
Article

Comprehensive assembly of novel transcripts from
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Abstract

Crucial parts of the genome including genes encoding microRNAs
and noncoding RNAs went unnoticed for years, and even now,
despite extensive annotation and assembly of the human genome,
RNA-sequencing continues to yield millions of unmappable and
thus uncharacterized reads. Here, we examined > 300 billion reads
from 536 normal donors and 1,873 patients encompassing 21
cancer types, identified ~300 million such uncharacterized reads,
and using a distinctive approach de novo assembled 2,550 novel
human transcripts, which mainly represent long noncoding RNAs.
Of these, 230 exhibited relatively specific expression or non-
expression in certain cancer types, making them potential markers
for those cancers, whereas 183 exhibited tissue specificity. More-
over, we used lentiviral-mediated expression of three selected
transcripts that had higher expression in normal than in cancer
patients and found that each inhibited the growth of HepG2 cells.
Our analysis provides a comprehensive and unbiased resource of
unmapped human transcripts and reveals their associations with
specific cancers, providing potentially important new genes for
therapeutic targeting.
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Introduction

Central repositories of cancer genome data comprise enormous

amounts of high-throughput sequencing data, enabling researchers

to identify clinically relevant genes and genetic variants with prog-

nostic, diagnostic, and therapeutic potential (Collins & Barker, 2007;

International Cancer Genome Consortium et al, 2015). Sequencing

data across multiple cancer types have previously been analyzed to

determine expression profiles, epigenetic marks, and the sequence

variations that occur in cancers (van’t Veer et al, 2002; Greenman

et al, 2007; Heintzman et al, 2007; Cancer Genome Atlas Research

Network, 2008; Sotiriou & Pusztai, 2009; Stratton et al, 2009; Cancer

Genome Atlas Research Network et al, 2013). However, a small

albeit significant portion of sequencing data has remained “un-

annotated” due to its unmappability to the human reference

genome. In fact, crucial classes of RNAs such as microRNAs and

long noncoding RNAs were only annotated over the past few years,

and this motivated us to comprehensively analyze and annotate a

large compendium of uncharacterized RNA-sequencing (RNA-Seq)

reads in order to identify “new” transcripts. The reads we analyzed

comprised multiple cancer types as well as matching normal tissues.

Here, we provide the first de novo assembly of such uncharacterized

reads, thereby creating a resource of thousands of previously missed

human transcripts. The sequences of these transcripts were not

available (i.e., not assembled) in the human reference genome, but

we could map them to the chimpanzee/gorilla genomes, and then,

using human homologs of their adjacent genes, we could predict

their relative locations in the human genome. Moreover, we associ-

ated some of the transcripts with specific cancers and in several

cases with the expression of adjacent genes. Additionally, we found

histone H3K4me3 and H3K27ac transcription and regulatory-associated

marks at genomic loci for > 150 of the transcripts, which suggests

they are enhancer RNAs. Finally, we provide initial data of the

functional significance for three newly assembled transcripts.

Results

Characterizing unmapped sequences and discovery of
novel transcripts

To characterized unmapped sequencing reads, we developed a new

data processing pipeline (Fig 1A). Briefly, we obtained RNA-Seq

data from 1,873 patients encompassing 21 cancer types from The

Cancer Genome Atlas (TCGA) data portal. To assure data quality

and consistency, we only used data from paired-end Illumina plat-

form libraries generated from solid primary tumors after May 2012

(Fig 1B; cancer abbreviations are in Table EV1A and information

from TCGA for cancer samples is in Table EV1B). In addition to
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these datasets, we obtained RNA-Seq data from 11 corresponding

normal tissues/organ types from 536 healthy donors from the Geno-

type-Tissue Expression (GTEx) database (GTEx Consortium, 2013)

(Fig 1B; see Table EV1C and D for information on these samples).

Together, these libraries comprised over 300 billion sequencing

reads. To focus on unmapped reads, we removed all reads that

aligned to the human reference genome (hg19, GRCh37) and tran-

scriptome (see Materials and Methods). We also eliminated from

further analysis low-quality reads, duplicate reads, and reads that

mapped to cloning vectors, abundant sequences, haplotypic regions

A

C D

B

Figure 1. Characterizing unmapped sequences.

A Data processing strategy for identifying missed transcripts. Sequencing reads from cancer and normal samples were mapped to the human genome and
transcriptome. Abundant reads (e.g., polyA, polyC, ribosomal RNAs, phage) and low-quality reads were discarded, and reads that mapped to known viral and
bacterial sequences were removed. The remaining unmapped reads were pooled and de novo assembled to obtain previously missed transcripts. The newly
assembled transcripts were annotated by their over- or under-representation in each cancer and the presence of histone marks in their genomic loci. For the
illustrated 2 transcripts, one was expressed only in cancer and one in both cancer and normal tissues.

B Cancer types (inner donut) and matching normal tissue (outer donut). The numbers of samples are in parentheses. The abbreviations for the different cancer types
are in Table EV1A.

C, D Distribution of high-quality unmapped sequencing reads across all cancer (C) and normal (D) samples after screening as described in (A).
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(Li et al, 2010) of the primary reference assembly, and known

bacterial or viral sequences, only retaining those with both ends

unmapped (< 1% per library in average; see Materials and Meth-

ods). The above screening resulted in a collection of ~300 million

high-quality unmapped reads remained from cancer (Fig 1C) and

normal samples (Fig 1D).

To determine which of the unmapped reads overlapped and

could be assembled to form longer transcripts, we pooled them

together and used ABySS (Simpson et al, 2009) and an in-house re-

assembly program to de novo assemble 10,099 long transcripts

(Fig 1A and Materials and Methods; see Table EV2 for the sequences

of all assembled transcripts). These assembled transcripts had a

median length of 404 bases (Fig 2A), and as compared to the entire

human genome (Smit et al, 1996–2010), they were generally simi-

larly or less enriched in repeats (Fig 2B). These transcripts had a

bimodal GC content distribution (Fig 2C), and when “BLASTed

(Altschul et al, 1990),” the transcripts with higher GC content

(> 65%) were enriched in sequences with short nucleotide matches

(21–23 bp) to known bacterial sequences but had insufficient iden-

tity to be eliminated in the initial bacterial screening; conceivably,

some of these might represent new or divergent bacterial species.

