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SYG-180-2-2 attenuates
Staphylococcus aureus
virulence by inhibiting
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staphyloxanthin production
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1Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji
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Wenzhou, China, 3Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
Multi-drug resistant Staphylococcus aureus infection is still a serious threat to

global health. Therefore, there is an urgent need to develop new antibacterial

agents based on virulence factor therapy to overcome drug resistance.

Previously, we synthesized SYG-180-2-2 (C21H16N2OSe), an effective small

molecule compound against biofilm. The aim of this study was to investigate

the anti-virulence efficacy of SYG-180-2-2 against Staphylococcus aureus.

MIC results demonstrated no apparent antibacterial activity of the SYG-180-2-

2. The growth curve assay showed that SYG-180-2-2 had nonlethal effect on S.

aureus. Besides, SYG-180-2-2 strongly inhibited the hemolytic activity and

staphyloxanthin synthesis in S. aureus. Inhibition of staphyloxanthin by SYG-

180-2-2 enhanced the sensitivity of S. aureus to oxidants and human whole

blood. In addition, SYG-180-2-2 significantly decreased the expression of

saeR-mediated hemolytic gene hlb and staphyloxanthin-related crtM, crtN

and sigB genes by quantitative polymerase chain reaction (qPCR). Meanwhile,

the expression of oxidative stress-related genes sodA, sodM and katA also

decreased. Galleria Mellonella assay revealed that SYG-180-2-2 was not toxic

to larvae. Further, the larvae infection model showed that the virulence of

bacteria was significantly reduced after 4 mg/mL SYG-180-2-2 treatment. SYG-

180-2-2 also reduced skin abscess formation in mice by reducing bacterial

burden and subcutaneous inflammation. In conclusion, SYG-180-2-2 might be

a promising agent to attenuate the virulence of S. aureus by targeting genes

associated with hemolytic activity and staphyloxanthin synthesis.
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Introduction

Staphylococcus aureus is one of the main pathogens causing

hospital- and community-acquired infections, and can cause a

range of infections, including skin and soft tissue infections,

endocarditis, pneumonia and other life-threatening illnesses

(Blot et al., 1998; Tong et al., 2015). With the use of various

antibacterial drugs, the antimicrobial resistance of S. aureus has

increased. In particular, the emergence of methicillin-resistant S.

aureus (MRSA) has burdened the public health. Some reports

showed that the prevalence of hospital-acquired MRSA had

reached 50.4% in China and that of the community-acquired

MRSA had reached 46.1% in Peru (Shang et al., 2016; Cabrejos-

Hirashima et al., 2021). S. aureus can also produce a series of

toxins, such as hemolysin, enterotoxin and exfoliative toxins

(Oliveira et al., 2018).

The hemolysins produced by S. aureus include a-hemolysin,

b- hemolysin, g- hemolysin and d- hemolysin. b- hemolysin is

one of the pore-forming toxins, which is a 39 kDa protein

containing 330 amino acids and can produce toxic effects on

cells such as polymorphonuclear leukocytes, monocytes and T

lymphocytes (Projan et al., 1989; Walev et al., 1996). In S. aureus,

the SaeRS two-component system (TCS) plays an important role

in controlling the production of various virulence factors (Liu

et al., 2016). The sae system encodes four genes (saeP, saeQ, saeR

and saeS) and affects the transcription of hla, hlb and coa

(Mainiero et al., 2010). Gao et al. (Gao et al., 2017) showed

that the golden carotenoid pigment is also one of the important

factors affecting the virulence of S. aureus. The pigment protects

S. aureus from host oxidant killing and enhances its toxicity in a

subcutaneous abscess model (Liu et al., 2005). In S. aureus, there

are five genes related to staphyloxanthin biosynthesis, including

crtM, crtN, crtP, crtQ, and crtO, which are organized by the

crtOPQMN operon (Pelz et al., 2005). SigB plays an important

role in the regulation of the crtOPQMN operon, thereby affecting

the synthesis of staphyloxanthin (Xue et al., 2019). Therefore,

the development of agents targeting hemolysin and

staphyloxanthin production is also a potential way to treat S.

aureus infection.

SYG-180-2-2(C21H16N2OSe), a small molecule compound,

contains an indole ring, a selenyl group, and an amido group.

