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ABSTRACT

Considerable effort has been devoted to refining
experimental protocols to reduce levels of tech-
nical variability and artifacts in single-cell RNA-
sequencing data (scRNA-seq). We here present ev-
idence that equalizing the concentration of cDNA li-
braries prior to pooling, a step not consistently per-
formed in single-cell experiments, improves gene de-
tection rates, enhances biological signals, and re-
duces technical artifacts in scRNA-seq data. To eval-
uate the effect of equalization on various protocols,
we developed Scaffold, a simulation framework that
models each step of an scRNA-seq experiment. Nu-
merical experiments demonstrate that equalization
reduces variation in sequencing depth and gene-
specific expression variability. We then performed a
set of experiments in vitro with and without the equal-
ization step and found that equalization increases the
number of genes that are detected in every cell by
17–31%, improves discovery of biologically relevant
genes, and reduces nuisance signals associated with
cell cycle. Further support is provided in an analysis
of publicly available data.

INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) protocols have
evolved rapidly over the last 10 years, with increased
throughput and sensitivity allowing for unprecedented in-
sights into cell type heterogeneity across tissues (1). In spite
of the advances, substantial technical variability and biases
remain, which present challenges in data analysis and can
obscure biological signals (2–5). From mRNA capture, re-

verse transcription, and PCR amplification, to additional
single-cell library preparation and multiplex sequencing,
there are numerous opportunities for technical noise to arise
in scRNA-seq experiments. Inefficiencies or biases at any
of the steps in the protocol may lead to increased techni-
cal artifacts and noise affecting expression variability and
increase the proportion of dropout (6,7).

Numerous computational approaches including data
smoothing and imputation have been developed to address
excess variability and zeros in scRNA-seq data (8,9). How-
ever, they do so with the risk of introducing or perpet-
uating bias (8,10), thus making it preferable to optimize
experimental protocols when feasible. A few studies have
evaluated the downstream effects of various amplification
techniques (11) or reverse transcriptases (12) on scRNA-
seq data. However, to our knowledge no study has assessed
the effect of equalizing cDNA concentrations in single-cell
protocols. In bulk RNA-seq experiments, equalization of
cDNA concentrations across libraries is a standard proce-
dure that has been shown to reduce sequencing coverage
variability and increase transcriptome diversity (13–15) by
providing more even sequencing coverage of all samples.
Equalization also leads to decreased sequencing of highly
abundant transcripts and increases the efficiency at which
low and moderately expressed genes are sequenced in bulk
experiments (14).

For single-cell RNA-seq we hypothesized that equaliza-
tion may improve sensitivity by increasing gene detection
and thus began our investigation into the technical artifacts
in scRNA-seq data by developing a simulation framework
that generates counts by modeling each step of the experi-
mental protocol. Simulation frameworks offer a significant
advantage to studying sources of variability compared to
experimental approaches as they allow an investigator to
quickly assess a large number of scenarios at considerably
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low cost. While a number of good methods are available
for simulating scRNA-seq data (16–18), most do not model
each step in the experimental protocol, and therefore are not
useful for assessing how each step of the process affects the
final counts. Two frameworks have attempted to study the
data generation process but are limited in scope, either rely-
ing on spike-ins (19) or combining all sources of variation
into a single parameter (20). Scaffold models the scRNA-
seq data generating process by representing each step of the
protocol mathematically, from the initial cell-to-cell hetero-
geneity to the final sequencing (Methods). Here we mainly
focus on the SMART-SEQ (21) protocol as it uses oligo-dT
priming and template switching as the backbone chemistry
to generate cDNA from single cells which is used in mul-
tiple major scRNA-seq platforms, including Fluidigm C1
and 10X Chromium. The simulation framework is imple-
mented in the R package, R/Scaffold and freely available at
https://github.com/rhondabacher/scaffold/.

Based on our simulation results, which suggest that
equalization is a critical step in the scRNA-seq protocol, we
designed a set of scRNA-seq experiments in which we var-
ied the extent at which cDNA libraries were equalized. The
experiments demonstrate that equalization results in more
consistent detection of genes, reduced expression variabil-
ity, and reduced variability in the count-depth rate (3), the
relationship between a gene’s observed expression and se-
quencing depth. Finally, we confirm the effect of equaliza-
tion in a survey of publicly available scRNA-seq datasets.

MATERIALS AND METHODS

EC and TB cell experiments

We focused on a subset of 96 single cells, from hESC-derived
endothelial cells (EC) or trophoblast-like cells (TB) gen-
erated using the Fluidigm C1 system. The original data is
considered to be unequalized (unEQ), where the single-cell
cDNA libraries were first diluted to a range of 0.125–0.375
ng for subsequent library preparation protocols. The unEQ
data was published in a previous study (GEO: GSE75748)
(22). In the subsequent EQ experiments performed here, in-
cluding EQ, EQ-Vary and EQ-75%, we retrieved the har-
vested cDNA, which are amplified full-length single-cell
cDNAs identical to those used for the unEQ experiments
(Supplementary Figure S1), but further diluted and ad-
justed so only 0.1 ng of cDNA were used as input across
all the cells for subsequent library preparation protocols.
In all the experiments, 1.25 �l of indicated input cDNA
were used in a 5.0 �l Tagmentation reaction (Nextera XT
DNA Sample Preparation Kit, Illumina) followed with a
12.5 �l dual-indexing PCR amplification reaction (Nex-
tera XT DNA Sample Preparation Index Kit, Illumina).
In the unEQ, EQ and EQ-75% experiments, 2.0 �l of the
amplified/tagmented cDNA were used for pooling. In the
EQ-Vary experiment, a single scaling factor was applied to
generate variable amounts of the pooling volume. These
pooled single-cell libraries were used in an AMpure XP
Bead-based Dual Bead Cleanup and Size Selection reaction
(Agencourt AMPure XP PCR Purification modified In-
structions for Use, Beckman Coulter). In both bead cleanup
reactions, 90% of AMPure XP beads were added to the am-
plified single-cell libraries to select for an approximate size

