcinoma (LSCC) cells and tissues. MiR-98 reduced LSCC cell invasion and EMT by HMGA2 targeting 
and subsequent POSTN up regulation [105]. TP53 as a transcription factor promotes the expression of genes impli-
cated in cell death or cell growth arrest in response to genotoxic stress [106]. It functions as a checkpoint control 
to determine cellular fate in response to DNA damages [107, 108]. TP53 can also promote apoptosis as a response 
to DNA damage, particularly when the damage is extensive and out of the function of DNA repair systems [108, 
109]. It has been investigated that inhibition of miR-98 promoted cisplatin-induced A549 cell apoptosis through 
up regulating TP53 pathway [110].

1.3 � Structural proteins

Structural proteins have also key roles in tumor cell migration, proliferation, and apoptosis that can be regulated by 
miR-98 during tumor progression (Fig. 3). Claudin-1 (CLDN1) is the main component of the tight junction that regu-
lates intercellular junctions [111, 112]. MiR-98 inhibited colorectal carcinoma (CRC) cell proliferation while promoting 
apoptosis through CLDN1 targeting. It also down regulated PCNA, C‐myc, and Bcl‐2, while up regulated RUNX3 and 
Bax in CRC cells [113]. P21-activated protein kinase 1 (PAK1) is a major effector of the small Rho GTPases that are 
involved in actin dynamics and cell migration. PAKs as the serine/threonine kinases regulate actin polymerization 
and cytoskeletal dynamics through modulating ADF and cofilin [114, 115]. MiR-98 inhibited NSCLC cell apoptosis, 
invasion, and proliferation through PAK1 targeting [116]. Integrins are a type of trans-membrane receptors that plays 
critical functions in signal transduction and tumor progression [117]. MiR-98 repressed lung tumor cell migration 
and invasion through ITGB3 targeting [14]. Collagen triple helix repeat containing 1 (CTHRC1) is a glycoprotein with 
a small collagen-like motif that is involved in cell adhesion and migration [118]. There were remarkable miR-98 down 
modulations in HCC cells and tissues. MiR-98 repressed HCC cell invasion through CTHRC1 targeting [119].

Cytoplasmic polyadenylation element binding (CPEB4) belongs to the RNA binding family proteins that are 
involved in tumor growth, invasion, and vascularization [120]. Inhibition of FOXD2-AS1 decreased glioma cell invasion, 
EMT, and drug resistance while promoting apoptosis via regulation of miR-98-5p/CPEB4 axis. FOXD2-AS1 inhibition 
repressed EMT via VIM and CDH2 up regulations, while CDH1 down regulation [121]. IGF2BP1 is also a RNA-binding 
protein that functions by attaching to the mRNAs of β-actin and IGF2 to regulate the translation of these genes, 
which in turn affects cell survival and proliferation [122, 123]. MiR-98-5p down regulation was correlated with poor 
prognosis in liver tumor tissues. It inhibited HCC cell growth while promoting apoptosis via IGF2BP1 targeting [124].

MKP1 is a threonine-tyrosine phosphatase that is involved in regulation of apoptosis and cell proliferation dur-
ing tumor progression [125]. It regulates dephosphorylation and subsequent deactivation of JNK and various other 
kinases associated with apoptosis, resulting in a decrease in apoptosis [126, 127]. It has been demonstrated that there 
were circ_0006349 up regulations in NSCLC patients that were associated with poor prognosis. CircRNA_0006349 
enhanced development and glycolysis of NSCLC cells through miR-98/MKP1 axis [128]. X-linked inhibitor of apop-
tosis protein (XIAP) belongs to the IAPs protein family, which inhibits apoptosis by suppressing caspase function 
[129]. There was significant circ_0000527 up regulation in retinoblastoma (RB) specimens. Circ_0000527 induced 
RB progression through regulating the miR-98-5p/XIAP axis [130]. HECTD4 is an E3 ubiquitin-protein ligase that is 
involved in glucose homeostasis. HEIH induced cell invasion, proliferation, and migration in cholangiocarcinoma 
through miR-98-5p/HECTD4 axis [131].