Conversely, the transcripts with GC content less than 65% were

enriched in primate sequences (Fig 2C; Venn diagrams). In total,

2,550 (of 10,099) newly assembled transcripts had sequence homol-

ogy to primates, with the majority (~81%) having > 90% nucleotide

match to chimp and/or gorilla genomes based on BLAT (Kent, 2002)

(Fig 1A and Materials and Methods). Given that the constituent

reads were selected as unmapped, despite their presence in primates,

these assembled transcripts did not align to the human reference

genome assembly (Fig 2D) (see Table EV3 for detailed information

on alignment scores to chimp, gorilla, and human genomes) or to

recently characterized long noncoding RNAs (Iyer et al, 2015).

Because all transcripts were derived from TCGA and GTEx RNA-

Seq data, we hypothesized that the chimp/gorilla matching tran-

scripts were indeed human sequences but that they were missed

from the human reference genome during sequence assembly.

Indeed, during the course of the study, the genomic sequences

corresponding to nearly half of these transcripts were correctly

assembled and became available in hg38 reference genome (see

Materials and Methods; Table EV3), but even in hg38 they were still

not annotated as transcripts. Moreover, when we selected 8 tran-

scripts with significant alignment to the chimp genome but no align-

ment to the human reference genome (Table EV4), we validated all

8 transcripts by PCR amplification using specific primers

(Table EV5) followed by Sanger sequencing from genomic DNA

(Fig 2E) as well as from a cDNA mixture derived from cancer and

normal tissues (Fig 2F; see Materials and Methods for information

on the cDNA mix). We next sought to estimate how many additional

such transcripts in those tissues remain to be found under the same

assembly conditions (e.g., length cutoff and sequence complexity).

Whereas the precise number of missed transcripts is unclear, simu-

lating the number that we would anticipate to be identified from a

given number of RNA-Seq samples suggested that we have indeed

found the majority of such transcripts (Fig EV1). Nearly 32% (806

of 2,550) of these transcripts were aligned to discontinuous blocks

of target sequences or gaps, indicative of exons and introns in these

transcripts (Appendix Fig S1; see also Table EV3, column X). Using

CPAT (Wang et al, 2013) and CPC (Kong et al, 2007) computational

methods, which predict the coding potential of a given transcript

based on various sequence features including open reading frames

and the alignment to known protein domain families, we found that

> 95% of the transcripts were classified as long noncoding RNAs

(Kapranov et al, 2007) (Fig 2G), a class of RNAs with broad func-

tions (Mercer et al, 2009).

Cancer- and tissue-associated transcripts

We next evaluated whether any of our newly discovered human

transcripts are associated with specific cancers and/or tissue types.

We mapped all the RNA-Seq libraries to the newly assembled tran-

script sequences to determine the expression level (Fig 3A and

Table EV6A and B) and frequency (Table EV6C and D) in the 11

cancer types for which we had corresponding normal tissue

samples. We identified 521 (of 2,550) transcripts that were

expressed in more than 10% of tissue samples of the same type, and

we herein call these frequently expressed transcripts (Fig 3B). These

transcripts were expressed at lower levels and were shorter than

protein-coding transcripts but similar in expression level and

sequence length to that of known long noncoding RNAs (Fig EV2).

Strikingly, 47% (243 of 521) of these had significantly different

expression frequency (higher, lower, or mixed) in cancer versus

corresponding normal tissue samples and thus were considered as

cancer-associated transcripts (two-tailed Wilcoxon signed-rank test

P-value < 0.0001). For example, transcript asm|33042290 (see

Materials and Methods for nomenclature) was expressed in 49% of

adrenal cortical cancer patients but only in 10% of normal adrenal

▸Figure 2. De novo assembly of previously missed transcripts and characterization.

A Length distribution of 10,099 assembled transcripts.
B Relative abundance of repetitive elements in the entire human genome versus genomic loci of newly assembled human transcripts. Shown is the fraction of the

entire human genome (black bars) and newly assembled human transcript sequences (gray bars) corresponding to each indicated repeat family. Human genome
repeats were downloaded from RMLib 20120124 from RepeatMasker (Smit et al, 1996–2010) genomics datasets. The primate transcripts were screened by
RepeatMasker open-4.0.5, RMLib: 20140131.

C GC content distribution of assembled transcripts. The bar graph shows the frequency at each GC percentage. The pie charts display the inferred taxonomy of
transcripts with GC content ≤ 65% and > 65%. P-value (****P < 0.0001) was calculated by chi-square test with 3 degrees of freedom.

D Pairwise alignment dot plots. Each panel shows the pairwise alignment between the indicated sequences. Sequences were sorted based on their chromosome and
position and then concatenated prior to the alignment. The red dots in the top-right panel correspond to the alignments absent in hg38 as well as hg19 (see
Materials and Methods for details).

E, F PCR amplification of randomly selected transcripts from the human genomic DNA (E) and mixed cDNA (F). Shown are 8 transcripts that were absent in both hg19
and hg38. All bands were validated by classical Sanger-based DNA sequencing.

G Predicted coding potential of assembled transcripts. For 2,550 transcripts identified by aligning to nonhuman primates, the stacked bars show the fraction of
transcripts with predicted level of coding potential, based on the use of two computational methods, CPAT (Wang et al, 2013) and CPC (Kong et al, 2007).
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Figure 2.
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Figure 3. Cancer and tissue specificity of newly assembled transcripts across 11 tissues.

