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White and grey matter lesions are the most prevalent type of injury observable in the Magnetic Resonance Im-
ages (MRIs) of children with cerebral palsy (CP). Previous studies investigating the impact of lesions in children
with CP have been qualitative, limited by the lack of automated segmentation approaches in this setting. As a re-
sult, the quantitative relationship between lesion burden has yet to be established. In this study, we perform au-
tomatic lesion segmentation on a large cohort of data (107 children with unilateral CP and 18 healthy children)
with a new, validatedmethod for segmenting bothwhitematter (WM) and greymatter (GM) lesions. Themeth-
od has better accuracy (94%) than the best currentmethods (73%), and only requires standard structural MRI se-
quences. Anatomical lesion burdens most predictive of clinical scores of motor, cognitive, visual and
communicative function were identified using the Least Absolute Shrinkage and Selection operator (LASSO).
The improved segmentations enabled identification of significant correlations between regional lesion burden
and clinical performance, which conform to known structure-function relationships. Model performance was
validated in an independent test set, with significant correlations observed for bothWM and GM regional lesion
burdenwith motor function (p b 0.008), and betweenWMand GM lesions alonewith cognitive and visual func-
tion respectively (p b 0.008). The significant correlation of GM lesions with functional outcome highlights the se-
rious implications GM lesions, in addition to WM lesions, have for prognosis, and the utility of structural MRI
alone for quantifying lesion burden and planning therapy interventions.
© 2016 Commonwealth Scientific and Industrial Research Organisation. Published by Elsevier Inc. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Cerebral palsy
Magnetic resonance imaging
Brain lesion
1. Introduction

Cerebral palsy (CP) is an umbrella term that covers a heterogeneous
range of brain injury occurring during prenatal or perinatal development,
leading to physical disability (Himmelmann and Uvebrant, 2011). Of
these injuries, destructive lesions are the most common, with
periventricularwhitematter (WM) lesion observed in around 50% of chil-
drenwith CP and cortical/subcortical greymatter (GM) lesions in approx-
imately 20% (Bax et al., 2006; Krägeloh-Mann and Horber, 2007; Reid et
al., 2014) of cases. Magnetic resonance imaging (MRI) is a useful imaging
procedure that is commonly used in clinical assessment for identifying
and qualitatively characterising brain lesions, as both WM and cortical/
deep GM lesions appear as regions of abnormal intensity and/or loss of
tissue. Although GM lesions are less common, they may diffusely or
rch Centre, Level 5, UQ Health
Herston, QLD 4029, Australia.
i).

strial Research Organisation. Publ
more selectively impact critical structures of the brain including the
basal ganglia, thalami and cortical GM, and lead to more severe impair-
ments of several functions, in particular motor function (Martinez-
Biarge et al., 2010).

Despite the known negative prognostic implications of tissue lesions,
the extent of the relationship between regional lesion burden and clinical
function has yet to be quantified. This is of particular interest, as these re-
lationships can help provide estimates of function fromMRIs early in life,
guiding therapeutic strategies for these children. For instance, such infor-
mation can confirm whether lesion burden in specific brain regions lead
to greater impairments tomotor function, hence recommendingmore in-
tensive therapeutic interventions. Hence, this study aims to quantify the
correlation between the lesion burden in individual regions andmultiples
clinical scoreswhich quantifymotor, cognitive, communicative and visual
function. The study considers both GM andWM lesions solely based on
tissue involvement, independent to the timing of the lesion (Krägeloh-
Mann and Horber, 2007). Further these WM and GM involvements are
considered separately, as it has been previously shown their impact on
ished by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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Fig. 1.An illustration of the lesion segmentation pipeline used in this study. Following pre-
processing and an affine alignment to the Colin 27 atlas, the T1-MPRAGE undergoes brain
masking and tissue segmentation steps. The tissue distributions obtained from this
segmentation, along with the pre-processed T2-TIRM and non-rigidly registered Tissue
Probability Maps (warped to the T1-MPRAGE), were used to construct lesion belief
(probability) maps. Following thresholding, lesion segmentations were refined with the
EM algorithm. Using the AAL GM and ICBMWM atlases, which were similarly aligned to
the Colin 27 atlas (and by extension, the T1-MPRAGE), anatomical lesion volumes were
extracted to use for the statistical analysis.
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function differs (Krägeloh-Mann andHorber, 2007;Martinez-Biarge et al.,
2010).

For the correlation between structure and function to be calculated, all
lesions within large sets of data need to be delineated in three dimen-
sions. Such an approach can be made practical by utilising an automated
segmentation algorithm. The field of lesion segmentation is well
researched, particularly in the multiple sclerosis (MS) setting. Although
multiple reviews have been published discussing various lesion segmen-
tation approaches (García-Lorenzo et al., 2013; Lladó et al., 2012), no
studies as yet have performed automated lesion segmentation in the CP
setting. Thismay be due to the comparatively largemorphological chang-
es observed in childrenwith CP,which invalidate the anatomical assump-
tions existing algorithms typically make, resulting in poor segmentation
performance.