Functional mature miRNAs are formed through multiple post-transcriptional processes, which involve the actions 
of Drosha/DGCR8 in the nucleus to form pre-miRNA, then being transported to the cytoplasm, and finally being 
cleaved by the Dicer [132–134]. Dicer down regulation have been correlated with poor clinical outcomes and 
advanced tumor stage in epithelial ovarian cancer (EOC) patients [135]. MiR-98-5p down regulation was correlated 
with poor prognosis in EOC patients. MiR-98-5p induced CDDP resistance of EOC cells through Dicer1 targeting that 
resulted in miR-152 down regulation. MiR-152 also increased DNA repair defects and induced CDDP sensitivity in 
EOC cells via RAD51 targeting [136].
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1.4 � Cellular metabolism

Tumor cell metabolism is developed to maintain the tumor cells in hypoxic and nutrient deprivation conditions. It 
has been shown that miR-98 has a key role in regulation of cellular metabolism during tumor progression (Fig. 3). The 
aerobic glycolysis is a well-recognized characteristic of tumor cells [137]. During this metabolic process, tumor cells 
undergo glycolysis despite sufficient oxygen levels that reduces ATP production and impaired glucose utilization 
[138]. Hexokinase 2 (HK2) is an important enzyme that modulates the irreversible glucose to glucose-6-phosphate 
conversion. HK2 expression has been investigated to be up regulated in various malignancies [139–141]. There was a 
significant decrease in miR-98 levels in colon cancer cells and tissues. MiR-98 inhibited Warburg effect in colon cancer 

Fig. 3   Role of miR-98 during tumor progression by regulation of apoptosis, cellular adhesion, metabolism, tumor microenvironment, drug 
resistance, and RNA-binding proteins. (Created with BioRender.com)
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cells via HK2 targeting, resulting in reduced proliferation, glucose uptake, lactate production, and cellular ATP levels 
[142]. Glycosylation plays a crucial role in various pathophysiological conditions, such as tumor metastasis and growth 
[143, 144]. For instance, colorectal and breast cancer patients exhibit elevated levels of mannose glycan expression 
[145, 146]. The expression patterns of tumor cell glycosyltransferases, tumor-related glycans, and their target proteins 
are utilized as diagnostic tumor markers [143]. ALG3 encodes an alpha-1, 3-mannosyltransferase that functions in the 
endoplasmic reticulum to synthesize mannose-type glycans. Abnormal glycosylations of N-cadherin and E-cadherin 
are involved in EMT and tumor metastasis [147, 148]. There was significant ALG3 up regulation in non-small cell lung 
cancer (NSCLC) tissues that was associated with poor prognosis. MiR-98-5p suppressed EMT process via ALG3 tar-
geting in NSCLC cells [149]. Gastric cancer stem cells (GCSCs) are involved in gastric tumor progression, metastasis, 
and chemo resistance [150]. CD44 as a trans-membrane glycoprotein is involved in the induction of tumor growth 
[151, 152]. Branched-chain aminotransferase 1 (BCAT1) is a catabolic enzyme that is involved in tumor progression 
[153–155]. There was miR-98 down regulation in CD44 + GCSCs which was associated with the maintenance of cancer 
stemness cell properties. It reduced GC stemness characteristics while enhanced chemo sensitivity to cisplatin and 
paclitaxel through BCAT1 targeting. MiR-98 influenced the stemness of GCSCs through NANOG, OCT4, and SOX2 
down regulations. MiR-98 significantly reduced the ABCG2 expression levels that decreased drug resistance in GCSCs. 
Moreover, miR-98 inhibited EMT of CD44 + GCSCs through CDH1 up regulation while VIM down regulation [156].