range of 150–700 bp and incubated for 15 min at room tem-
perature. Libraries bound to beads were then placed on a
magnet for 5 min, washed twice with 70% ethanol, eluted
with Suspension Buffer (Nextera XT DNA Sample Prepa-
ration Index Kit, Illumina), and transferred to a new tube.
Final amplified and pooled single-cell libraries were quan-
tified with the Qubit dsDNA HS Assay Kit (Q32854, Ther-
mofisher) and Bioanalyzer High Sensitivity DNA Analysis
Kit (5067-4626, Agilent). The unEQ libraries were multi-
plexed with 18–20 samples per lane and sequenced on an
Illumina HiSeq2500 with single-end 51 bp reads while the
EQ, EQ-75% and EQ-Vary were all pooled with 96 sam-
ples per lane and sequenced on an Illumina HiSeq3000 with
paired-end 65 or 78 bp reads.

Processing and quality control on cells across equalization ex-
periments

Reads were mapped against the GRCh38 Ensembl reference
of protein-coding genes via Bowtie 1.2.3 (22), allowing up
to two mismatches. The expected counts were estimated via
RSEM 1.2.31 (23). To control for any differences due to dif-
fering read lengths all reads were first trimmed to have a
length of 51 bp. In the initial unEQ experiment, cells that
had fewer than 5000 genes with TPM > 1 or that upon in-
spection of cell images displayed doublets or appeared dead
were removed in quality control.

Using the scater v1.18.6 R package (24) we removed
cells from any experiments in which the log10 sequenc-
ing depth was <5.4 or the percent of counts in the top 50
genes was >31%, the thresholds corresponding to being two
standard deviations away from the median (Supplementary
Figure S2). The expected counts in all experiments were
rounded to the nearest whole number for all subsequent
analyses.

Comparison of cell-specific and gene-specific detection rates

The cell-specific detection rate was calculated as the propor-
tion of genes with nonzero expression within each cell. Sim-
ilarly, the gene-specific detection rate was calculated as the
proportion of cells with nonzero expression for each gene.
When comparing differences in gene-specific detection rates
between the experimental datasets, we accounted for differ-
ences in the sequencing depth since more sequencing typi-
cally results in more genes detected. For each comparison
we subset the cells such that the average difference in se-
quencing depths was zero.

Analysis of highly variable genes

For the analysis of highly variable genes, gene expression es-
timates were first normalized using SCnorm v1.6.0 (3). We
then fit a mean-dependent trend across each gene’s mean-
variance relationship. The trend represents technical vari-
ability and a gene’s biological variability was calculated
from the residuals using the functions trendVar and decom-
poseVar in the scran v1.12.1 R package (25). The decom-
poseVar function tests for nonzero biological variability us-
ing an F-test of total variability to technical variability. We
considered genes significantly highly variable if they had an

https://github.com/rhondabacher/scaffold/


PAGE 3 OF 12 Nucleic Acids Research, 2022, Vol. 50, No. 2 e12

FDR < .10. In order to compare gene variability across
datasets, we ranked a gene’s relative variability to all other
genes in the dataset and calculated the difference in the two
ranks.

Estimating the count-depth rate

The gene-specific count-depth rate was estimated within EC
and TB separately using a median quantile regression on the
log nonzero gene expression versus log sequencing depth
using the getSlopes function in the SCnorm v1.6.0 R pack-
age. For each condition, we filtered out genes that had fewer
than 10 nonzero expression counts across all cells and genes
with median nonzero expression less than two. Visualiza-
tion of the count-depth rate distributions is shown using
smoothed density plots of the slopes within gene groups,
where genes were split into 10 equally sized groups based
on their nonzero median expression. The variability of the
count-depth rate is quantified using the median absolute de-
viation statistic (MAD). First, the mode of the slope distri-
bution was estimated for each gene group, then the MAD
was calculated as the median of the absolute differences
between the slope modes and one, where one is the ex-
pected value of the count-depth rate. All density plots of the
slope distribution are done with smoothing parameters ad-
just = 1, and estimated over the grid (–3, 3) using the density
function in R. All analyses were carried out using R version
3.6.3.

Analysis of publicly available datasets

We obtained processed counts from the conquer scRNA-
seq database (26) for four single-cell RNA-seq datasets pro-
cessed identically: Deng et al. (27), Grün et al. (28), Guo
et al. (29) and Shalek et al. (30). The Chu et al. (31) data
was obtained from the Gene Expression Omnibus (GEO)
with the accession number GSE75748. The Islam et al. (32)
data was obtained from GEO with the accession number
GSE29087. The H1-bulk data from Bacher et al. (3) was
obtained from GEO with the accession number GSE85917.
The Picelli et al. (33) was obtained from GEO with the ac-
cession number GSE49321. The Smart-seq3 datasets from
Hagemann-Jensen et al. (34) were obtained from Array-
Express E-MTAB-8735. The 10× dataset is the pbmc4k
dataset from the 10× Genomics website processed by Cell
Ranger 2.1.0.