Hence this study used a modified segmentation method to quantita-
tively assess the functional impact of brain lesion involvement. As the
method incorporatesmultiple lesion classes in order to automatically seg-
ment both WM and GM lesions, this study, to our knowledge, presents
the first published quantitative assessment of functional impairment
caused by GM lesion involvement in children with CP. In this approach,
atlases were used to subdivide the GM regions into individual cortical
and subcortical regions, and WM regions into regions with particular
WM tracts. Regional WM and GM lesion burdens were computed, and
used to predict clinical function using multivariable linear regression.
Such approaches could have clinical utility as they can support the radio-
logical assessment ofMRIs, and help to tailor treatment strategies for chil-
drenwith CP. A particular advantage of themethod is that it only relies on
standard structural MRIs and does not resort to more sophisticated se-
quences that may not be widely available.

2. Materials and methods

2.1. Participants

A total of 125participantswere included in this study: 107 childrendi-
agnosed with unilateral CP (57 male, 50 female, mean age: 10.9, age
range: 7–16), and 18 children with healthy development (CHD) with (8
male, 10 female, mean age: 11.4, age range: 7–16) were included.
Image data was obtained from The University of Queensland Cerebral
Palsy and Research Rehabilitation Centre (QCPRRC), Brisbane, and the
Stella Maris Foundation, Pisa. Study participants included children who
were recruited as part of ongoing studies of children with unilateral CP
(Boyd et al., 2013). Diagnoses were made based on clinical assessments
by experienced practitioners in the field of CP. Ethics approval was
granted for both studies from the appropriate ethics committees. In-
formed parental consent was obtained for all participants included in
these studies.

2.2. MRI data acquisition

All participants underwent T1Magnetization Prepared Rapid Gradi-
ent Echo (MPRAGE) scanning, using two different scanners and three
different sets of scanning parameters, including a 3T Siemens' scanner
with scanning parameters (TR = 1900 ms, TE = 2.32 ms, flip
angle = 9°, slice thickness = 0.9 mm), and a 1.5T GE scanner with
two different scanning parameters (TR = 12.36 ms, TE = 5.17 ms, flip
angle = 13°, slice thickness = 1 mm) and (TR = 124.29 ms, TE =
4.37 ms, flip angle = 10°, slice thickness = 1 mm). All participants
also underwent T2 Turbo Inversion Recovery Magnitude (TIRM) scan-
ning, using a 3T Siemens' scanner (TR = 7000 ms, TE = 79 ms, flip
angle = 120°, slice thickness = 4 mm).

2.3. Clinical data

Six clinical scores of function were obtained as part of the data collec-
tion study to provide an overview of function. This includes the Assisting
Hand Assessment (AHA) score (Krumlinde-Sundholm et al., 2007) quan-
tifying the ability of the impairedhand to assist duringbimanual activities.
Although not a measure of gross motor function, the Rasch measured
AHA score was used for several reasons. Firstly, this score has a has a
wide dynamic range (from 0 to 100) making it more suitable for regres-
sion analyses compared to theGrossMotor FunctionClassification System
(GMFCS), which only has five levels. Furthermore, most study partici-
pants had a GMFCS level of either I or II, making the measure of upper
limb manual ability more relevant for this cohort. Finally, this measure
has been shown to be a reliable and responsive measure for children
withunilateral CP (Krumlinde-Sundholmet al., 2007). Othermeasures in-
clude the Behaviour Rating Inventory of Executive Function (BRIEF)
(Gioia et al., 2002) and Strengths and Difficulties Questionnaire (SDQ)
(Bourdon et al., 2005) which are both parent reported questionnaires
scoring their child's emotional and behavioural function in daily life, the
Test of Visual Perception Skills (TVPS) measure (Frostig et al., 1961) for
assessing participants' ability to discriminate and memorise visual cues,
and the vocabulary (VOC) and word reasoning (WR) subtests of the
Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III)
(Wechsler, 1967) to assess participants' communicative ability.

2.4. Image pre-processing

Imagepre-processing of both the T1-MPRAGEandT2-TIRM images in-
cluded N4 bias correction (Tustison et al., 2010), image alignment to the
Colin 27 Average Brain Atlas using an affine block matching registration
algorithm(Rivest-Hénault et al., 2015), and imagede-noisingusing aniso-
tropic diffusion (Perona and Malik, 1990). Skull stripping of the MPRAGE
and TIRM images was performed in MATLAB (MathWorks, Natick, MA)
using an in-house approach. Tissue probability maps (TPMs) from the
Colin 27 Atlas and ICBM DTI-81 Atlas (International Consortium for
Brain Mapping, CA) were registered to the T1-weighted MRIs using the
fast free-form deformation registration algorithm (Modat et al., 2010).