A The expression profiles of newly assembled human transcripts (rows) in various cancer and corresponding normal tissue samples (columns). Transcripts are
grouped into four categories: those that are significantly more frequently expressed (two-tailed Wilcoxon signed-rank test, P-value < 0.0001) in cancer than
normal, those that are significantly more frequently expressed in normal, those with similar frequency, and those that are not frequently expressed. The last
category contains 250 (of 2,029) randomly selected representatives. Transcripts are defined as “frequently expressed” if they are expressed in more than 10% of
samples of the same tissue.

B The percentages of transcripts that are significantly more frequently expressed (two-tailed Wilcoxon signed-rank test, P-value < 0.0001) in normal or cancer tissue
samples, have mixed expression frequency (higher in some cancers and higher in some other normal tissues) or have similar frequency of expression in cancer and
normal samples. The number of transcripts in each category is shown in parentheses. The stacked bar chart on the right shows the number of frequently expressed
transcripts in each category for 11 different tissues.

C–E Three representative transcripts that are more frequently expressed in cancer than in normal tissues (C), more frequently expressed in normal tissues than in
cancer (D), or have similar frequency of expression (E). For each transcript, the left (right) pie chart illustrates the frequency of samples in a specific cancer (normal)
tissue. P-values (****P < 0.0001) were calculated by two-sided Fisher’s exact test.
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gland samples (Fig 3C), and transcript asm|1118373 was expressed

in 35% of normal prostate samples but only in 2% of prostate

adenocarcinoma patients (Fig 3D). Interestingly, 83 cancer-associated

transcripts had significant differential expression frequency in only

one or two cancer types, thus making them relatively specific to

certain cancer(s) (e.g., asm|33042290 was relatively specific for

adrenal and skin cancers; see Appendix Fig S2). Conversely, 53%

(278 of 521; Fig 3B) of frequently expressed transcripts had similar

expression frequency in cancer and normal samples (e.g., asm|

33042705 in Fig 3E), but most of these (183 of 278) were specific to

a few tissue types and thus were considered as tissue-specific tran-

scripts (see Table EV7A and B for complete results).

We next investigated whether there was an association between

the expression of frequently expressed transcripts and their adjacent

genes, as such “cis” associations might indicate a mechanism of

action for some of these transcripts, analogous to reports for other

long noncoding RNAs (Brockdorff et al, 1992; Nagano et al, 2008;

Orom et al, 2010). To this end, we predicted the genomic neighborhood

and the nearest gene for 88% of the frequently expressed transcripts

using synteny (Pruitt et al, 2014) between human and chimp and/or

gorilla (see Materials and Methods); for the remaining transcripts,

we could not locate such neighboring genes in chimp or gorilla

genomes. We then determined whether the expression of the adja-

cent gene was significantly different in samples expressing a tran-

script than in samples not expressing the transcript, using both

cancer and corresponding normal tissue samples. We observed 149

such strong differences (two-tailed Wilcoxon signed-rank test

P-value < 0.0001) (Fig 4A; see Table EV7C for complete results).

Interestingly, in 85 of these transcripts, elevated expression of the

adjacent gene was observed in cancer but not normal samples, indi-

cating cancer-specific elevation. For example, for samples expressing

transcript asm|33042290, mRNA expression of RAB38, the predicted

adjacent gene, was higher in cancer but in not normal samples

(Fig 4B). In contrast, in 64 transcripts, the augmented expression of

adjacent genes was observed in normal or both cancer and normal

samples, indicating tissue-specific elevation. For example, mRNA

A

B C D

Figure 4. Nearest gene association.

A Percentage of transcripts associated with the expression of the adjacent genes in cancer, normal tissue, or both types of samples. The stacked bar chart on the
right shows the number of frequently expressed transcripts that are associated with their nearest gene in cancer, normal, or both types of samples.

B–D Three representative transcripts that are associated with their nearest gene expression in cancer (C), normal (D), or both (E) cancer and normal samples. The
transcripts are chosen to be the same as in Fig 4C–E. Significance of the association of the expression of the gene adjacent to the indicated transcript in samples
expressing (+) versus those not expressing (�) the transcript; each panel shows these separately for cancer and normal samples. P-values (****P < 0.0001) were
calculated by two-sided Wilcoxon signed-rank test. The red lines show the median value.
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expression of GFPT2 was higher in samples expressing transcript

asm|1118373 only in normal samples (Fig 4C), whereas MGC50722

was higher in samples expressing transcript asm|33042705 in both

cancer and normal samples (Fig 4D). In several cases, both high dif-

ferential expression frequency (Fig 3C–E) and adjacent gene associa-

tion were observed (Fig 4B–D).

Active transcription and regulatory marks in the genomic loci of
assembled transcripts

To assess the transcriptional and regulatory activity of our novel tran-

scripts, we examined histone H3K4me3 and H3K27ac modifications,

which are typically associated with active transcription and enhancer

activity (Bernstein et al, 2005; Heintzman et al, 2007), respectively.

These histone mark data were not available for the cancer (TCGA) or

normal (GTEx) samples we analyzed, so we downloaded histone

H3K4me3 and H3K27ac ChIP-Seq data from 11 cancer cell lines, corre-

sponding to breast, cervix, colon, liver, lung, and prostate tissues

(Ernst et al, 2011; Akhtar-Zaidi et al, 2012; Lin et al, 2012; Tropberger

et al, 2013; Hazelett et al, 2014; Ho et al, 2014; Rhie et al, 2014).

Moreover, due to the absence of our transcript sequences in the

genome assembly, traditional methods of peak (histone modification)

calling such as MACS (Zhang et al, 2008) were not applicable. Thus,

to detect significant levels of histone marks, we developed a statistical

method (see Materials and Methods) that could strongly segregate

traditional peaks from non-peaks (Appendix Fig S3). The presence of

H3K4me3 and H3K27ac marks provides additional evidence of

transcriptional and regulatory activity of these transcripts.