For the non-UMI datasets, cells with fewer than 10 000
total counts were removed and counts were rounded to the
nearest whole number. For estimating the count-depth rate,
again we filtered out genes that had fewer than 10 nonzero
expression counts across all cells and genes with median
nonzero expression less than two. In Figure 4, the repre-
sentative datasets displayed from each study are: EF cells
from Islam, Earlyblast-Embryo2 in Deng, M11W-Embryo2
in Guo, Unstim-Rep1 in Shalek and TB2 in Chu. The Pi-
celli and H1-Bulk each only had one dataset in the study.
The comparison of properties in Table 1 for the equalized
versus unequalized datasets in publicly available studies was
done using a two-sided t-test.

For the Grün UMI dataset, the isOutlier function in the
scater v1.18.6 R package was used to remove cells having to-

tal detected genes greater than five median absolute devia-
tions from the median. The isOutlier function was similarly
applied to the Smart-seq3 datasets to remove outlier cells
based on total counts and total genes detected per cell. For
the 10X dataset, we first used the emptyDrops function in
the DropletUtils v1.10.3 R package (35) to remove empty
droplets containing ambient RNA and kept cells with an
FDR <0.01. Cells were further filtered using the isOutlier
function using three quality control metrics: total counts,
genes detected per cell, and the percent of mitochondrial
counts; outliers were considered as those above three me-
dian absolute deviations. Count-depth relationships were
not estimated for the 10× or the Smart-Seq3 HCA dataset
due to the large number of zeros in the data. For estimating
the count-depth relationship in the UMI and Smart-seq3
Fibroblast datasets, all genes having a nonzero mean were
included (the median in these datasets is often zero).

Simulation Framework

Here we first describe the data-generating process in Scaf-
fold and the following section contains details on the es-
timation procedures. Let Mg, j be the true number of mR-
NAs present for gene g in cell j with distribution, Mg, j ∼
Poisson(ω jμg), where g = 1, . . . , G, j = 1, . . . , N, and
μg is the latent level of gene-specific expression. As not
all cells in a population are identical, the parameter ω j
is a cell-specific population heterogeneity parameter ω j ∼
Uni f orm(ω.05, ω.95); scaling factors are applied to each cell
to represent the range of cellular heterogeneity.

In an scRNA-seq experiment, a cell is first isolated and its
mRNA is captured following cell lysis. A reverse transcrip-
tion step occurs immediately after to convert the mRNA
into cDNA. It is currently not possible to naturally esti-
mate these two steps separately. Thus, here we model both
of these events together as a single process. The number of
molecules successfully captured for genes in cell j is repre-
sented as:

Z1, j , . . . , ZG, j ∼ Multinomial

×
⎛
⎝λ j

G∑
g = 1

Mg, j ,
M1, j∑G

g = 1 Mg, j
,

M2, j∑G
g = 1 Mg, j

, . . . ,
MG, j∑G

g = 1 Mg, j

⎞
⎠ ,

where λ j is the efficiency of conversion, referred to as the
capture efficiency. Following this step, the cDNA molecules
are exponentially amplified using PCR. The number of suc-
cessfully amplified cDNA molecules for gene g in cell j
is: Ag, j = Zg, j (1 + ρ j )C, where C is the number of ampli-
fication cycles and ρ j is the efficiency. When ρ j = 1, all
molecules double each cycle. We expect ρ j to vary across
reactions and to be independent across cells.

For droplet/10X protocols, the capture step occurs
for each cell independently and all cDNA is then com-
bined for further library preparation (skipping the cell-
independent pre-amplification step). For plate-based meth-
ods like Smart-seq, the next steps involve re-plating the cells
for further library preparation where cells are still processed
independently. At this point, cDNA concentrations are typ-
ically quantified in part to ensure that quality is high. An
optional next step is to equalize the cDNA concentrations
to make them as similar as possible. This is first done by de-
termining an acceptable range of concentrations – one may
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Table 1. Summary of publicly available datasets. The first column contains the dataset name. Column 2 shows the organism. Column 3 shows the sequenc-
ing protocol used. Column 4 shows the number of cells per dataset included in the study. Column 5 is average sequencing depth across all cells. Column 6 is
the average cell-specific detection rate across all cells. Column 7 is the average MAD and Column 8 indicates whether cDNA equalization was performed.
Datasets above the black line are non-UMI and shown in Figure 4

Dataset Organism Protocol
Number
of cells

Average
sequencing depth

(millions)

Average
cell-specific

detection rate
Average
MAD

cDNA
equalization

H1-bulk Human Bulk 48 3.0 0.73 0.045 Yes
Picelli Human SC–Smart-seq2 35 11.7 0.47 0.141 Yes
Deng Mouse SC–Smart-seq 11–22 13.3 0.65 0.162 Yes
Guo Human SC–Tang et al. (44) 12–31 3.5 0.47 0.247 Yes
Shalek Mouse SC–Smart-seq 64–96 3.4 0.39 0.431 No
Islam Mouse SC–STRT-seq 44–48 0.6 0.19 0.480 No
Chu Human SC–Smart-seq 31–87 4.6 0.50 0.523 No
Grün UMI Mouse SC–CEL-Seq (UMI) 562 0.004 0.02 0.307 No
10X Human SC–10X 3735 0.004 0.04 - No
SS3-HCA Human SC–Smart-seq3 (UMI) 3112 0.252 0.09 - Yes
SS3-Fibroblast Mouse SC–Smart-seq3 (UMI) 369 1.26 0.39 0.096 Yes

dilute all concentrations to the smallest observed concentra-
tion, or alternatively dilute a subset of cells to ensure that all
concentrations are within a small target range. In Scaffold,
the dilution factor is generated as Sj ∼ Normal(τ j , 0.01),
where τ j is :