2.5. Lesion segmentation

Wepresent an automated lesion segmentation approach tailored spe-
cifically forWMandGM lesion involvement in childrenwith CP. Segmen-
tation of the three cerebral tissues (WM, GM and CSF) was initially
performed using an Expectation Maximisation (EM) approach inter-
leavedwith amodifiedMarkov RandomField (MRF) formulation that pe-
nalises discordance betweenboundaries in the label image and in theMRI
(Pagnozzi et al., 2015). This automated pipeline is illustrated in Fig. 1.
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Initial lesion belief maps for each of the three types of lesions; WM
lesions, GM lesions and internal capsule (IC) lesions were generated
using the final estimates of tissue distributions obtained from the EM-
MRF approach, the aligned T2-TIRM image and the registered WM and
GM tissue probabilistic atlases. Denoting the T1-MPRAGE containing n
voxels as y={yi, i∈ [1:n]}, the T2-TIRM as x={xi, i∈ [1:n]}, the regis-
tered TPMs of the WM, GM and CSF, and the parameterised Gaussian
mean and standard deviation for each of the three tissue classes as
Φk=(μk,σk), where k∈{WM,GM,CSF}, the formulae for the three lesion
belief maps lb={lbi, i∈[1:n]} is given in Eqs. (1)–(3).

lbWML;i ¼ abs
yi−μWM

σWM

� �
� xi � TPMWM;i ð1Þ

lbGML;i ¼ abs
yi−μGM

σGM

� �
� xi � TPMGM;i ð2Þ

lbICL;i ¼ abs
yi− μWM þ σWMð Þ

σWM

� �
� xi � TPMWM;i ð3Þ

In each equation, abnormal tissue outliers were identified using an
absolute z-score from the mean and standard deviation of the WM
and GM distributions established in the EM-MRF segmentation. Note
in Eq. (3), IC lesions are segmented separately to WM lesions because
the IC typically appears as a higher intensity in structural MRI, and
was assumed to be 1 standard deviation above themeanWM intensity.
This ensures the detection of IC lesions, which approach healthyWM in-
tensity and hence would not be detected in the lesion belief map for
WMshown in Eq. (1). Unlike the T1-MPRAGE, the T2-TIRMwasnormal-
ised in intensity between 0 and 1, where themost hyperintense regions
are characteristic of hemorrhagic injuries.

A threshold, tthresh, is applied to each of the three lesion belief maps.
Using the 75% training set, a Receiver Operator Characteristic (ROC)
curve was used to establish which threshold for WM and GM lesions
agreed best with the manual classification of lesions. Specifically, the
Equal Error Rate (EER), which enforces equal importance to false posi-
tives and false negatives, was used to determine the optimal thresholds
for theWM and GM lesion belief maps separately, which were found to
be tthresh,WM=0.85 and tthresh,GM=0.875. These thresholdswere used to
test the performance of the lesion segmentation algorithm on the inde-
pendent test set.

Provided more than one voxel exceeds the WM or GM thresholds,
the initial lesion segmentation was refined using an EM approach. The
mean and standard deviation of the lesion T1 intensity were obtained
for the likely lesion voxels, and introduced as an additional lesion clas-
ses along with the three healthy tissue classes obtained from the EM-
MRF segmentation. Tissue classes were then updated within the EM al-
gorithm, with the lesion intensitiesmodelled as a Gaussian distribution.
The probability of the lesion class was weighted by the TIRM intensity,
while the probability of the three healthy tissue classes was weighted
by the inverse of the TIRM intensity (i.e. 1− TIRM). The tissue probabil-
ity maps also weight the posterior probability of each segmented class.
The likelihood of each lesion class for the three lesion classes (WM, GM
and IC) is given in Eq. (4), e.g. for the WM lesion class:

pWML;i ¼ exp −
yi−μWML

σWML

� �2
" #

� xi � TPMWM;i ð4Þ
The likelihood of the healthy tissue classes (WM, GM and CSF) are
computed using Eq. (5), e.g. for the WM:

pWM;i ¼ exp −
yi−μWM

σWM

� �2
" #

� 1−xið Þ � TPMWM;i ð5Þ

This segmentation refinement step is performed separately for WM
lesions, GM lesions and IC lesions, yielding separate lesion segmenta-
tions in each instance. Hence the classification of GM and WM lesions
is obtained automatically from this approach, and allows identification
of both lesion types in the same participant. Post-processing of these le-
sion segmentations consists of a flood fill operation and morphological
closing.