We detected significant levels (Poisson statistics P-value

< 0.0001; see Table EV8) of H3K4me3 and/or H3K27ac marks in the

genomic loci of 188 transcripts in one or more cancer cell lines

(Fig 5A). H3K27ac was identified for 69% of these transcripts,

H3K4me3 was identified for 12%, and both marks were found at

19% of the genomic loci for these transcripts (Fig 5A). The presence

of enhancer marks at the genomic loci of these transcripts is consis-

tent with their being enhancer RNAs (Kim et al, 2010), a class of

noncoding RNAs with potential cis- or trans-regulatory role(s).

Approximately one-third (61 of 188) of transcripts had significant

histone marks across multiple tissues and cancer cell lines (Fig 5B;

see Table EV8 for histone mark data on all transcripts). Interest-

ingly, 42 transcripts had histone marks at their genomic loci in at

least one cancer cell line that corresponded to the type of cell/tissue

in which the transcript is frequently expressed (Fisher’s exact test

P-value < 3 × 10�5; Table EV9; Fig 5B, dark gray highlighted

transcripts in left-side bar). Most of these transcripts were differentially

expressed in cancer and normal samples, and several were associated

with the expression of the adjacent gene (Table EV10). For example,

asm|33039309, which has a significant H3K27ac mark at its genomic

locus in the LNCap prostate cancer cell line (Fig 5C), was more

frequently expressed in prostate cancer than in normal samples (54%

vs. 31%; Fig 5D), with increased expression of its adjacent gene,

GADD45G, in normal or cancer samples that express this transcript

(Fig 5E). Moreover, some of the associated adjacent genes are impli-

cated in cancer. For example, PIM3 is a proto-oncogene that enhances

pancreatic cancer growth by modulating tumor vasculogenesis (Kuang

et al, 2013; Liu et al, 2014); PTP4A3 can promote cancer metastasis

particularly in colorectal cancers (Al-Aidaroos & Zeng, 2010; Cramer

et al, 2014; Huang et al, 2014); and TOMM20 expression is associated

with tumor size in gastric cancer (Zhao et al, 2014).

Transcripts asm|33038046, asm|33042430, and asm|33042735
regulate cell growth

To begin to elucidate the biological actions of our newly assembled

transcripts, we selected three out of the 8 PCR-validated transcripts,

each of which was more frequently expressed in normal than in

cancer samples (Fig 6A, qPCR confirmation in Fig EV3). For

example, asm|33042430 was present in 19% of all normal samples,

whereas only 10% of cancer samples express this transcript (two-

tailed Wilcoxon signed-rank test P-value < 2e�6). To determine

whether these transcripts regulate cell growth, we used lentiviral-

mediated transduction of HepG2 carcinoma cells (Fig EV4). In each

case, constitutive expression of these transcripts significantly inhib-

ited cell growth by 3 days (Fig 6B; left panel), with no change in cell

death (Fig EV5). The behavior of non-transduced cells was similar to

wild-type cells (Fig 6B; right panel). Interestingly, the cells express-

ing these RNAs also exhibited an increase in cell size, as assessed by

flow cytometry (Fig 6C), suggesting cell division cycle interruption

by these transcripts. Our results indicate the biological significance

of at least a subset of these newly assembled transcripts.

Discussion

We have identified more than 2 million bases of novel human tran-

scripts that are absent in the reference human genome, under-

scoring the importance of deep mining of sequencing data to

comprehensively characterize unmapped reads. Some of these

transcripts, in particular single exonic ones, might originate from

promoter upstream transcripts (PROMPTs), or enhancer regions,

Figure 5. Histone marks at genomic loci of newly assembled transcripts.

A Distribution of H3K4me3 and H3K27ac histone marks in genomic loci of 188 transcripts with significant histone marks in one or more cancer cell line(s). Numbers in
parentheses indicate the number of transcripts in each category. The stacked bar chart on the right shows histone mark distributions in each tissue type.

B Heat map of histone mark profiles for 188 transcripts across multiple tissues. For each transcript (rows), H3K27ac and H3K4me3 marks are shown in the indicated
tissues (columns). The intensities of the colors are proportional to the negative log P-value of significance in each row. The gray-scale left-side bar highlights
significant histone marks on transcripts that are frequently expressed in a tissue that matches that of the cancer cell line. When histone marks from multiple cancer
cell lines existed for a tissue, the most significant one is shown for that tissue (see Table EV8 for complete results).

C H3K27ac and H3K4me3 marks on the genomic locus of the transcript asm|33039309 in multiple tissues (when multiple cancer cell lines exist for a tissue, histone
marks in a representative cancer cell line are shown).

D The expression frequency of asm|33039309 in cancer and normal prostate samples. P-value (**P = 0.008) was calculated by two-sided Fisher’s exact test.
E mRNA expression of the neighboring gene GADD45G for samples with or without asm|33039309 expression in cancer and normal prostate samples. P-values

(***P = 0.001, *P = 0.02) were calculated by two-sided Wilcoxon signed-rank test. The red lines show the median value.

▸
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and although they might lack immediate function (Andersson et al,

2014), the uncovered corresponding genomic sequences could

harbor regulatory elements controlling gene expression. Aligning

the assembled transcripts to the chimp and gorilla genomes enabled

us to determine their relative genic neighborhoods in the human

genome and in many cases to associate these conserved transcripts

with expression of the neighboring gene. Our use of cross-species

homology is an approach broadly applicable to the assembly and

annotation of missed regions in the genomes of a range of species.

Although the functions of the transcripts we have discovered

remain to be elucidated, the cancer/tissue association, correlation

with neighboring genes, and the presence of histone H3K4me3 and

H3K27ac marks are tantalizing, and our lentiviral expression studies

of three selected transcripts indicate roles in cell growth regulation,

consistent with their higher expression frequency in normal

than cancer patient samples. Collectively, these results provide

compelling evidence to support further studies of the roles of these

novel transcripts in normal physiology, in the development and

progression of cancer, and potentially in other pathological situa-

tions as well.