τ j =
⎧⎨
⎩

0.95, if l j < q∗

q∗

l j
, otherwise

and l j is the cDNA concentration for cell j ; q∗ is the upper
limit of the acceptable concentration range. For cells having
concentrations within the acceptable range, there is no di-
lution. In this case, Scaffold sets the dilution factor to 0.95
indicating that, on average, 95% of the cDNA molecules will
be retained in the next step (100% is not used as some loss
of material may occur in the next step when transferring liq-
uids). To mimic the situation in which all concentrations are
diluted to the smallest observed, q∗ is set to be the concen-
tration of the smallest cell. If a range is chosen, then q* is
set to the midpoint between the lowest concentration and
the concentration at a user-specified quantile; all concen-
trations larger than q* are then diluted as described above.

The number of cDNA molecules in cell j after equalizing
cDNA concentrations is:

A∗
1, j , . . . , A∗

G, j ∼ Multinomial

×
⎛
⎝Sj

G∑
g = 1

Ag, j ,
A1, j∑G

g = 1 Ag, j
,

A2, j∑G
g = 1 Ag, j

, . . . ,
AG, j∑G

g = 1 Ag, j

⎞
⎠

Following the protocols for C1 Fluidigm (Smart-seq and
Smart- seq2), the cDNA is fragmented into shorter pieces
and sequencing adapters and cell-specific indexes are added.
We model this similarly to capture efficiency since the failure
of any particular cDNA removes it from further consider-
ation in sequencing. This is commonly referred to as ‘tag-
mentation’. We denote the tagmentation efficiency here as
γ j . The number of cDNA molecules successfully tagmented
for genes in cell j is represented as:

T1, j , . . . , TG, j ∼ Multinomial

×
⎛
⎝γ j

G∑
g = 1

A∗
g, j ,

A∗
1, j∑G

g = 1 A∗
g, j

,
A∗

2, j∑G
g = 1 A∗

g, j

, . . . ,
A∗

G, j∑G
g = 1 A∗

g, j

⎞
⎠

Next, the cDNA molecules go through a second round
of PCR amplification, where for gene g in cell j the
number of amplified molecules is represented as: Bg, j =
Tg, j (1 + ρ2, j )C2 , where C2 is the number of amplification
cycles and ρ2, j is the efficiency per cell. Finally, the observed
gene counts per cell, Yg, j , are obtained by:

Y1,1, . . . , YG,N ∼ Multinomial (R, π )

where π = (π1,1, . . . , πG,1, . . . , πG,1, . . . , πG,N) , πg, j =
Bg, j∑

g

∑
j Bg, j

, and R is the total number of sequences obtained.

To simulate data from UMI protocols, the same steps
above are followed, with Scaffold tracking the unique
molecules throughout the simulation framework. For
10X/droplet based protocols, there are a few differences
in the procedure. Specifically, there is no pre-amplification
step, the transcripts from all cells are combined immedi-
ately following the capture step, and the tagmentation and
PCR amplification steps do not having cell-specific parame-
ters since tagmentation and PCR amplification are not cell-
specific.

Estimation of simulation parameters

For the simulation framework described above, a number of
parameters must be set or estimated. All parameters that are
estimated can also be input by the user if desired so that no
input dataset is actually needed to simulate data. The num-
ber of genes and cells are estimated from the input dataset.
Since the expression means observed in sequence data do
not necessarily reflect the total transcripts in the cells, Scaf-
fold first scales all cells to have a total of 300 000 counts to
estimate the mean for each gene as human cells have been
previously reported to have approximately 300k total tran-
scripts (36). This parameter can be changed in Scaffold, if
desired. The estimated means are then used in the Poisson
distribution to generate the starting number of mRNA per
cell. To estimate the cell heterogeneity parameters, ω.05 and
ω.95, Scaffold calculates the ratio of total counts for a ran-
dom sample of 100 pairs of cells in the observed data, then
the 5th and 95th percentile of ratios are used as the lower
and upper bound in a Uniform distribution to draw cell-
specific scaling factors.
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The majority of zeros are thought to occur during the
capture step (cell lysis and reverse transcription), thus the
capture efficiency has the largest impact on the detection
rates. It is not possible, even with spike-ins, to differentiate
these two steps; and consequently, default settings in Scaf-
fold treat them as a single step. However, we note that it
is possible to simulate these two steps separately. We esti-
mate the capture efficiencies from a Normal(μλ, σλ). The
mean capture efficiency, μλ, is estimated in Scaffold as
follows:

(i) A weighted probability of observing each gene is cal-
culated as pg = μg /m, where μgis the gene mean in
the initial simulated mRNA counts and m is the total
number of genes.

(ii) For a given mean capture efficiency, we calculate
P( Xg = 0), where Xg ∼ Binomial(μλ ∗ m, pg). To
avoid heavy computation, this is estimated for a ran-
dom representative subset of 100 genes.

(iii) μλ is chosen as that which minimizes the difference
between P(Xg > 0) and the average detection rate per
cell in the observed data. This search is done using the
optimize function in R. For UMI and 10× datasets,
we found better estimation accuracy using P(Xg > 1),
which corresponds to an increased probability of initial
counts of one being observed as zeros in the sequenced
data. The standard deviation, σλ, is calculated from the
observed data as the median absolute deviation of the
cell detection rates.