2.6. Anatomical lesion volume

Anatomical and regional involvement of the segmented lesions was
computed using the AutomatedAnatomical Labelling (AAL) atlas,which
contains cortical and deep GM labels, and the ICBM DTI-81 Atlas which
contains WM tract labels. Both atlases were aligned to the same image
space as the Colin 27 atlas (Rivest-Hénault et al., 2015). Lesion involve-
ment in each region was then computed as the sum of the lesion
segmentation masked by the particular atlas label, multiplied by the
knownvolume (inmL) of each voxel, providing a regional lesion burden
in millilitres.

2.7. Statistical analysis

Participants were separated into four cohorts, the CHD children
and children with WM (including IC lesions), GM lesions, or combined
WM/GM lesions. Children with combined WM/GM lesions were
grouped into either WM or GM cohorts for the regression analysis,
based on which tissue lesion burden was greater in each participant.
Both WM and GM lesion cohorts were randomly separated into
75%/25% training and test sets. In the training set, data-driven vari-
able selection was performed using the Least Absolute Shrinkage
and Selection operator (LASSO) method (Tibshirani, 1996) obtained
from the ‘glmnet’ package in R statistical software Version 3.2.2,
which implicitly performs variable selection with a sparsity term
that minimises the sum of non-zero coefficients. LASSO was run
with default alpha and lambda parameters, and the upper boundary
on the regression coefficients was manually set to zero in order to
enforce negative coefficients. Linear regression models were then
constructed, using the regional volumes of the WM and GM lesions
(in mL) identified from LASSO as independent variables, as well as
participant age and gender, and the six clinical scores (AHA, BRIEF,
SDQ, TVPS, WR and VOC) as the dependent variable. Multiple com-
parisons were corrected for using Bonferroni correction. Model re-
siduals were normally distributed for each of the independent
outcomes. To assess the generalisability of these models to unseen
data, training model performance was validated via correlation be-
tween model predictions and the test set outcomes. Additionally, re-
gression models including bothWM and GM regional lesion volumes
were constructed using the training set, with their performance
again validated with the test set. Model comparisons between the
WM and GM models, and the WM/GM combined model, were per-
formed using Analysis of Variance (ANOVA), to determine if it is ben-
eficial to consider both lesion types.

3. Results

3.1. Demographics information

The demographics of the four cohorts; the CHD children, those with
WM (and/or IC) involvement, GM involvement, and those with
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combined WM/GM involvement, are presented in Table 1. There was a
gender bias observed in both the CHD and WM lesion cohorts. The
AHA score, and a measure of global brain injury severity provided
from a manual template approach (Fiori et al., 2015), is provided for
each cohort, split into those with unilateral and bilateral injury. Only
children with WM lesions had observed bilateral injury, which was
reflected in the reduced AHA score compared to childrenwith unilateral
WM injury. The five children with solely GM lesions had the greatest
amount of observed injury from theMRI, with the highest injury sever-
ity score of all cohorts. These children, consequently, also had the
poorest motor outcomes of all cohorts. Children with unilateral, com-
binedWM/GM injury had similar measures of injury severity and simi-
lar AHA motor outcome to those children with bilateral WM lesions.

Lesion burden frequency was also investigated across the entire co-
hort of 107 children with unilateral CP, which are shown in Fig. 2. Most
prevalent patterns of WM injury include intraventricular hemorrhage
(IVH) and periventricular leukomalacia (PVL), frequently impacting
the superior longitudinal fasciculus, corona radiata and posterior limb
of the internal capsule (PLIC). Frequent GM patterns of injury include
IVH impacting the deep GM, including the lenticular and caudate nuclei
and the thalamus. Unilateral malformations were the main pattern of
injury impacting cortical GM regions, including the temporal and frontal
lobes, and the precentral gyrus.
Table 1
Demographic characteristics for the CHD children, WM lesion cohort and the GM lesion
cohort. For the CHD cohort, information of lesion laterality is not applicable, and their clin-
ical scores were not obtained.

Cohort CHD
cohort

WM
lesion

GM
lesion

Combined
WM/GM

Number of participants 18 80 5 22

Gender
Male 8 40 4 13
Female 10 40 1 9

Age at scan (years)
Mean ± standard deviation 11.42 ±

3.03
11.38 ±
2.92

11.80 ±
1.92

10.54 ±
2.65

Range (minimum–maximum) 7–16 5–17 9–14 6–15

Number with unilateral lesions NA 55 5 22

Global brain injury severity score
(Fiori et al., 2015)

Mean ± standard deviation 0.00 ±
0.00

8.34 ±
5.12

14.00 ±
5.20

9.85 ±
5.64

Range (minimum–maximum) 0–0 2.5–20 9–21 2–20
Assisted Hand Assessment (AHA)
Score

Mean ± standard deviation NA 75.58 ±
20.05

52.60 ±
31.30

64.61 ±
24.78

Range (minimum–maximum) NA 41–98 26–95 24–98.8

Number with bilateral lesions NA 25 0 0

Global brain injury severity score
(Fiori et al., 2015)