Indole are widely used as a privileged scaffold for the design of

medicinal drugs (Huffman and Padgett, 2005; Higuchi and

Kawasaki, 2007; Liu et al., 2009; Biersack and Schobert, 2012),

and 3-selenylindoles have been identified as an important class

of indole compounds with biological activity (Nogueira et al.,

2004). Amido group, as a crucial substituent in pharmaceutical

chemistry, are widely found in natural products and drug

candidates, and exhibit a wide range of biological activities

including anti-tumor and antiviral (Fatahala et al., 2017; Garg

et al., 2019). In our knowledge, there is also no study on novel

anti-virulence drugs combined with 3-selenylindole and the

amido group. Following our discovery of anti-biofilm ability of
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SYG-180-2-2 (Rao et al., 2021), we are interested in exploring

the anti-virulence of this new compound.

In the present study, we chose two S. aureus strains named

SA75 and Newman to investigate the effect of SYG-180-2-2 on

the virulence of S. aureus. The aim of this study was to

demonstrate that SYG-180-2-2 acts by inhibiting the pigment

synthesis and hemolysin release of S. aureus.
Materials and methods

Bacterial strains, reagents and
culture conditions

The bacterial strains used in the study were SA75 and

Newman. SA75 is a clinical S. aureus isolated from a patient

with skin suppurative infection, which had remarkable

hemolytic activity and pigment formation. The S. aureus

ATCC 25904 Newman has the same phenotypic characteristics

as SA75. All strains were incubated in trypticase soy broth (TSB)

medium at 37 °C with shaking at 220 rpm. SYG-180-2-2 was

synthesized by the School of Pharmacy, Wenzhou Medical

University (Sheng et al., 2021). The details of the molecular

structure, synthesis process and characterization of SYG-180-2-2

were shown in our previous study (Rao et al., 2021).
Determination of MIC and growth assay

SYG-180-2-2 was prepared in dimethyl sulfoxide (DMSO,

Biosharp, Beijing, China) at a concentration of 20 mg/mL. The

broth microdilution method based on CLSI guidelines was used

to determine the minimal inhibitory concentration (MIC) (CLSI,

2019). Specific methods for MIC values and growth curves of

SYG-180-2-2 against S. aureus strains were described in our

previous study (Rao et al., 2021).
Hemolysis assay

The hemolytic activity of strains treated with SYG-180-2-2 was

measured using sterile defibrillation rabbit blood. S. aureus strains

were grown inTSBwithorwithout 4mg/mLSYG-180-2-2.After 16h

of incubation, cultures were adjusted to the same optical density

(OD600) and then centrifuged at 8000 rpm for 5 min at room

temperature. Next, 200 µL of supernatant was added to 800 µL of

phosphate-buffered saline (PBS) with a final concentration of 2.5%

sterile defibrillation rabbit blood. Blood with Triton X-100 and PBS

were used as positive (100%hemolysis) and negative (0%hemolysis)

controls, respectively. Subsequently, the samples were incubated at

37°C for 1 h. Then, the mixtures were centrifuged at 8,000 rpm for 5

min and the absorbance of supernatants was measured at 600 nm.

Hemolysis (%) = [(absorbance of the treated sample – absorbance of
frontiersin.org
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negative control)/(absorbance of positive control– absorbance of the

negative control)] × 100%. All assays were performed in triplicate.
Quantitative enzyme-linked
immunosorbent assay for
alpha-hemolysin

The S. aureus SA75 and Newman were cultured in TSB with

or without SYG-180-2-2 (4 µg/mL) for 24 h and cultures were

normalized to a same optical density at OD600. Then, the

supernatant was collected and filtered with a 0.22-µm filter.

The a-toxin level was quantified by Staphylococcal a-Toxin
ELISA kit (Chenglin Biological Technology Co., LTD, Beijing,

China) following the manufacturer’s instructions. The test was

performed independently in triplicate.
Measurement of pigment production

The measurement of pigment production was assessed as

previously described with some modifications (Chen et al.,

2016). In brief, the S. aureus SA75 and Newman were cultured

in 4 mL of TSB medium with or without SYG-180-2-2 at 37°C

for 48 h, with shaking at 220 r.p.m. 3 mL of bacteria cultures

were centrifuged, washed twice with PBS and then resuspended

in 1 mL of methanol for extraction of the pigment. Subsequently,

the absorbance was measured at 450 nm for determination of the

pigment concentration. Pigment inhibition (%) = [(OD450 of

control sample – OD450 of the treated sample)/OD450 of control

sample] × 100%. The experiments were done in triplicate.
Hydrogen peroxide killing assay