Materials and Methods

Data processing pipeline

All cancer RNA-Seq BAM files (Binary sequence Alignment Map)

were downloaded using GeneTorrent (https://cghub.ucsc.edu/)

from dbGaP study accession phs000178. The normal RNA-Seq data

were downloaded using SRA Toolkit from dbGaP study accession

phs000424. All data were handled in accordance with the Data

Use Certification Agreement. The unmapped reads from BAM files

were initially extracted using samtools (Li et al, 2009). The low-

quality reads were removed using Stacks:process_shortreads

program (Cole et al, 2005), with parameters were set to [-c -q -s

17 -w 0.15 –filter_illumina –no_read_trimming]. The potential PCR

clones in each library were removed using Stacks:clone_filter

program (Cole et al, 2005) to keep unique reads. The reads in

each library were further screened for mapping to reference

genome (hg19, GRCh37 including all alternative haplotypes), tran-

scriptome (GENECODEv19 comprehensive transcripts (Harrow

et al, 2012); RefSeq genes; human all mRNAs (Pruitt et al, 2005);

USCS genes (Hsu et al, 2006); Ensemble genes (Hubbard et al,

2002); lincRNAs (Trapnell et al, 2010); and human ribosomal RNA

sequences); abundant sequences (vector sequences [http://

www.ncbi.nlm.nih.gov/tools/vecscreen/univec/]; phage sequences

(Leinonen et al, 2011); and polyA/C sequences), bacterial rRNA

sequences (Cole et al, 2005), and bacterial and viral genomic

sequences (Leinonen et al, 2011). The data for GeneCode, RefSeq,

UCSC, and Ensemble transcripts were obtained using the

Table Browser from UCSC on March 2014. The mapping was

performed using the Burrows–Wheeler Aligner (BWA (Li & Durbin,

2009)) with the following parameters [l = 28, k = 3, n = 0.1,

q = 20]. It is notable that BWA is a DNA aligner and does not

directly take splicing into consideration; therefore, we included

transcriptomic sequences, as mentioned above, to recover the

reads that may cover splicing junctions. All sequences and tran-

scripts were combined using the nrdb (ftp://ftp.ncbi.nlm.

nih.gov/pub/nrdb/) program to remove trivial redundancies before

creating the BWA index database. In each step, only paired-end

reads with both ends unmapped were kept.

Pairwise alignment

All the sequence pairwise alignments were performed using the

MUMmer3.23 (Kurtz et al, 2004) program with [-mum -b -c] para-

meters. The rest of the parameters were kept as default. The human

(hg19 and hg38), chimp (panTro4), and gorilla (gorGor3) genomes

were downloaded from UCSC genome browser. The “transcripts”

Figure 6. Transcripts asm|33038046, asm|33042430, and asm|33042735
regulate cell growth in HepG2 cells.

A For each of these transcripts, two pie charts are shown with the frequency
of expression in normal (left pie chart) or cancer (right pie chart) samples.
Shown are the percentage of samples expressing (green) or not expressing
(white) the transcript. asm|33038046, asm|33042430, and asm|33042735 are
each more frequently expressed in normal than cancer samples. P-values
(****P < 0.0001, **P = 0.002) were calculated by two-sided Fisher’s exact test.

B Lentiviral-mediated overexpression of transcripts in HepG2 carcinoma cells.
Shown are the cell numbers over the course of 3 days after cellular
transduction with vector or transcripts. Control transcript asm|33037597 did
not affect cell growth. The vector expresses GFP; thus, GFP+ cells represent
the cells successfully transduced. GFP+ and GFP� cells are shown in the left
and right panel, respectively. P-values (*P = 0.02) were calculated by two-
sided t-test. Error bars show standard error of the mean.

C Cell size on day 3 after transduction of transcripts or empty vector in HepG2
carcinoma cells. Shown is the cell size, as measured by flow cytometry. Data
represent the average of two replicates. P-values (*P = 0.011, **P = 0.007)
were calculated by two-sided Wilcoxon signed-rank test.

Data information: (B, C) Data shown are representative of three independent
biological experiments.
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corresponded to 47,447 mRNA sequences present in RefSeq for

hg19 genome assembly. The lincRNAs sequences (Trapnell et al,

2010) were obtained from UCSC genome browser. The sequences in

each genome, transcripts from RefSeq, or lincRNAs were sorted and

concatenated (with 50 bp N-gap) based on their chromosome and

locations prior to the MUMmer run. The chromosome and the loca-

tion of the transcripts were determined by their alignment to the

chimp genome using BLAT. The RefSeq transcript and the lincRNA

sequences were oriented 50-to-30 before concatenation.

Expression data analysis

All mRNA expression levels for coding genes in cancer and normal

samples were re-calculated by RSEMv1.2.14 (Li & Dewey, 2011)/

Bowtie1 (Langmead et al, 2009) pipeline to remove any systematic

bias that stems from the difference between the pipelines used for

estimating the gene expression in TCGA and GTEx. The RSEM

parameters were set to [–bowtie-n 1 –bowtie-m 100 –seed-length

28]. The expression level for newly assembled transcripts is calcu-

lated by RPKM values using the equation RPKM = (109 × C)/

(N × L), where C is the number of unique high-quality reads that

mapped to the transcript, N is the total number of unique high-qual-

ity reads in the library, and L is the length of the transcript. Three

bladder, 1 colon, and 8 lung cancer samples exhibit high-level

expression for many transcripts (vertical bars in Fig 3A). This could

be an artifact of batch processing of these samples (3 bladder, 1

colon, and 4 of the lung samples belong to sequencing plate A277,

and the other 4 lung samples belong to the plate A278). However,

given that these are only a small fraction of the total samples and

retaining vs. omitting them has no significant impact on our results,

we decided to keep them.