Mean ± standard deviation 0.00 ±
0.00

8.43 ±
4.79

NA NA

Range (minimum–maximum) 0–0 1–18.5 NA NA
Assisted Hand Assessment (AHA)
Score

Mean ± standard deviation NA 64.21 ±
19.04

NA NA

Range (minimum–maximum) NA 8–97 NA NA

CHD, children with healthy development; GM, greymatter; NA, not available; WM, white
matter.
3.2. Validation of lesion segmentation algorithm

After training the lesion threshold values tthresh in the training set,
the performance of the lesion segmentation method was validated on
the test set against amanual assessment of lesions using the semi-quan-
titative brain lesion severity scale (Fiori et al., 2015). Table 2 shows the
segmentation performance on theWM lesion cohort, the GM lesion co-
hort, and all cohorts combined.

Lesion segmentation performance in the GM had the highest false
negative rate, reflecting the difficulty identifying GM lesions due to
their more subtle changes in intensity. Conversely, WM lesions had
the highest false positive rate, indicating that the false detection of le-
sions, either from WM intensity changes or moderate intensities in
the T2-TIRM, was more common. For the CHD children in the test set,
none had lesions identified by the lesion segmentation approach. An il-
lustration of lesion segmentation performance in cases of GM,WM and
IC lesions are provided in Fig. 3.

3.3. Comparison to gold standard segmentation approach

To validate the lesion segmentation approach used in this study, we
compared its performance to the current state of the art lesion segmen-
tation software, the Lesion Segmentation Toolbox (LST) (Schmidt et al.,
2012). The sensitivity, specificity, and several other performance mea-
sures of each approached on the independent test set compared to the
manual expert classification of lesions is provided in Table 3.

The proposed approach was found to have a greater lesion segmen-
tation accuracy compared to LST on this data (0.936 versus 0.729). The
approach used in LST was observed to more frequently produce false
positive lesion segmentations, which we hypothesise arises from an in-
accurate threshold κ chosen by this method to produce an initial lesion
belief map (Schmidt et al., 2012). One example of this false positive seg-
mentation occurring is provided in Fig. 4.

3.4. Correlation with outcome

The regressionmodels constructed on the training set are detailed in
Table 4. In these tables, the regression coefficients can be interpreted as
the reduction in the clinical score for every 1mL of lesion present in that
anatomy. The multiple R-squared of the models, which measure
strength of the correlation between the outcome and themodel predic-
tions,were compared against a Bonferroni corrected alpha value (0.05/6
tests = 0.008), however the p-values of each feature were not
corrected, and simply reflects the strength of that feature within the
chosen model.

Significant (p b 0.05) regions that were retained by the training
models include the superior longitudinal fasciculus and the PLIC (in 3
of the 6models), and the lenticular nucleus, corona radiata and external
capsule (all in 2 of the 6models). Allmodelswere found tobe significant
(p b 0.0008). The performance of these trainedWM and GMmodels, as
well as the WM/GM combined models, on the independent test set are
shown in Table 5. Two of the six GM andWM alonemodels were found
to be significant (p b 0.008), while four of the six combined WM/GM
models were found to be significant (p b 0. 008). Test set correlations
between regional lesion burden computed using the state-of-the-art
LST approach and participant outcomewere also computed for compar-
ison to the correlations in Table 5. These results are presented in Supple-
mentary Table 1, and show no significant correlations in the
independent set (p N 0.008).

Results showing the amount of co-dependence between the WM
only, GM only, and the combined WM/GM models, using the ANOVA
is provided in Table 6. Briefly, the combined WM/GM models for the
BRIEF and SDQ measures were not significantly different from the
WM alone models, and theWM/GMmodels for the TVPS andWRmea-
sures were not significantly different from the GM alonemodels for the
respective measures (p N 0.05). The differences between the remaining



Fig. 2. The lesion frequency observed in (a) WM and (b) GM regions among the 107 children with unilateral CP. ALIC, anterior limb of the internal capsule; PLIC, posterior limb of the
internal capsule.

755A.M. Pagnozzi et al. / NeuroImage: Clinical 11 (2016) 751–759
models were significant (p b 0.04), suggesting that although there is
limited co-dependence between WM and GM involvement in
explaining functional outcomes, there is substantial independence be-
tween the impact of WM and GM injuries on five of the six functional
outcomes. Hence, there is value in characterising both classes of lesions
when assessing functional outcomes.