SA75 and Newman were grown in TSB with or without SYG-

180-2-2 (4 µg/mL). After 2 days, the bacteria were washed twice

withPBS anddiluted to a concentration of 1 × 107CFU/mL. 250mL
of bacterial suspensionwas added in a 2-mLEppendorf tube. Then,

hydrogen peroxide (H2O2) was added to a 1 mM final

concentration and the tubes were incubated at 37°C for 1 h with

shaking at 220 r.p.m. The reaction was stopped by the addition of

1,000 U/mL of exogenous catalase (Sigma-Aldrich). Then, the cells

were serially diluted with PBS and spread on the TSA plates. After

incubating at 37°C for 24 h, viable cells were counted to assess

whether SYG-180-2-2 affected the sensitivity of S. aureus to H2O2.

All tests were run in triplicate.
Human whole-blood killing assay

SA75 and Newman were grown in TSB with or without

SYG-180-2-2. Overnight cultures were centrifuged at 1,2000
Frontiers in Cellular and Infection Microbiology 03
rpm for 1 min at room temperature and adjusted to a

concentration of 1 × 107 CFU/mL using sterile PBS. The

bacterial suspensions were mixed gently with whole blood

collected from healthy human volunteer at a ratio of 1:4 in 2-

mL Eppendorf tubes (500mL). The tubes were incubated at 37°C

for 6 h with shaking (220 r.p.m.) and bacterial viability was

determined by plating dilutions on TSA plates. All experiments

were run in triplicate.
RNA isolation and RT-qPCR

S. aureus strains were cultured in TSB medium treated with

either SYG-180-2-2 at the concentration of 4 mg/mL or without

drug, and incubated at 37°C at 220 rpm. After 16 h, bacterial

cells were centrifuged at 1,2000 rpm for 1 min at room

temperature, resuspended in 80 mL of 20 mg/mL lysozyme and

4 mL of 1 mg/mL lysostaphin and incubated at 37°C for 1 h. Total

RNA was isolated and quantified by a Nano-drop instrument

(Thermo Fisher).

Then, total RNA (1 mg) was reverse transcribed into cDNA

and the qPCR was performed. The primer pairs used in qPCR

experiment are listed in Table 1. Specific kits, instruments and

parameters for RT-qPCR are shown in our previous studies (Rao

et al., 2021). The gyrB gene was used as an internal reference to

normalize the expressions of genes of interest and PCRs were

performed in 20 mL reaction mixtures. The relative

quantification method (2-DDCt) was used to analyze the

transcription level of target genes. All analyses were conducted

in triplicate.
Toxicity of SYG-180-2-2 to larvae of
galleria mellonella

The toxicities of the SYG-180-2-2 was tested by inoculating

doses of 0.32 mg/kg to groups of 10 larvae. This therapeutic dose

exceeded the dose used in this study. Sterile PBS was inoculated

as a negative control. The larval mortality of the treatment group

and the control group was observed for three consecutive days.
Larvae infection model

S. aureus strains were cultured in TSB with or without 4 mg/
mL SYG-180-2-2 overnight at 37°C with shaking. Then bacteria

were centrifuged at 1,2000 rpm for 1 min at room temperature,

washed twice with PBS, and resuspended to 1 MacFarland

standard (3.0 × 108 CFU) in PBS. Groups of 10 larvae were

inoculated with 10 mL of suspension, via last left forelimb using

Hamilton syringe. In addition, one group of larvae was injected

sterile PBS as a negative control. After the injection, each group

of larvae was placed in a clean petri dish at 37°C. The mortality
frontiersin.org
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of larvae was observed every 1h for 12 times and then every 12 h

to 3 days. The experiment was repeated more than three times.
The safety of SYG-180-2-2 to the skin
of mouse

Six-week-old female BALB/C mice were purchased from

Shanghai SLAC Laboratory Animal Co., Ltd. (Shanghai, China).