Assembly and re-assembly

We pooled all the unmapped reads (> 516 million reads) together

and ran the “ABySS-pe” program (Simpson et al, 2009) with default

parameters. The nomenclature for newly assembled transcripts is

generated by ABySS as “asm|”, which stands for assembly, followed

by a random number. Although it is possible that some of the reads

were from low-abundance RNAs and thus difficult to distinguish

from background, we minimized this potential problem by pooling

unmapped reads from all cancer and normal samples to increase the

read number and facilitate assembly of the transcripts. From the

initial transcripts (scaffolds) generated by ABySS, those with length

> 200 bp were classified as long transcripts. We chose this cutoff

length as it is a standard length used for defining long noncoding

RNAs, but we also observed ~5,000 shorter (100–200 bases) tran-

scripts with a significant match to nonhuman primates, which are

also absent in human reference genome and lack transcript annota-

tion (data not shown). To ensure that initially assembled transcripts

were “complete” and could not be further co-assembled, we devel-

oped an in-house program that joins a set of transcripts if there are

supporting reads connecting them together. Briefly, we mapped all

the unmapped reads to the long transcripts. For every pair of long

transcripts, if there were more than five reads with one end

mapping to one transcript and the other end mapping to the other

transcript, the transcripts were joined. The orientation of the joins

was obtained from the sequence arrangement in the paired-end

libraries manifested in the SAM file bitwise FLAG. Joined transcripts

were examined for the possibility of higher order joining by iterating

this process (e.g., pairs “a:b” and “b:c” would be joined to consti-

tute “a:b:c”). Of 2,550 novel human transcripts, 221 were transcripts

obtained from joining two or more transcript fragments, of which

176 were assembled in hg38 genome. Considering the hg38 assem-

bly as the “gold standard”, 165 transcripts (94%) were correctly re-

assembled, that is, the alignment of the transcripts to hg38

contained contiguous blocks of high-identity alignments. However,

it is still possible that some of the newly identified transcripts may

not represent the full-length cDNA and/or some of these transcripts

may be a combination of overlapping and/or alternative splicing of

a gene.

BLASTing against the nt database

We utilized the “blastp” program of the locally installed blastall

v2.2.26 and the nt.00-26 database to perform all the BLAST opera-

tions. We invoked BLAST with default parameters. Nearly 85% of

the transcripts had significant BLAST match (E-value ≤ 0.05),

whereas ~10% (1,100 of 10,099) of the transcripts had no significant

BLAST match (E-value > 0.1) against nt database (Table EV3).

The taxonomy information of the BLAST results (i.e., primate,

bacteria, eukaryote, others) was obtained from NCBI taxonomy

browser.

Calling histone marks at genomic loci of newly assembled
transcripts

For each transcript and each cell line, we calculated the significance

of the change between the indicated histone mark and its corre-

sponding input control using a Poisson statistics, 1-FPoisson(x;

lambda), with lambda being the RPKM value of the transcript in the

control library and x being the RPKM of the transcript in the corre-

sponding histone H3K4me3 or H3K27ac library. RPKM values were

obtained using the equation RPKM = (109 × C)/(N × L), where C is

the number of unique high-quality reads that mapped to the tran-

script, N is the total unique high-quality reads in the library, and L

is the effective length of the transcript, defined as the length of a

sub-sequence of the transcript that is covered by at least one read in

any of the histone mark libraries. The significance cutoff was set at

P-value ≤ 0.0001.

Genic neighborhood determination using homology between
human and chimp/gorilla genomes

We used the BLAT program to align the assembled transcripts to

chimp (panTro4) and gorilla (gorGor3) genomes. All BLAT parame-

ters were kept at default except minScore was set to 100. For each

transcript, the best BLAT score was kept. We then used “bedtools

closest” program to obtain the nearest gene in chimp/gorilla for

each aligned transcript. Finally, the human homolog of the nearest

gene was obtained using “Other RefSeq Genes” track from UCSC

genome browser. It is notable that the relative location of some

genes in human might be different from that of chimp/gorilla, which

could introduce noise to the prediction of lncRNAs’ nearest genes in

human based on the alignment to the chimp/gorilla. To potentially

quantify such a noise (i.e., how much the relative locations of genes
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in human are similar/different to that of chimp/gorilla), we

obtained all the genes (~19,000) in chimp/gorilla with known

homology in human from http://www.ncbi.nlm.nih.gov/homolo-

gene. For each gene in human, chimp, and gorilla, we then found its

nearest neighboring gene using “bedtools closest” program. We then

checked what percentage of the nearest neighboring genes in

chimp/gorilla are the same with the homologous genes and their

nearest neighbors in human. We observed that 74.9% and 68.1% of

relative gene neighborhoods are conserved between human and

chimp or gorilla, respectively. Some transcripts had the same adja-

cent genes so that there were on average 2.8 transcripts for each

predicted adjacent gene. A number of genes including PECAM1,

ERMARD, DHRSX, MGC50722, CD24, RAB7B, TCP10, and CHST15

each had more than 10 transcripts in their genomic neighborhood

(Table EV7A), suggesting that the genomic neighborhoods of these

genes are relatively poorly assembled and annotated in the available

human reference genome. Although the human reference genome

overall is more completely annotated than those from chimp and

gorilla, the human transcripts we have identified in this study

appear to correspond to regions that are better assembled in the

chimp or gorilla genome assemblies.

Alignment to hg38. We aligned the transcripts to hg38 genome

using BLAT. Of 2,550 newly identified transcripts, 1,473 (57%) have

an assembly in hg38 and 1,260 (49%) have assembly with > 95%

alignment (i.e., “correct assembly”) between hg38 and the

transcripts.