The default number of cycles for each PCR step is set to
the number used by the Smart-seq protocol as detailed in
the Fluidigm user manual (first PCR is 18 cycles and the
second PCR is 12 cycles), and these can be adjusted by the
user. In our testing we did not identify the PCR or tagmen-
tation steps to have a major influence, and in the literature
these are typically regarded as highly efficient procedures
(37). Thus, the default distribution of the efficiency parame-
ter for these steps is Normal(0.95, 0.02), but can be adjusted
by the user as desired. Finally, the total sequencing depth is
set to the sum of all the counts in the observed data. De-
tails on the specific parameters for the simulated datasets is
given in Supplementary Methods.

Simulating multiple populations

Following the initial generation of mRNA counts, multi-
ple populations can be simulated by specifying additional
parameters. The number of cells per population must be
provided, and the first population serves as the reference
from which each additional population differs by a pro-
portion of genes having distinct expression. The expres-
sion differences are sampled from a Normal distribution
with a mean and standard deviation of fold-changes given
by the user; and the direction of expression differences
for a given gene is chosen at random. For the compari-
son of cluster visualization between unEQ and EQ simu-
lated datasets, we simulated two populations having 50 and
40 cells using Scaffold. The proportion of DE genes simu-
lated was 10% with fold-changes drawn from a Normal(1.5,
.5). All other Scaffold parameters were estimated from the

unEQ EC dataset. For generating the UMAP (38), TSNE
(39) and EDGE (40) embeddings and plots, 250 simula-
tions were conducted. Within each simulation and for each
dimension reduction algorithm, the mean silhouette dis-
tances were averaged over 25 iterations using different ran-
dom seeds. UMAP and TSNE plots were obtained using the
scater R package v1.18.6 using the first ten principle com-
ponents, n neighbors = 10 for UMAP, and perplexity = 25
for TSNE. EDGE plots were obtained with the EDGE R
package v1.0 with the number of weak learners n wl = 5000,
nearest neighbors n neighs = 10, n dm = 10, hash table size
H = 1000, and optimization opt = TRUE.

Simulating dynamic populations

To simulate datasets from a continuous or dynamic pop-
ulation, Scaffold simulates gene expression via a B-spline
for a user-specified proportion of genes. The default spline
generation is degree two, with two knots and coefficients
sampled from a Normal(5,5); mRNA counts are then gen-
erated from a Poisson distribution with latent mean for each
cell equal to the value from the B-spline. The spline gener-
ation parameters can be user-specified. For the simulation
of trajectory analysis, we used the default settings and all
other scaffold parameters were estimated from the unEQ
EC dataset. The SCORPIUS R package v1.0.8 was used to
infer the trajectory using default settings (41). A two-degree
polynomial was used to identify genes having a significant
dynamic along pseudotime. The pROC R package v1.17.0.1
was used to estimate the area under the receiver operator
curve (AUC) (42).

RESULTS

In silico investigation of cDNA equalization using Scaffold

As detailed in Methods and Figure 1A, Scaffold allows for
assessment of how each step of the single-cell protocol (cell
lysis, amplification, equalization, library preparation, and
sequencing depth) affects scRNA-seq measurements. Us-
ing an scRNA-seq dataset of unequalized endothelial cells
(unEQ EC) as a reference, Scaffold estimated starting pa-
rameters and simulated data that reproduced the features
of the unEQ EC dataset including gene-specific means, vari-
ances, and proportions of zeros (Figure 1B–E). We also sim-
ulated data using unequalized trophoblast cells (unEQ TB)
as a reference with similar results (Supplementary Figure
S3). Systematic variability in the count-depth rate, a feature
shown to be unique to scRNA-seq data (3), was also repro-
duced (Figure 1F and Supplementary Figure S4).

Holding all other parameters constant, we simulated data
while varying parameters for equalization and sequencing
depth and found that cDNA equalization has the largest
effect on the average variability in the count-depth rate
(Supplementary Figure S4C, D), while the total sequencing
depth (Supplementary Figure S4E) had little effect.

To examine the effect of equalization on other proper-
ties of the data, we simulated additional datasets with and
without equalization holding all other parameters constant.
Specifically, we simulated pairs of unequalized and equal-
ized datasets by adjusting only the equalization parame-
ter. In simulated datasets, gene-specific variation decreased
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A B
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D

E

GF

Figure 1. (A) Overview of the Scaffold simulation framework. Further details are provided in Methods. (B–E) Cell-specific and gene-specific properties
of the data simulated based on the unEQ EC dataset. (F) Density plots of the distribution of estimated count-depth rates (quantified as the gene-specific
slope of a median quantile regression) for the unEQ EC dataset for genes grouped by expression level (left) and the mode of each group’s slope distribution
(right). The median absolute deviation of the slope modes from one (MAD) is used to quantify the variability in the count-depth rate. (G) The percent
change in gene-specific variability (left) and sequencing depth (right) is shown for multiple pairs of unequalized and equalized datasets. Multiple pairs of
unequalized experiments were also simulated and compared to demonstrate the percent of change due to random sampling.
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A B

Figure 2. Overview of experiment to assess the effect of cDNA equalization and comparisons of cell-level detection rates. (A) Four experiments were
conducted involving cells from two different conditions (EC and TB). Using the same initial pools of single-cell cDNA, we created unequalized and
equalized sequencing libraries. (B) Violin plots with points overlaid of the number of genes detected per cell for all cells in each experiment.

by an average of 16.2% due to equalization alone and the
variability in the sequencing depths was reduced by 74.2%
despite the simulations having the same average depth (Fig-
ure 1G).