At the time of the experiment, they weighed approximately 20 ±

2 g. Briefly, the fur on the backs of mice was removed using

depilatory cream (Reckitt Benckiser Plc.). There were two groups

of eight mice each. The safety of the SYG-180-2-2 was tested by

injecting 100 mL of 8 mg/mL SYG-180-2-2 on the skin of mice

every 24 h for 3 days. Sterile saline was injected as a negative

control. On the fourth day, the skins of the mice were observed

and the skin of one mouse in each group was taken for

pathological section.
Mouse model of skin abscess infection

The S. aureus strains were cultured for 3 h at 37 °C, and then

the bacteria were harvested and washed twice with sterile PBS.

The number of bacteria was determined by reading the literature

and pre-experiments before the mice were infected (Chen et al.,
Frontiers in Cellular and Infection Microbiology 04
2016; Haney et al., 2018). For each experimental group, seven

mice were used. Mice were inoculated with 100 mL of 7.5 × 106

CFU of S. aureus SA75 or 100 mL of 1.5 × 107 CFU of S. aureus

Newman subcutaneously, and at 1 h post-infection, saline

containing equal concentration of DMSO (for controls) or 4

mg/mL SYG-180-2-2 was given directly into the subcutaneous

space of the infected area every 24 h for 3 days. The area of skin

abscesses was recorded daily using a caliper. The length (L) and

width (W) of abscess were measured and calculated as follows: A

=p (L×W)/2. All animals were killed 4 d after infection. Skin

abscesses were excised and homogenized by an automatic tissue

homogenizer. There were seven mice in each group, the skin

abscesses of six mice were used for viable cell counting and one

mouse skin abscess for histopathological analyses.
Statistical analysis

All data was analyzed using GraphPad Prism (version 8.0)

and presented as mean ± SD (standard deviation). Two-tailed t-

tests were performed for the experiments in this study. The

difference was considered to be statistically significant when a p

value less than 0.05.
Results

SYG-180-2-2 has no effect on the
growth of s. aureus strains

The MIC values of SYG-180-2-2 against SA75 and Newman

were > 128 mg/mL. At 4 mg/mL of SYG-180-2-2, the OD of

bacteria at the late logarithmic growth period was consistent

(Figure 1). Our prior growth curve experimental data showed

that SYG-180-2-2 reduced amounts of JP5023 and JP4856

growing at 8 mg/mL (Rao et al., 2021). However, SYG-180-2-2

did not reduce the number of SA75 and Newman at 8 mg/mL

(Supplementary Figure 1). Here, we choose a lower

concentration of 4 mg/mL to conduct the following studies.
SYG-180-2-2 inhibits the hemolytic
activity of s. aureus, while not via
alpha-hemolysin

The effect of SYG-180-2-2 on hemolysis activity of S. aureus

supernatants was determined by comparing the hemolysis

percentage of treated and untreated groups. As shown in

Figure 2A, the hemolysis activity of the untreated group was

significantly higher than that of the treated with SYG-180-2-2.

For SA75, the hemolysis rate ofwithout SYG-180-2-2 treated group

was 92.53 ± 1.32%, and after being treated, its rate decreased by

80.70 - 85.97%. For Newman, the hemolysis rate of without SYG-
TABLE 1 List of primers used in this study.

Primer Sequence (5’-3’)

gyrB-RT-F ACATTACAGCAGCGTATTAG

gyrB-RT-R CTCATAGTGATAGGAGTCTTCT

saeR-RT-F GTCGTAACCATTAACTTCTG

saeR-RT-R ATCGTGGATGATGAACAA

saeS-RT-F CGTTCTTGTAGTTCTGGTAT

saeS-RT-R GTTGGTAGTCGCATTGATA

hla-RT-F CTCGTTCGTATATTACATCTAT

hla-RT-R GGTATATGGCAATCAACTT

hlb-RT-F CGTAGCGATTGTAAGTAA

hlb-RT-R TCTTCAGATTGTGTATGTG

crtM-RT-F CACTTCAGCAATATCAACT

crtM-RT-R AACACATCAGACATACGA

crtN-RT-F AATGCTGAACAAGAGTAATC

crtN-RT-R AGTGAATGGTGACATAAGA

sodA-RT-F CCTCAGTTAATGGATTATCTTGGT

sodA-RT-R TGGGCTTGGTTAGTCGTAA

sodM-RT-F AGAGTTAGAGCATCAATCAC

sodM-RT-R CCATTATTACGGACTGACAT

katA-RT-F GATGGATACGGCTATGAAT

katA-RT-R TGTAACAATGACGAATATGAC

sigB-RT-F TTCCATTGCTTCTAACACTT

sigB-RT-R GATGAACTAACCGCTGAAT
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180-2-2 treated groupwas 97.80±2.19%, and after being treated, its

rate decreased by 50.00 - 56.14% (Figure 2B).