HepG2 cell proliferation assay

The transcripts were amplified by PCR from HEK293T cells and

cloned into lentiviral expression vector (pLVX-EF1alpha-IRES-

ZsGreen1 Vector, Clontech). Transcripts expressing lentiviral

particles were produced in HEK293T cells following the standard

protocol. HepG2 cells were cultured in EMEM (ATCC), supple-

mented with 10% fetal bovine serum, in cell incubator at 37�C with

5% CO2. For lentiviral infection, HepG2 cells were cultured in

6-well plates for one day, followed by adding transcripts expressing

lentivirus to the cells with 8 lg/ml of polybrene (Sigma). Twenty-

four hours post-transduction, lentivirus-containing medium was

removed and cells were recovered in normal growth medium for

48 h. Transduced HepG2 cells were subcultured into 24-well plates

and allowed to attach for 16 h. Then, cells were washed and

cultured in EMEM with 0.1% FBS for 24 h. On day 0, cells were

labeled with CellTraceTM Violet (Life Technologies) according to

the manufacture’s recommendation and then incubated in full

growth medium for 3 days. Each day, cells were taken off the plates

by trypsin, washed, and stained with LIVE/DEAD� Fixable Near-IR

Dead Cell dye (Life Technologies). Afterward, cell-counting beads

(Life Technologies) were added to each sample and analyzed by

FACS. Cell number in each sample was calculated and normalized

by cell-counting beads number. Cell growth curve was plotted in

Prism (GraphPad) software.

cDNA samples

The cDNA samples used for validation in Fig 2F were obtained from

AMSBIO company. They were all quality-controlled and DNase I

pre-treated. The catalog (lot) numbers of samples are as follows:

C1234201-10 (B506159), C1234188 (B705038), C1234142

(B707257), C1234201 (B706051), C1235188 (A802038), C1235142

(A602226), C1234265 (B509030), C1235265 (A304109), C1234152

(B509033), C1234149 (B707258), C1234004 (B312074), C1235149

(A306002), C1235152 (A307028), C1235004-10 (A409321). The

mixed cDNA is obtained by mixing cDNAs from seven tumor and

matching normal tissues from adrenal gland, pancreas, liver, lung,

kidney, thyroid, and prostate.

Expanded View for this article is available online:

http://msb.embopress.org

Acknowledgements
The results shown here are in part based upon data generated by the TCGA

Research Network (http://cancergenome.nih.gov/) and Genotype-Tissue Expres-

sion (GTEx) program. We also thank Genome Reference and Human Genome

Sequencing consortiums for their contribution to human genome sequencing

and assembly. We thank Drs. Claudia Kemper and Peng Li for valuable discus-

sions and critical comments. This work was supported by the Division of Intra-

mural Research, National Heart, Lung, and Blood Institute, National Institutes

of Health and grant to MK from NIH (K22- KHL125593A). This study utilized the

high-performance computing facility, helix/biowulf (http://biowulf.nih.gov/), at

the National Institutes of Health.

Author contributions
MK, MR, and WJL designed the study. RS, J-XL, and WL supplied material and

expertise; MK performed all analysis; MR and MK undertook experiments; MK

and WJL drafted and wrote the manuscript. All authors contributed to and

approved the final manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Akhtar-Zaidi B, Cowper-Sal-lari R, Corradin O, Saiakhova A, Bartels CF,

Balasubramanian D, Myeroff L, Lutterbaugh J, Jarrar A, Kalady MF, Willis J,

Moore JH, Tesar PJ, Laframboise T, Markowitz S, Lupien M, Scacheri PC

(2012) Epigenomic enhancer profiling defines a signature of colon cancer.

Science 336: 736 – 739

Al-Aidaroos AQ, Zeng Q (2010) PRL-3 phosphatase and cancer metastasis.

J Cell Biochem 111: 1087 – 1098

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403 – 410

Andersson R, Refsing Andersen P, Valen E, Core LJ, Bornholdt J, Boyd M, Heick

Jensen T, Sandelin A (2014) Nuclear stability and transcriptional

directionality separate functionally distinct RNA species. Nat Commun 5:

5336

Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert

DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, Schreiber SL,

Lander ES (2005) Genomic maps and comparative analysis

of histone modifications in human and mouse. Cell 120:

169 – 181

Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S,

Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-

specific transcript containing no conserved ORF and located in the

nucleus. Cell 71: 515 – 526

This article is a U.S. Government work and is in the public domain in the USA Molecular Systems Biology 11: 826 | 2015

Majid Kazemian et al Comprehensive assembly of unmapped human transcriptome Molecular Systems Biology

11

http://www.ncbi.nlm.nih.gov/homologene
http://www.ncbi.nlm.nih.gov/homologene
http://cancergenome.nih.gov/
http://biowulf.nih.gov/


Cancer Genome Atlas Research Network (2008) Comprehensive genomic

characterization defines human glioblastoma genes and core pathways.

Nature 455: 1061 – 1068

Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB,

Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM

(2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet

45: 1113 – 1120

Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM,

Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences

and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:

D294 –D296

Collins FS, Barker AD (2007) Mapping the cancer genome. Pinpointing the

genes involved in cancer will help chart a new course across the complex

landscape of human malignancies. Sci Am 296: 50 – 57

Cramer JM, Zimmerman MW, Thompson T, Homanics GE, Lazo JS, Lagasse E

(2014) Deletion of Ptp4a3 reduces clonogenicity and tumor-initiation

ability of colitis-associated cancer cells in mice. Stem Cell Res 13:

164 – 171

Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang

X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE

(2011) Mapping and analysis of chromatin state dynamics in nine human

cell types. Nature 473: 43 – 49

Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies

H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE,

Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J et al

(2007) Patterns of somatic mutation in human cancer genomes. Nature

446: 153 – 158

GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat

Genet 45: 580 – 585

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,

Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V,

Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G,

Steward C et al (2012) GENCODE: the reference human genome

annotation for The ENCODE Project. Genome Res 22: 1760 – 1774

Hazelett DJ, Rhie SK, Gaddis M, Yan C, Lakeland DL, Coetzee SG, Ellipse

G-ONC, Practical C, Henderson BE, Noushmehr H, Cozen W, Kote-Jarai Z,

Eeles RA, Easton DF, Haiman CA, Lu W, Farnham PJ, Coetzee GA (2014)

Comprehensive functional annotation of 77 prostate cancer risk loci. PLoS

Genet 10: e1004102

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van

Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B

(2007) Distinct and predictive chromatin signatures of transcriptional

promoters and enhancers in the human genome. Nat Genet 39: 311 – 318

Ho JW, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, Sohn KA, Minoda A,

Tolstorukov MY, Appert A, Parker SC, Gu T, Kundaje A, Riddle NC, Bishop E,

Egelhofer TA, Hu SS, Alekseyenko AA, Rechtsteiner A, Asker D et al (2014)

Comparative analysis of metazoan chromatin organization. Nature 512:

449 – 452

Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D (2006) The

UCSC Known Genes. Bioinformatics 22: 1036 – 1046

Huang YH, Al-Aidaroos AQ, Yuen HF, Zhang SD, Shen HM, Rozycka E,

McCrudden CM, Tergaonkar V, Gupta A, Lin YB, Thiery JP, Murray JT, Zeng

Q (2014) A role of autophagy in PTP4A3-driven cancer progression.