Experiments to assess the effect of cDNA equalization

Given results from the simulation study, we hypothesized
that a lack of equalization during the preparation of single-
cell libraries would increase variation in the amount of in-
put cDNA which in turn could contribute to reduced gene
detection and increased variability in expression estimates
observed in scRNA-seq data. To test this hypothesis, we ap-
plied alternative protocols to full-length single-cell cDNA
libraries of identical cells to generate matched scRNA-seq
data sets (Figure 2A). The original data includes single en-
dothelial cells (EC) and trophoblast-like cells (TB) derived
from human embryonic stem cells (hESC) (31) which were
unequalized (unEQ). For these experiments, the cDNA in-
put ranged from 0.125 to 0.375 ng (Materials and Meth-
ods). In the next series of experiments, we equalized the
same set of single-cell cDNA to a fixed input (0.1 ng) across
all the cells. Prior to sequencing, cells were pooled at an
equal volume (EQ) or pooled by a scaling factor to produce
highly variable sequencing depths (EQ-Vary) (Figure 2A).
Finally, we replicated the entire EQ experiment, including
equalized cDNA input and pooling, but we sequenced at
approximately three-quarters the depth of the previous ex-
periments (EQ-75%). Because these four conditions all de-
rive from identical cells, these experiments provide the most
robust investigation to date on how input cDNA variations
impact scRNA-seq data.

Equalization increases cell-specific and gene-specific detec-
tion rates

A common challenge in scRNA-seq experiments is the high
proportions of zeros, or dropouts. Dropouts are due to an

incomplete sampling process, stochastic gene expression,
and inefficient capture of mRNA, with the probability of
dropping out inversely related to a gene’s underlying ex-
pression level (43). Equalizing cDNA libraries would not
recover dropouts that occur upstream in a protocol, but it
may recover dropouts that are due to inefficiencies in later
preparation steps (e.g. second PCR amplification) or due to
underrepresentation in the pooled library. Thus, we first in-
vestigated the effect of cDNA equalization on cell-specific
detection rates, defined as the proportion of nonzero genes
within a cell. Across both EC and TB cells, we observed
an increase in the efficiency of gene detection in the equal-
ized experiments (Figure 2B). An average of 745 (8.6%)
more genes per cell were detected with expression greater
than zero in the EQ versus the unEQ experiments. EQ-vary,
which was pooled in a way to reflect possible inefficiencies
that might occur after equalization such as during pooling
or amplification, reduced the detection efficiency slightly to
534 (6.2%) more genes detected on average. Comparatively,
the effect of equalization on gene detection is stronger than
the effect of solely increasing total sequencing depth. Be-
tween EQ and EQ-75%, in which both experiments were
equalized but the latter had three-quarters the sequencing
depth, we observed only 470 (5.0%) fewer genes detected
per cell in EQ-75%.

We next investigated the gene-level detection rate across
experiments, defined as the proportion of cells with nonzero
expression for each gene (Figure 3A, B). Here we calculated
the difference in gene-level detection rates between EQ and
unEQ while accounting for differences in sequencing depth
(Methods). The overall increase in detection efficiency due
to equalization translates to a 31.1% increase in genes hav-
ing consistent detection in all EC cells and a 17.9% increase
in TB cells (1002 and 622 genes, respectively). We also ob-
served a 10.4% decrease in the number of genes not detected
in any cells for EC and an 8.1% decrease in TB (382 and 276
genes, respectively).
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Figure 3. Equalization improves detection rates and decreases expression variability. (A) For the EC dataset, genes were divided into four equally sized
groups based on their median nonzero expression. For each gene, the difference between the detection rate in the EQ versus the unEQ experiments was
calculated. The cumulative distribution curve is shown for the detection rate differences for genes in each expression group. The two horizonal dotted lines
indicate the proportion of genes that decrease in detection rate (bottom line) and one minus the proportion of genes that increase in detection rate (top
line). (B) Same as A for the TB dataset. (C) Scatter plot of every gene’s mean and variance for the unEQ (top) and EQ (bottom) datasets (light gray). The
smoothed fit line represents technical variability. The mean and variance were calculated over all cells, both EC and TB. Genes having significantly high
biological variability in either dataset are shown in dark gray. Shown in red are the highly variable genes in the unEQ dataset only, and in blue are the
highly variable genes in the EQ dataset only. In the table are the top three GO biological processes enriched for genes that are only HVG in the unEQ (red)
or EQ (blue) experiments.

Since a gene’s detection rate is related to its expression
level, we further analyzed detection differences by split-
ting genes into four equally sized gene groups based on
their nonzero median expression. We assessed what differ-
ences would appear due to random chance by randomly
splitting the EC or TB cells in the unEQ dataset into two
groups and examining the detection rate differences be-
tween them. Approximately equal proportions of genes had
increased/decreased detection rates across all expression
groups for both experimental conditions (Supplementary
Figure S5).

Between the EQ data and unEQ datasets, we consistently
saw a higher proportion of genes having a higher detection
rate in the equalized dataset especially among the moder-
ately expressed genes (62% and 64% for EC gene groups 2
and 3; 56% and 59% for TB gene groups 2 and 3) (Figure
3A&B). The average increase in detection rate in the equal-
ized experiments for the genes in Groups 2–4 is 13.6% in
EC2 and 7.9% for TB2. In comparison, we performed the
same analysis between the EQ and EQ-Vary datasets which
underwent the same equalization procedure and found the
ratio of genes with increasing versus decreasing detection
rate was stable across expression groups; the increased vari-
ability in sequencing depth did not compromise the detec-
tion rate in the equalized dataset (Supplementary Figure
S6).