Then, an ELISAkitwas used to quantitatively detect the level of

alpha-hemolysin between untreated strains and treated strains to

explore whether SYG-180-2-2 could reduce its hemolysis activity

by reducing a-toxin. For SA75, the a-hemolysin production of the

untreated group was 28.84-37.63 pg/mL, and after being treated

with SYG-180-2-2, its production was 27.87-33.40 pg/mL. For

Newman, the a-hemolysin production of the untreated group

was 31.77-35.35 pg/mL, and after being treated with SYG-180-2-

2, its productionwas 32.10-35.03 pg/mL. These results showed that

there was no significance difference between the treated and

untreated groups (Supplementary Figure 2).
SYG-180-2-2 significantly prevents the
production of staphyloxanthin

SYG-180-2-2 has potent activity against S. aureus

staphyloxanthin formation in vitro according to the qualitative

and quantitative experiments of staphyloxanthin synthesis. As
Frontiers in Cellular and Infection Microbiology 05
shown in Figure 3A, the staphyloxanthin formation of the

untreated group was yellowish, while that of the treated with

SYG-180-2-2 group was colorless. After being treated with SYG-

180-2-2, staphyloxanthin inhibition rates of SA75 and Newman

were 96.04 ± 0.57% and 96.26 ± 2.31%, respectively (Figure 3B).
SYG-180-2-2 sensitizes s. aureus to
human whole blood and H2O2

Because SYG-180-2-2 inhibited the production of S. aureus

pigment (Figure 3A), and once the pigment was blocked, it may

increase the sensitivity of bacteria to oxidative killing, so we

compared the sensitivity of SYG-180-2-2-treated and untreated

S. aureus to H2O2. Survival of the SYG-180-2-2-treated SA75

was ~9 times lower than that of the untreated SA75 (2.00% vs.

18.50%), notably, survival of the SYG-180-2-2-treated Newman

was 850 times lower than that of the untreated Newman (0.02%

vs. 17.00%; Figure 4A). Subsequently, we investigated whether

SYG-180-2-2 sensitizes S. aureus to human whole blood. As

shown in Figure 4B, the survival of SYG-180-2-2-treated
FIGURE 1

Growth curves of SA75 and Newman strains cultured with 4 mg/mL or without SYG-180-2-2. TSB was used as a blank control.
A B

FIGURE 2

Effect of SYG-180-2-2 on the hemolytic activity of S. aureus strains. Triton X-100 and PBS were used as positive and negative control,
respectively. (A) The images show the hemolysis of supernatant. (B) The percentage of hemolysis. ****P < 0.0001.
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Newman was ~7 times lower than that of the untreated Newman

(1.50% vs. 10.00%), however, the survival of SYG-180-2-2-

treated SA75 had no significance change compared with the

untreated SA75 (2.75% vs. 4.25%). The human whole-blood

killing assay suggested that a part of S. aureus was sensitive to

human blood immune clearance after SYG-180-2-2 treatment.
Effect of SYG-180-2-2 on the expression
of genes involved in the virulence factors

Through the hemolytic activity assay, we found that SYG-

180-2-2 greatly reduced the hemolytic activity of S. aureus, so we

analyzed the hemolysis-related genes hla and hlb from the

transcriptional level. We found that there was no significance

difference in the expression of hla, while the expression of hlb

decreased by 21.77-fold in SA75 and 2.06-fold in Newman,

respectively (Figure 5). We conducted RT-qPCR to explore the

correlation between the expression of hlb and saeRS. We found

that the expression of saeRS in strains treated with SYG-180-2-2

was significantly decreased (Figure 5). After SYG-180-2-2

treatment, the expression of saeR decreased 4.41-fold in SA75

and 2.95-fold in Newman, respectively. In order to further study

the mechanism of SYG-180-2-2 on staphyloxanthin, we

performed qPCR experiments of staphyloxanthin synthesis-

associated genes and confirmed that the expression levels of

crtN, crtM and sigB were significantly decreased by 3.96-fold,

3.80-fold and 1.14-fold in SA75 and 1.76-fold, 1.81-fold and

8.08-fold in Newman, respectively. (Figure 5). Further, qPCR

confirmed that SYG-180-2-2 treatment also downregulated the

expression of oxidative stress related genes such as sodA, sodM
Frontiers in Cellular and Infection Microbiology 06
and katA, being 1.53-fold, 6.67-fold and 1.21-fold in SA75 and