1.5 � Tumor immune microenvironment and drug resistance

Tumor microenvironment (TME) consists of cancer tissue and adjacent stromal cells, allowing for reciprocal interactions 
between cancer cells, inflammatory cells, and microcapillary vessels [157]. MiR-98 has an important role in regulation of 
TME during tumor progression (Fig. 3). Macrophages are highly plastic cells that can be polarized in response to microen-
vironmental stimuli and acquire a range of functional phenotypes [158]. M1 macrophages have been shown to increase 
cell recruitment to the inflammatory site via secreting IL-12, IL-1β, TNF-α, and NO, whereas M2 macrophages release TGF, 
IL-4, IL-10, FN1, and MMPs [159]. Tumor-associated macrophages (TAMs), which have a predominantly M2-like phenotype 
[160], are critical regulators of the TME that affect the neoplastic cell proliferation, extracellular matrix remodeling, and 
angiogenesis [161]. MiR-98 suppressed the inducing effects of TAMs on invasion of HCC cells through IL-10 targeting 
[162]. Tumor tolerance refers to the immune system ability to disregard the growth of tumors within the body, enabling 
their uncontrolled progression. During this process, tumors evade immune surveillance through mechanisms that are 
not fully understood [163]. Immune tolerant cells encompass a variety of cells that synthesize TGF-β and IL-10 [164]. Fol-
lowing appropriate stimulation, immune regulatory B or T cells release IL-10 to suppress immune reactions by inhibiting 
the functions of other immune effector cells [165]. B10 cells possess the ability to diminish the anti-cancer capacity of 
the body by suppressing the activities of other immune effector cells through the IL-10 production [166]. There was a 
negative contribution between the levels of miR-98 and IL-10 expressions in peripheral B cells of lung cancer patients 
compared with normal individuals that were correlated with tumor size. MiR-98 inhibited lung tumor growth through 
the IL-10 targeting in peripheral B lymphocytes [167]. MiR-98 down regulation was correlated with increased melanoma 
metastasis and stage. MiR-98 inhibited melanoma cell invasion through IL-6 targeting [168].

Cisplatin (CDDP) is commonly prescribed as an antineoplastic agent for ovarian cancer. However, CDDP resistance is a 
common therapeutic challenge in cancer patients [169]. Autophagy, cancer stem cell-like properties, ABC transporters-
induced drug efflux, EMT, and accelerated DNA repair are the main reasons of multidrug resistance (MDR) in tumor cells 
[170, 171]. It has been shown that miR-98 has a pivotal role in chemo resistance via modulation of cell cycle progression, 
drug efflux, and DNA repair (Fig. 3). MDR is a main cause of chemotherapy failure in endometrial cancer (EC) patients 
[172]. NEAT1 promoted paclitaxel resistance through the regulation of miR-98/MRP7 pathway in EC cells [173]. Cancer-
associated fibroblasts (CAFs) are common types of stromal cells found in different tumor types [174], have been linked to 
poor prognosis of OC [175]. They have the ability to release exosomes to regulate tumor progression and drug resistance 
[176]. Cyclin-dependent kinase inhibitor 1A (CDKN1A) belongs to the Cip/Kip family of CDK inhibitors that is recognized 
as a target for antineoplastic medications [177]. CAF-exosomal miR-98-5p enhanced CDDP resistance in ovarian tumod 
cells by CDKN1A targeting [178]. There was significant TTTY15 up regulation in GC cells and tissues. Suppression of 
TTTY15 reduced GC progression by miR-98-5p sponging that resulted in CCND2 down regulation [179]. The efficiency 
of platinum drugs for postoperative gastric cancer (GC) patients has been severely restricted due to chemo-resistance 
[180]. Platinum resistance is associated with enhanced detoxification by metallothionein and glutathione systems [181], 
impaired cellular uptake of platinum drugs [181, 182], increased tolerance to DNA damage [183], and increased DNA 
repair [182, 184]. A significant PITPNA-AS1 up regulation was reported in GC patients that were correlated with poor 
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prognosis. PITPNA-AS1 promoted GC progression via adversely regulating the expression levels of miR-98-5p. Lobaplatin 
(LBP) and CDDP could inhibit expression of PITPNA-AS1 and promote miR-98-5p expression in GC cells [185].

2 � Conclusions

In this review, we assessed the role of miR-98 during tumor progression and invasion. It was shown that miR-98 mainly 
exerts its tumor suppressor function by the modulation of transcription factors, tumor microenvironment, and signaling 
pathways. This review can be of great value in introducing miR-98 as an efficient diagnostic/prognostic tumor marker. In 
addition, due to the tumor suppressor function, miR-98 can be introduced as a novel therapeutic target through miR-98 
mimics strategy. However, the clinical application of miR-98 in cancer diagnosis and treatment requires more in-vivo stud-
ies and clinical trials. It is also required to assess the levels of miR-98 expressions in serum samples and other biological 
fluids of cancer patients to suggest that as a non-invasive tumor marker in clinics.
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