To identify any functional relevance of genes with in-
creased or decreased detection rates in the EQ experiment

we performed gene-set enrichment using MSigDB’s list of
GO biological processes on the top 200 genes sorted by
their magnitude change in detection. Genes with increased
detection rate in the EQ experiment were enriched for im-
portant developmental processes including morphogenesis,
and tube and epithelium development in both EC and TB
(Supplementary Table S1). Genes with decreased detection
rates after equalization tended to be among the most lowly
expressed genes. Of the 200 genes with the most decreased
detection, 142 were in the lowest expression group in EC
and 162 such genes in TB. Taken together, these results sug-
gest that equalization improves the detection of biologically
relevant genes without compromising signal.

Equalization reduces nuisance variation

Next, we investigated the effect of equalization on gene ex-
pression variability. A common first step in single-cell clus-
tering or trajectory inference analysis is to reduce the data to
the most informative set of genes, often defined as the most
highly variable genes (HVG). However, in the presence of
excess nuisance variation, the top ranked HVG may not re-
flect the most relevant set of genes. Here, we detected HVG
by decomposing the total variance of each gene into tech-
nical and biological components. To do so, we estimated a
mean-dependent trend for the mean-variance relationship
across all genes to represent technical variability (Methods).
A gene’s biological variability was calculated as the differ-
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Figure 4. Count-depth rate in equalized scRNA-seq experiments. (A) For the unEQ and EQ EC datasets, the count-depth rate was calculated for all genes
as the slope of a median quantile regression. Genes were divided into ten equally sized groups based on their median nonzero expression across all cells in
the dataset. (B) The median absolute deviation (MAD) of the modal slope for each experiment is shown. (C) Same as A for seven representative datasets
from seven published studies. (D) Similar to (B) for all datasets in the seven published studies. The solid line indicates the mean MAD and the dashed line
indicates one standard deviation.

ence between a gene’s total variability and its fitted trend
value. An HVG classification was assigned to genes having
biological variability significantly larger than zero (FDR <
0.10). HVG genes in the unequalized experiment were en-
riched in GO biological processes involving the cell cycle.
This is likely due to the fact that cellular mRNA content
is directly related to cell cycle stage and, consequently, if
cDNA content is not equalized across cells, variability in
cell cycle genes is prominent in the resulting data. Following
equalization, genes classified as HVG were enriched for bi-
ological processes specific to EC cells including gastrulation
and cell fate/differentiation (Figure 3C and Supplementary
Table S2).

Equalization reduces technical artifacts in the count-depth
rate

Previously, we reported that scRNA-seq data display sys-
tematic variation in the relationship between a gene’s ob-
served expression and sequencing depth (which we termed
the count-depth rate), whereby a gene’s expected increase in
expression with increased sequencing depth fails to materi-
alize (3). Variability in the count-depth rate affects down-
stream analysis as popular scale-factor based normaliza-
tion methods assume that the count-depth rate is common
across genes and equal to one on the log–log scale (3,25).

As shown in Bacher et al., much of the variability in
the count-depth rate arises from under-detection of genes
despite increasing sequencing depth since highly expressed
genes are over-represented during sequencing. Since equal-
izing cDNA increases detection rates, we hypothesized that
it may also reduce variability in the count-depth rate. To
investigate, we quantified the count-depth rate for every

gene using median quantile regression, where a slope of
one indicates a proportional increase of gene expression
with sequencing depth (Supplementary Figure S7). Next,
we binned genes into ten equally sized groups based on
their median nonzero expression. In the unEQ dataset, we
found only highly expressed genes had slopes near one and
slopes gradually decreased with gene expression level (Fig-
ure 4A). The extent of variability in the count-depth rate
was measured using the MAD of the ten groups slope mode
from their expected value of one. The EQ experiments had
a lower MAD and displayed less variability in the count-
depth rates for both EC and TB (Figure 4A, B). EQ-75%
was similar to the EQ datasets, indicating the count-depth
rate is not affected by total sequencing depth. The EQ-Vary
experiment had the most reduction in count-depth variabil-
ity, with the majority of slopes close to 1 (Supplemental Fig-
ure S8), due to its increased dissociation of cell size with se-
quencing depth.

As more single-cell datasets have become public and iden-
tically processed in databases such as conquer (26), we
were able to inquire whether systematic variability in the
count-depth rate was reduced across scRNA-seq data in
published studies. Across seven different studies, we found
large heterogeneity in the experiment-specific count-depth
rates with the MAD ranging from 0.045 to 1.176 (Figure
4C, D). We found no revealing association between the
average MAD within study and various properties of the
scRNA-seq data, including the average sequencing depth,
cell-specific detection rate, organism, or number of cells
(Table 1). However, consistent with our simulated and ex-
perimental datasets, the publicly available studies in which
equalization was performed had significantly lower MAD
values (P-value < 0.001), higher cell-specific detection rates
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Figure 5. Pairs of unequalized and equalized experiments having two populations were simulated using Scaffold. Datasets were embedded in two-
dimensions using UMAP and the silhouette distance was calculated for each dataset. (A) UMAP plot of one simulated unequalized dataset. (B) UMAP
plot of one simulated equalized dataset. (C) Across all simulations, 62% had larger equalized silhouette distances compared to those of the paired un-
equalized distances (P-value < .001). The silhouette distances were permuted for each simulated dataset to obtain a sampling distribution under the null
hypothesis of no difference due to equalization. P-values (p) were calculated over 10 000 permutations. The histogram shows the permutation distribution
of the proportion of equalized simulated datasets having a larger silhouette distance. (D) The permutation distribution of the median silhouette differences.
The median differences between unequalized and equalized simulated datasets was 0.041 (P-value < 0.001).