1 . 2 5 - f o l d , 2 . 0 0 - f o l d and 1 . 60 - f o l d i n Newman ,

respectively (Figure 5).
SYG-180-2-2 has no cytotoxicity to
larvae and attenuates the virulence
of s. aureus

There was no death of larvae in the high-dose SYG-180-2-2

group (0.32 mg/kg) and the control group (inoculated with PBS)

for 3 days, indicating that SYG-180-2-2 was not toxic within the

tested dose. We found that the virulence of S. aureus treated with

SYG-180-2-2 in larvae was significantly lower than that of the

untreated S. aureus. After 72 hours, the death rates of SA75 and

Newman treated with SYG-180-2-2 were reduced by 30% and

60%, respectively (Figure 6).
SYG-18-2-2 has no injurious effect on
the skin of mice

As shown in Figure 7A, as in the control group, the skin of

mice injected with SYG-180-2-2 was intact and there was no

abscess formation. As depicted in Figure 7B, as in the control

group, after three injections of 100 mL of 8 mg/mL SYG-180-2-2,

the epidermis was intact, the dermis was not obvious damaged,

and there was no obvious inflammatory cell infiltration. The

result showed that SYG-180-2-2 had no damage to the skin

of mice.
A B

FIGURE 3

Effect of SYG-180-2-2 on wild-type S. aureus SA75 and Newman pigmentation. (A) The images show the spun-down cells. (B) Inhibition rate of
pigment formation.
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SYG-180-2-2 is effective reduces the
formation of skin abscess es in mouse
after s. aureus infection

Weused amouse skin abscessmodel to further explore the effects

of SYG-180-2-2 on skin abscess formation and invasiveness of S.

aureus in vivo. We injected the bacterial suspension subcutaneously

into the back of mice, and the amount of injection was the same in

eachmouse. The sizes of abscess formed after infection were different,

we tried to choose the same place and the area of abscess formation

was easy to observe. As shown in Figure 8A, treatment with SYG-

180-2-2 significantly restrained the size of abscess after 1 day of

infection and significantly reduced the formation of yellow eschar on

day 4 (blue circles). Figures 8B, C plotted changes in abscess area of

SA75 and Newman before and after treatment with SYG-180-2-2,

respectively. Abscesses in all groups were most pronounced on day 1

after infection, and then began to decrease and heal gradually.
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Notably, the abscess sizes of SA75 wild-type group were

significantly larger than those of SA75-treated group on the first

day post-infection (107.13 mm2 vs. 53.01 mm2). Mice were sacrificed

4 days after infection and bacterial load in skin was determined. After

treatment, the loads of SA75 and Newman were decreased by ~0.7

log10 CFU/abscess and ~0.5 log10 CFU/abscess, respectively

(Figures 8D, E). As depicted in Figure 8F, compared with the

treated group, the skin sections of the untreated group showed

more severe skin lesions and inflammatory cell infiltration. In

particular, in the SA75-untreated group, the epidermis was

completely destroyed, the dermis was severely damaged and

immune cells were infiltrated, suggesting severe infection and deep

inflammation. In the SA75-treated group, the epidermis was intact

and the infiltration of subcutaneous immune cells was largely

controlled. The Newman group also had a large skin recovery after

treatment. These results showed that SYG-180-2-2 could weaken the

virulence of S. aureus.
A B

FIGURE 4

Effect of SYG-180-2-2 on the susceptibility of S. aureus SA75 and Newman to killing by either H2O2 (A) or human whole blood (B). *P < 0.05,
**P < 0.01 and ***P < 0.001 and ns: not significant.
FIGURE 5

Expression changes of hemolysis and staphyloxanthin-associated genes in S. aureus upon SYG-180-2-2 treatment. *P < 0.05, **P < 0.01, ***P <
0.001 and ****P < 0.0001 and ns: not significant.
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Discussion

Staphylococcus aureus tends to cause skin and soft tissue

infections and shows its pathogenicity by producing numerous

virulence factors (Wen et al., 2018). The resistance of bacteria

highlights the need to develop new antibacterial agents.