Autophagy 10: 1787 – 1800

Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J,

Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki

L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E et al (2002)

The Ensembl genome database project. Nucleic Acids Res 30: 38 – 41

International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A,

Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS,

Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P,

Kusada J, Lane DP, Laplace F, et al (2015) The landscape of long

noncoding RNAs in the human transcriptome. Nat Genet 47: 199 – 208

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR,

Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu

YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The

landscape of long noncoding RNAs in the human transcriptome. Nat

Genet 47: 199 – 208

Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF,

Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais

E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V et al

(2007) RNA maps reveal new RNA classes and a possible function for

pervasive transcription. Science 316: 1484 – 1488

Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12: 656 – 664

Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA,

Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E,

Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread

transcription at neuronal activity-regulated enhancers. Nature 465:

182 – 187

Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the

protein-coding potential of transcripts using sequence features and

support vector machine. Nucleic Acids Res 35: W345 –W349

Kuang BH, Wen XZ, Ding Y, Peng RQ, Cai PQ, Zhang MQ, Jiang F, Zhang XS,

Zhang X (2013) The prognostic value of platelet endothelial cell adhesion

molecule-1 in non-small-cell lung cancer patients. Med Oncol 30: 536

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,

Salzberg SL (2004) Versatile and open software for comparing large

genomes. Genome Biol 5: R12

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome.

Genome Biol 10: R25

Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tarraga A, Cheng Y, Cleland

I, Faruque N, Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N,

Plaister S, Radhakrishnan R, Reddy K, Sobhany S, Ten Hoopen P, Vaughan

R, Zalunin V et al (2011) The European Nucleotide Archive. Nucleic Acids

Res 39: D28 –D31

Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-

Seq data with or without a reference genome. BMC Bioinformatics 12: 323

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25: 1754 – 1760

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis

G, Durbin R, Genome Project Data Processing Subgroup (2009) The

Sequence Alignment/Map format and SAMtools. Bioinformatics 25:

2078 – 2079

Li R, Li Y, Zheng H, Luo R, Zhu H, Li Q, Qian W, Ren Y, Tian G, Li J, Zhou G,

Zhu X, Wu H, Qin J, Jin X, Li D, Cao H, Hu X, Blanche H, Cann H et al

(2010) Building the sequence map of the human pan-genome. Nat

Biotechnol 28: 57 – 63

Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA

(2012) Transcriptional amplification in tumor cells with elevated c-Myc.

Cell 151: 56 – 67

Liu B, Wang Z, Li HY, Zhang B, Ping B, Li YY (2014) Pim-3 promotes human

pancreatic cancer growth by regulating tumor vasculogenesis. Oncol Rep

31: 2625 – 2634

Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into

functions. Nat Rev Genet 10: 155 – 159

Molecular Systems Biology 11: 826 | 2015 This article is a U.S. Government work and is in the public domain in the USA

Molecular Systems Biology Comprehensive assembly of unmapped human transcriptome Majid Kazemian et al

12



Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser

P (2008) The Air noncoding RNA epigenetically silences transcription by

targeting G9a to chromatin. Science 322: 1717 – 1720

Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F,

Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long

noncoding RNAs with enhancer-like function in human cells. Cell 143:

46 – 58

Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O,

Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O’Leary NA,

Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P,

Tully RE et al (2014) RefSeq: an update on mammalian reference

sequences. Nucleic Acids Res 42: D756 –D763

Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq):

a curated non-redundant sequence database of genomes, transcripts and

proteins. Nucleic Acids Res 33: D501 –D504

Rhie SK, Hazelett DJ, Coetzee SG, Yan C, Noushmehr H, Coetzee GA (2014)

Nucleosome positioning and histone modifications define relationships

between regulatory elements and nearby gene expression in breast

epithelial cells. BMC Genom 15: 331

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a

parallel assembler for short read sequence data. Genome Res 19: 1117 – 1123

Smit AFA, Hubley R, Green P (1996–2010) RepeatMasker Open-3.0. URL:

http://www.repeatmasker.org

Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. New

Engl J Med 360: 790 – 800

Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:

719 – 724

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,

Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and

quantification by RNA-Seq reveals unannotated transcripts and isoform

switching during cell differentiation. Nat Biotechnol 28: 511 – 515

Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, Li G,

Mittler G, Liu ET, Buhler M, Margueron R, Schneider R (2013) Regulation

of transcription through acetylation of H3K122 on the lateral surface of

the histone octamer. Cell 152: 859 – 872

van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL,

van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM,

Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression

profiling predicts clinical outcome of breast cancer. Nature 415: 530 – 536

Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W (2013) CPAT: Coding-

Potential Assessment Tool using an alignment-free logistic regression

model. Nucleic Acids Res 41: e74

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C,

Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-

Seq (MACS). Genome Biol 9: R137

Zhao Z, Han F, He Y, Yang S, Hua L, Wu J, Zhan W (2014) Stromal-epithelial

metabolic coupling in gastric cancer: stromal MCT4 and mitochondrial

TOMM20 as poor prognostic factors. Eur J Surg Oncol 40: 1361 – 1368

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

This article is a U.S. Government work and is in the public domain in the USA Molecular Systems Biology 11: 826 | 2015

Majid Kazemian et al Comprehensive assembly of unmapped human transcriptome Molecular Systems Biology

13

http://www.repeatmasker.org