(P-value < 0.001), and higher gene-specific detection rates
(P-value = 0.039) (Supplementary Figure S9). On average
the equalized datasets contain 2215 additional genes de-
tected consistently in every cell compared to the unequal-
ized datasets (P-value < 0.001 and Supplementary Figure
S9).

Equalization improves downstream analyses

To further examine how equalization might affect common
downstream analyses, we simulated data for two scenar-
ios – clustering analysis and trajectory analysis. For clus-
tering, we used Scaffold to simulate datasets from multi-
ple populations (Supplementary Figure S10). Here we con-
sider two cell type populations with slight separation––only
10% of genes have distinct expression with an average fold
change of 1.5. We simulated pairs of unequalized and equal-
ized datasets and evaluated two-dimensional embeddings
of cells using the silhouette distance. On average, equaliza-
tion had a higher median silhouette distance and improved
visible separation of cell populations in UMAP (38) plots
(Figure 5). TSNE (39) and EDGE (40) reduced dimension
embeddings showed similar trends (Supplementary Figure
S11). We also used Scaffold to simulate cells coming from
a continuous population, in which we assumed a propor-
tion of genes have dynamic expression across the cells (Sup-
plementary Figure S12). We simulated pairs of unequalized
and equalized datasets and inferred a trajectory on the sim-

ulated cells (41). We then fit a polynomial regression of each
gene’s expression to the trajectory to determine the signifi-
cantly dynamic genes (adjusted P-value < 0.05). Equaliza-
tion had a slight improvement in the ability to detect dy-
namically expressed genes, with an AUC of 83.0 versus 81.7
for the unequalized simulations.

Using Scaffold to simulate data from UMI and 10× protocols

Although equalization cannot be applied to 10× proto-
cols, or most UMI protocols, due to the vast number of
cells these protocols produce, other aspects of the data
generation process can be systematically explored. We ap-
plied Scaffold to a 10X dataset and three additional UMI
datasets and observed that the simulated data was highly
representative of cell- and gene-specific properties of the
data (Supplementary Figures S13–S18).

DISCUSSION

Obtaining the highest quality data with minimal techni-
cal variability remains a goal for scRNA-seq experiments.
Given the competitive nature of the sequencing process,
highly expressed transcripts are often overrepresented in the
final library and will consume a large proportion of the to-
tal reads leading to low detection rates for the majority of
genes. Here, we showed that equalizing single-cell cDNA
libraries prior to pooling improves detection rates and
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decreases nuisance variation such as that attributable to cell
cycle.

Our finding of reduced variability in expression for cell
cycle genes in equalized experiments is novel, yet not unex-
pected since cell cycle signals are often the largest drivers of
differences in total mRNA. Note that if cell cycle signals are
of marked interest, then equalization may not be appropri-
ate. However, reduction of cell-cycle signals has been imple-
mented in most scRNA-seq analysis pipelines as it is con-
sidered a hindrance in most downstream analyses (45,46).
While different cell types often have different cell sizes, they
are also distinguished by relative differences in key marker
genes. Equalization preserves these relative differences as
the dilution is performed on the entire cell’s cDNA and thus,
would not remove cell-type specific differences.

In many cases, identified sources of technical variability
in downstream analyses have proven to be excellent targets
for protocol improvement (47–50). Scaffold, our simulation
framework, offers an opportunity to directly and efficiently
explore how different steps in a protocol affect scRNA-seq
data. Here, we focused the effect of equalizing cDNA con-
centration across cells. However, Scaffold provides a frame-
work to study other parameters, or to simulate data that
recapitulates characteristics of scRNA-seq data (e.g. detec-
tion rates and count-depth rate).

In practice, the process of equalizing cDNA concentra-
tions is non-trivial and time-consuming, leading it to be one
of the critical limiting points of the library preparation pro-
cess (51). Automation has alleviated this to some extent, and
has been used in large single-cell sequencing projects such
as the Tabula Muris (52). However, some state-of-the-art
protocols, such as 10×, profile scRNA-seq measurements
from thousands to millions of cells using massively par-
allel sequencing systems with high levels of multiplexing
(51) and equalization is not possible since cDNA is pooled
early in the experiment. We expect that single-cell protocols
will continue to advance and improve with technology. Our
study offers insight into one mechanism worth further ex-
ploration in protocol design and development.

DATA AVAILABILITY

All R code used for analysis and simulations is available
at https://github.com/rhondabacher/scEqualization-Paper.
The simulation package Scaffold is available at https://
github.com/rhondabacher/scaffold. The unEQ, EQ, EQ-
Vary, and EQ-75% datasets are available at the NCBI Gene
Expression Omnibus: GSE156494.

For the publicly available datasets, we obtained processed
counts from the conquer scRNA-seq database for four
single-cell RNA-seq datasets processed identically: Deng
et al. (27), Grün et al. (28), Guo et al. (29) and Shalek
et al. (30). The Chu et al. (31) data was obtained from
the Gene Expression Omnibus (GEO) with the accession
number GSE75748. The Islam et al. (32) data was obtained
from GEO with the accession number GSE29087. The H1-
bulk data from Bacher et al. (3) was obtained from GEO
with the accession number GSE85917. The Picelli et al. (33)
was obtained from the GEO with the accession number
GSE49321. The Smart-seq3 datasets (34) were obtained
from ArrayExpress E-MTAB-8735. The 10X dataset is the

pbmc4k dataset from the 10X Genomics website processed
by Cell Ranger 2.1.0.
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Supplementary Data are available at NAR Online.
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