4. Discussion

An accurate, validated method for the automatic segmentation of
WM and GM lesions has been applied to a cohort of children with uni-
lateral CP. The correlation between regional lesion involvement and
functional outcome was examined. Lesion involvements explained be-
tween 12–53% of the variance in the clinical score across all training
models. We note that including information related to the presumed
timing and type of the insults, which cannot be automatically deter-
mined using the proposed approach,would further increase the amount
of variance explained by thesemodels. The anatomical regionswith sig-
nificant relationships to clinical function (p b 0.05) concurred with pre-
vious studies of the roles of individual regions, including the thalamus
(Haber and Calzavara, 2009), lenticular (Middleton and Strick, 2000)
and caudate nuclei (Grahn et al., 2008), corona radiata (Kraus et al.,
2007), cerebral peduncle (Cho et al., 2007), PLIC (Kinnunen et al.,
2011), external capsule (Fazio et al., 2009) and superior-longitudinal
fasciculus (Bernal and Altman, 2010). Participant age and gender were
not observed to be significant predictors of outcome in any trained
model. Four of these twelve trained structure-function regression
models remained significant after Bonferroni correction in the valida-
tion test set, suggesting that these models specifically have identified
real, underling relationships in the brain. Overall, these findings demon-
strate that these models could help predict functional outcomes arising
from lesions in all children with clinically diagnosed unilateral CP.

It was observed that the models consisting of WM lesion involve-
ment had a higher multiple R-squared compared to the corresponding
Table 2
Lesion segmentation performance compared to themanual ground truth assessment of le-
sions on the independent test set.

Performance measures WM lesions GM lesions Combined

Sensitivity 0.933 0.818 0.939
Specificity 0.765 0.972 0.929
Accuracy 0.872 0.936 0.936
False positive rate 0.235 0.028 0.071
False negative rate 0.067 0.182 0.061

GM, grey matter; WM, white matter.
GMmodels for all six clinical scores,whichmay be a result of the greater
frequency ofWM involvement observed in our cohort of data (Table 1).
However, two of the six GMmodels were found to be significantly pre-
dictive of outcomes in the independent test set (p b 0.008), the same
number as the number of significantWMmodels. The important impact
of GM involvement on outcome observed in this independent test set is
consistentwith previousfindings that childrenwith cortical or deep GM
lesions showed noticeable motor and sensory deficits (Martinez-Biarge
et al., 2010). Furthermore combining bothWM and GM information led
to consistently higher correlations with the test set, reaching signifi-
cance in three of the six combinedmodels (p b 0.008), and highlighting
the importance of considering both lesion types. Although GM lesions
were found to be predictive of multiple functional impairments, they
are comparatively more difficult to segment than WM lesions, as illus-
trated in the performance measures in Table 2. Despite this, we recom-
mend that future studies into CP as well as other cerebral injuries,
including multiple sclerosis and acquired stroke, quantifying the extent
of GM injury is critical to provide an assessment of functional
impairment.

A technical limitation of the present study is the severe extent of in-
jury present in approximately 25% of children with CP. Although the
non-rigid registration techniques used to align the tissue probability
maps and atlas labels provide the best possible alignment of the corre-
sponding images, errors were still introduced in severely injured data
with significant tissue loss or morphological changes. This could be
minimised by instead utilising the GM provided by the EM-MRF seg-
mentation to building the tissue probability map, which has been
shown to be robust to morphological injury (Pagnozzi et al., 2015). Ad-
ditionally, the presence of other injuries such as brain malformations,
cases of ventricular enlargement without any associatedWM signal ab-
normalities, or cystic GM loss (which appears black in the TIRM, and po-
tentially mislabelled as CSF in the segmentation) (Krägeloh-Mann and
Horber, 2007), have not been identified with the proposed approach.
The presence of these injuries introduces additional variance in the clin-
ical motor outcome score not explained solely by the lesion predictor
variables, reducing themultiple R-squared of the trainedmodels, neces-
sitating the use of additional algorithms. Another limitation of this study
is that the effects of potential plasticity, which may lead to the translo-
cation of specific functions on the cortex. Plasticity has not been
accounted for in the regression models and could lead to an unex-
plained variance in the clinical outcome in these participants. A strength
of the present study is that the proposed segmentation approach only
requires structural MR images, which are well established sequences
and are common in clinical practice. In future, a combination of auto-
mated methods for detecting all classes of injury from structural MRIs
will be combined to provide a complete assessment of injury and



Fig. 3. Examples of a greymatter (GM) lesion (column (a)), white matter (WM) lesions (column (b)) and internal capsule (IC) lesions (column (c)). The top two rows show the axial and
coronal slices of the same T2-TIRM image, where the hyperintense lesions are indicated with white arrows. The segmented lesions, highlighted in green, are presented on the
corresponding axial and coronal slices of the T1-MPRAGE image in the bottom two rows. A, anterior; L, left; P, posterior; R, right.

Table 3
Lesion segmentation performance of the approach used in this paper, and SPM's LST on the 25% independent test set, compared to the manual ground truth assessment of lesions.