Previously, we synthesized a small molecule compound SYG-
Frontiers in Cellular and Infection Microbiology 08
180-2-2, which has a significant inhibitory effect on biofilm at 4

mg/mL. In this study, it was found that the new compound SYG-

180-2-2 also had anti-virulence ability. It would be a boon if an

antibacterial drug could not only reduce the formation of S.

aureus biofilm but also attenuate the virulence of S. aureus via

reducing the expression of multiple virulence factors. Therefore,

we continued to investigate the anti-virulence ability of small
A B

FIGURE 6

The survival rates of larvae after inoculated with 4 mg/mL SYG-180-2-2-treated or untreated SA75 (A) and Newman (B). PBS was used as a
negative control.
A

B

FIGURE 7

The safety evaluation of topical application SYG-180-2-2 in vivo. (A) Skin conditions of mice before and after SYG-180-2-2 treatment on day 4.
(B) Pathological sections of representative mice between the SYG-180-2-2 group and the saline group.
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A

B

D

F

E

C

FIGURE 8

In vivo topical application of SYG-180-2-2 against S. aureus. (A) The image of representative abscesses before and after SYG-180-2-2 treated at day
1 and 4 after infection. (B, C) Daily changes of skin abscess area in mice before and after treatment. (D, E) Comparison of bacterial colonies in mice
skin of S. aureus wild-type group and S. aureus treated group. (F) On day 4, pathological sections of representative mice between untreated group
and treated group, containing two multiples (40× and 100×). D, Dermis; F, Fat layer; I, Inflammatory cells. *P < 0.05 and **P < 0.01.
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molecule compound SYG-180-2-2, and then the mechanism

was explored.

Inhibition of S. aureus toxins is a potential target for anti-

virulence therapy (Clatworthy et al., 2007; Rasko and Sperandio,

2010; Kong et al., 2016). Hemolysin, in particular, is a crucial

part of virulence. Alpha-toxin, a small pore-forming toxin, can

cause skin and soft tissue infections (von Hoven et al., 2019).

Beta-toxin, as the hot-cold hemolysin, is an important process

occurring in infective endocarditis and sepsis (Herrera et al.,

2016; Herrera et al., 2017). In our experiment, the hemolytic

activity assay showed that 4 mg/ml SYG-180-2-2 could

significantly reduce the hemolytic ability of S. aureus. At

present, many FDA-approved drugs have been found to

inhibit a-hemolysin, such as resveratrol, mupirocin and fusidic

acid (Duan et al., 2018; Jin et al., 2018; Liu et al., 2020). However,

we found no significance difference in hla expression and a-
hemolysin release after SYG-180-2-2 treatment by

transcriptional and protein level, namely RT- qPCR and

ELISA kit quantitative a-toxin test. Meanwhile, real-time PCR

showed that hlb gene expression decreased significantly with

SYG-180-2-2-treated. Therefore, we speculate that SYG-180-2-2

may reduce the hemolytic ability of S. aureus by down-regulating

the expression of hlb gene rather than hla gene. Intriguingly, we

also observed that SYG-180-2-2 downregulated the expression of

saeS and saeR. The SaeRS regulatory system plays an important

role in the regulation of virulence gene expression in certain

types of infections, including upregulating the transcription of

hla, hlb and coa (Giraudo et al., 1999; Liang et al., 2006). SaeRS

regulatory system was downregulated, which should lead to hla

and hlb downregulation, however, we didn’t see significant

change of the hla expression. The phenomenon may suggest

other factors involved in hla regulations. We hypothesized that it

might be related to the time when saeRS affected hla expression,

or SYG-180-2-2 affected their transcription mechanism. We

concluded that the downregulation of saeR gene might

contribute to the downregulation of other virulence genes

containing hlb, and weaken the virulence of S. aureus.