Performance measure Sensitivity Specificity Accuracy False positive rate False negative rate

Proposed approach 0.939 0.929 0.936 0.071 0.061
SPM's LST 0.893 0.351 0.729 0.649 0.107
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Fig. 4. An (a) axial and (b) coronal view of the T2 TIRM of a participant with no lesions observed by the manual expert, and the corresponding (c) axial and (d) coronal views of the T1
MPRAGE imageswith the false lesion segmentations obtained from the LSTmethod shown in green. (For interpretation of the references to color in thisfigure legend, the reader is referred
to the web version of this article.)

Table 4
The retained anatomical regions, and corresponding standardised regression coefficients and standard errors, of the GM and WM lesion models, for the six clinical outcome scores,
modelled on the 75% training set. For each model, the multiple R-squared is provided. Features that are significant (p b 0.05) in multiple models are bolded.

GM WM

Variable name Regression coefficient Standard error Variable name Regression coefficient Standard error

AHA
Superior frontal gyrus −0.265 0.154 Corpus callosum −0.018 0.015
Lenticular nucleus −0.128⁎⁎⁎ 0.036 Corona radiata −0.005⁎⁎⁎ 0.001
Thalamus −0.065⁎⁎⁎ 0.015 External capsule −0.016⁎⁎⁎ 0.004
Middle frontal gyrus −0.228⁎⁎ 0.083 Cerebral peduncle −0.111⁎⁎ 0.034

Cingulum −0.266 0.264
Multiple R-squared 0.433⁎⁎⁎ Multiple R-squared 0.514⁎⁎⁎

BRIEF
Caudate nucleus −0.2119⁎ 0.048 PLIC −0.121⁎⁎⁎ 0.020
Lenticular −0.426⁎⁎⁎ 0.119 ALIC −0.050 0.050
Superior frontal gyrus −0.122⁎ 0.058 Cingulum −2.012 2.080
Middle frontal gyrus −0.549 0.294
Multiple R-squared 0.263⁎⁎⁎ Multiple R-squared 0.386⁎⁎⁎

SDQ
Middle frontal gyrus −0.063 0.036 Corpus callosum −0.007 0.008
Superior frontal gyrus −0.101 0.072 PLIC −0.009⁎⁎ 0.003
Cingulate cortex −0.061 0.047 Corona radiata −0.003⁎⁎⁎ 0.001
Lenticular nucleus −0.034 0.019 External capsule −0.002 0.002
Multiple R-squared 0.174⁎ Multiple R-squared 0.529⁎⁎⁎

TVPS
Middle occipital gyrus −0.200 0.084 Posterior thalamic radiations −0.004 0.130
Middle frontal gyrus −0.131 0.236 PLIC −0.068⁎⁎⁎ 0.017
Superior frontal gyrus −0.083 0.396 Fornix −0.010 0.130
Inferior frontal gyrus −0.119 0.065 Superior longitudinal fasciculus −0.029⁎⁎ 0.009
Multiple R-squared 0.202⁎⁎ Multiple R-squared 0.507⁎⁎⁎

WR
Middle occipital gyrus −0.036⁎ 0.018 Fornix −0.093⁎⁎ 0.033
Superior temporal gyrus −0.022 0.024 Superior longitudinal fasciculus −0.012⁎ 0.002
Supramarginal gyrus −0.053⁎ 0.021 Posterior thalamic radiations −0.003 0.005
Hippocampus −0.742 0.703 Corpus callosum −0.013 0.009
Multiple R-squared 0.265⁎⁎⁎ Multiple R-squared 0.280⁎⁎⁎

VOC
Precentral gyrus −0.037⁎ 0.017 External capsule −0.015⁎⁎⁎ 0.003
Middle temporal gyrus −0.041 0.069 Tapatum −0.019 0.011
Superior occipital gyrus −0.266 0.879 Superior longitudinal fasciculus −0.015⁎⁎⁎ 0.003
Middle occipital gyrus −0.049 0.086 Sagittal Stratum −0.057 0.615
Multiple R-squared 0.117⁎ Multiple R-squared 0.491⁎⁎⁎

AsWM and GMburdens were used in twomodels, the individual and combinedmodels respectively, and for the six clinical scores, p-values were comparedwith the Bonferroni adjusted
alpha. AHA, Assisting Hand Assessment; ALIC, anterior limb of the internal capsule; BRIEF, Behaviour Rating Inventory of Executive Function; GM, grey matter; PLIC, posterior limb of the
internal capsule; SDQ, Strengths and Difficulties Questionnaire; TVPS, Test of Visual Perception Skills; VOC, vocabulary; WM, white matter; WR, word reasoning.
⁎ p b 0.008, statistically significant model correlations.
⁎⁎ p b 0.0016, statistically significant model correlations.
⁎⁎⁎ p b 0.00016, statistically significant model correlations.
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Table 5
The Pearson's R correlation between the predicted outcomes in the test set using the trained linear regression models and the clinical scores of the test set.