Targeting virulence factor staphyloxanthin is one of the

alternative therapeutic strategies to control S. aureus infection

(Xue et al., 2019; Ni et al., 2020; Elmesseri et al., 2022). In all

experiments, cells treated with SYG-180-2-2 appeared white in

color, which was significantly different from the golden yellow

colored control cells. Based on this result, we then conducted

studies on the efficacy of SYG-180-2-2 in inhibiting

staphyloxanthin. Staphyloxanthin, a carotenoid pigment, has

oxidative defense and protects S. aureus from host-mediated

immune responses (Clauditz et al. , 2006). Notably,

staphyloxanthin was almost completely inhibited at the

concentration of 4 mg/mL. As we all know, the production of

staphyloxanthin was mediated by five enzymes, which was

encoded by crtOPQMN operon (Pelz et al., 2005; Kim and Lee,

2012). In the biosynthesis of staphyloxanthin, when the cells

appear white in color after treating, it is possible that drugs target
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crtM, crtN or other regulatory factors that affect the expression

of the crtOPQMN operon, such as sigB (Gao et al., 2017; Pannu

et al., 2019; Xue et al., 2019). In our study, RT-qPCR found that

the transcription levels of crtM and crtN were downregulated

after SYG-180-2-2 treatment, indicating the involvement of

regulators. Interestingly, the expression of sigB had huge

reduction in the SYG-180-2-2-treated S. aureus Newman.

Therefore, we speculate that SYG-180-2-2 may inhibit the

expression of sigB, thereby preventing the production

of staphyloxanthin.

As staphyloxanthin has antioxidant activity, inhibition of

this pigment will reduce the ROS resistance of S. aureus (Hall

et al., 2017). In order to validate whether the decrease in pigment

of S. aureus after SYG-180-2-2 treatment would affect its

antioxidant ability, hydrogen peroxide killing experiment was

performed. The results showed that the survival rate of S. aureus

decreased significantly after treatment with SYG-180-2-2,

confirming that the reduction of staphyloxanthin could make

S. aureus more sensitive to ROS. Superoxide dismutases (SOD)

is one of the major antioxidant enzymes that defend against ROS

(Bhattacharyya et al., 2014). The decreased expression of the

catalase gene katA, which protects bacteria from the damage

caused by hydrogen peroxide, indicated that SYG-180-2-2

treatment increased the susceptibility of S. aureus to hydrogen

peroxide. The decreased expression of SOD-related genes, sodA,

sodM and katA, which protect bacteria form oxidative killing,

further confirmed the increased sensitivity of S. aureus after

SYG-180-2-2 treatment. Furthermore, the whole blood killing

assay also verified that SYG-180-2-2 increased the sensitivity of

part of S. aureus to healthy human blood by inhibiting

staphyloxanthin production. Thus, staphyloxanthin is an

important target for SYG-180-2-2 to reduce the virulence of

S. aureus.

The absorption, metabolism and excretion mechanism of

chemical substances in silkworm and mammals are similar

(Hamamoto et al., 2005). Therefore, the use of silkworm

infection model in preliminary drug screening can not only

reduce the cost, but also more convenient to confirm whether

drugs have toxicity and efficacy in vivo (Fujiyuki et al., 2010; Ishii

et al., 2016). In our study, high dose SYG-180-2-2 injection of

silkworm larvae in vivo had verified the preliminary safety of this

compound. Additionally, the virulence of bacteria in larvae was

significantly decreased after 4 mg/mL SYG-180-2-2 treatment. S.

aureus usually causes skin infections, especially methicillin-

resistant S. aureus, which is often accompanied by neutrophil

migration and infiltration (Bassetti et al., 2017; Kwiecinski et al.,

2021). The SYG-180-2-2 injection of mouse skin was further

confirmed the safety of this compound. As shown in the mouse

skin abscess model, we demonstrated the robust efficacy of SYG-

180-2-2 against S. aureus in vivo. The skin abscess area, bacterial

burden and inflammation were significantly improved by SYG-

180-2-2. The reduced bacterial population of skin abscesses

provided that reduced pigment in S. aureus in vivo may
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contribute to its decreased immune evasion ability.

Notably, SYG-180-2-2 also had obvious curative effect on

SA75 with larger skin infection area and more severe

inflammatory infiltration.

Although SYG-180-2-2 has no toxicity in mouse skin and

larvae, the safety of the compound in animals by intravenous

injection and peros administrations have not been proven, and

thus relevant trials are required in the future. We will evaluate

the antibacterial effect of SYG-180-2-2 against Staphylococcus

aureus with hemolysis and pigment-forming ability in the

future. Meanwhile, further research is needed to detect the

detailed mechanism of action of SYG-180-2-2. Overall, SYG-

180-2-2 is a promising small molecule compound, and its multi-

target anti-virulence in S. aureus may be more beneficial for the

treatment of S. aureus infection.
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