GM models WM models WM/GM combined

Pearson's R correlation 95% confidence interval Pearson's R correlation 95% confidence interval Pearson's R correlation 95% confidence interval

AHA 0.504⁎ (0.200, 0.719) 0.641⁎⁎ (0.387, 0.805) 0.670⁎⁎⁎ (0.429, 0.822)
BRIEF −0.006 (−0.392, 0.382) 0.263 (−0.138, 0.590) 0.269 (−0.132, 0.594)
SDQ 0.182 (−0.327, 0.610) 0.742⁎⁎ (0.408, 0.901) 0.751⁎⁎ (0.424, 0.905)
TVPS 0.533⁎ (0.184, 0.763) 0.304 (−0.094, 0.619) 0.614⁎⁎ (0.297, 0.809)
WR 0.435 (0.057, 0.704) 0.063 (−0.332, 0.440) 0.493⁎ (0.130, 0.739)
VOC 0.077 (−0.319, 0.452) −0.073 (−0.448, 0.323) 0.085 (−0.313, 0.457)

Correlations in bold have a statistical significance of p b 0.008. AHA, Assisting HandAssessment; BRIEF, Behaviour Rating Inventory of Executive Function; GM, greymatter; SDQ, Strengths
and Difficulties Questionnaire; TVPS, Test of Visual Perception Skills; VOC, vocabulary; WM, white matter; WR, word reasoning.
⁎ p b 0.008, statistically significant correlations.
⁎⁎ p b 0.0016, statistically significant correlations.
⁎⁎⁎ p b 0.00016, statistically significant correlations.
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estimation of impairment for childrenwith CP. These estimates can help
guide what therapeutic interventions for motor, cognitive, visual or
communicative function may be required for individual children, and
assisting these interventions to be performed earlier in life, where
neuroplasticity may have a greater effect (Cioni et al., 2011). Further-
more, as children with unilateral CPmay not respondwell to lateralised
interventions such as Constraint-Induced Movement Therapy (CIMT),
the severity and laterality of brain lesions may guide the potential clin-
ical utility of unimanual CIMT versus bimanual training. Future investi-
gations will also look to apply this approach to children with bilateral
CP, when data becomes available.
Table 6
ANOVA comparisons between the GM and WM only models, and the models combining
WM and GM lesion involvement.

Residual sum of
squares

Degrees of
freedom

Mean
square

F Significance

AHA
WM/GM
combined

81,617 – – – –

WM only 93,130 −6 −11,514 2.563 0.023⁎

GM only 110,550 −8 −28,933 4.830 b0.001⁎⁎⁎

BRIEF
WM/GM
combined

735,037 – – – –

WM only 825,191 −7 −90,154 1.542 0.164
GM only 973,689 −4 −238,652 7.143 b0.001⁎⁎⁎

SDQ
WM/GM
combined

6013.7 – – – –

WM only 6386.7 −7 −373.07 0.541 0.800
GM only 11,366.0 −8 −5352.3 6.787 b0.001⁎⁎⁎

TVPS
WM/GM
combined

439,456 – – – –

WM only 414,153 −2 −215,837 21.365 b0.001⁎⁎⁎

GM only 655,292 −6 −40,342 1.331 0.252

WR
WM/GM
combined

27,956 – – – –

WM only 29,640 −4 −3228.4 2.598 0.041⁎

GM only 31,184 −4 −1684.1 1.355 0.256

VOC
WM/GM
combined

81,786 – – – –

WM only 148,175 −4 −66,390 18.264 b0.001⁎⁎⁎

GM only 96,119 −5 −14,333 3.155 0.011⁎

Asterisked correlationswere found to be statistically significant: * p b 0.05; ** p b 0.01, *** p b

0.001. AHA, Assisting Hand Assessment; BRIEF, Behaviour Rating Inventory of Executive
Function;GM,greymatter; SDQ, Strengths andDifficultiesQuestionnaire; TVPS, Test ofVisual
Perception Skills; VOC, vocabulary; WM, white matter; WR, word reasoning.
5. Conclusions

A robust method for performing automated brain lesion segmenta-
tion from T1-weighted MRI sequences alone was applied to the seg-
mentation of both white and grey matter lesions from children with
unilateral CP, and its performance validated against manual expert clas-
sifications of lesions. After computing regional WM and GM lesion bur-
den, LASSO was used to identify regional burdens related to individual
clinical functions separately forwhite and greymatter lesions. The auto-
matically selected regions conformed to established relationships be-
tween anatomical regions and function, with significant correlations
observed between regional lesion burden and motor and cognitive
function. GM lesions led to a significant and generalisable reduction in
functional outcomes comparable in magnitude to WM lesions, demon-
strating the importance of quantifying GM lesion involvement. When
combinedwith an automated detection of other kinds of developmental
injury, a complete assessment of injury and outcome for children with
CP can be provided.
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