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A biomimetic method of gold nanoparticles synthesis utilizing the highly invasive aquatic weed

pistia (Pistia stratiotes) is presented. In an attempt to utilize the entire plant, the efficacy of the

extracts of all its parts – aerial and submerged – was explored with different proportions of gold

(III) solution in generating gold nanoparticles (GNPs). The progress of the synthesis, which

occurred at ambient temperature and pressure and commenced soon after mixing the pistia

extracts and gold (III) solutions, was tracked using UV–visible spectrophotometry. The electron

micrographs of the synthesized GNPs revealed that, depending on the metal-extract concentra-

tions used in the synthesis, GNPs of either monodispersed spherical shape were formed or there

was anisotropy resulting in a mixture of triangular, hexagonal, pentagonal, and truncated trian-

gular shaped GNPs. This phenomenon was witnessed with the extracts of aerial parts as well as

submerged parts of pistia. The presence of gold atoms in the nanoparticles was confirmed from

the EDAX and X-ray diffraction studies. The FT-IR spectral study indicated that the primary

and secondary amines associated with the polypeptide biomolecules could have been responsible

for the reduction of the gold (III) ions to GNPs and their subsequent stabilization.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Metal nanoparticles have been the focus of a large body of

scientific research due to the fact that their catalytic activity
and their antimicrobial, electronic, optical, magnetic and med-
ical properties are often significantly different from that of the
bulk materials. Given that nanoparticles of different metals

have several unique properties, and that these properties
further depend on the morphology and size of the nanoparti-
cles, it has become essential to develop methods with which

nanoparticles of desired shape and sizes can be generated.
The traditional methods of doing it revolve round chemical
or physical techniques. Of these, the former often involve

hazardous reagents and/or process conditions and lead to
emission of pollutants. The latter are highly energy-intensive
and expensive. In contrast, biological methods which employ

biomolecules contained in microorganisms, algae, or vascular
plants to generate nanoparticles in a way similar to that which
occurs in nature – i.e. by biomimetics – are much cleaner and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2014.03.006&domain=pdf
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‘greener’. This aspect has bestowed great relevance to the field
of biomimetic nanoparticles synthesis [1–6].

The use of botanical species (henceforth referred to as

‘plants’) in the synthesis of nanoparticles has several advanta-
ges compared to methods relying on microorganisms as the
agent brining about the synthesis. The latter require elaborate

effort for maintaining microbial cultures and carry the hazard
of leaks, which can endanger the environment and the human
health. Microbial nanoparticle synthesis methods do not, also,

lend themselves easily to large-scale processing. Moreover, the
time required for microorganism-mediated nanoparticle syn-
thesis can be very long, going up to 120 h [7,8]. The difficulties
associated with maintaining the microbial cultures [9,10]

further depreciates the value of this synthesis route in favor
of plant-based procedures.

So far different authors have used about 130 species of

plants to generate gold nanoparticles (GNPs). These species
encompass fruits, flowers, vegetables, grains, cereals, spices,
other foodstuff, medicinal plants, and beauty aids. For exam-

ple, geranium, neem, gooseberry, aloe vera, coriander, guava,
clove buds, mint, cinnamon, curry leave, aloe, horse gram,
myrobalan, white gourd and citrus fruit that already have

well-established uses, and entail substantial costs of produc-
tion, have been explored [2,4,6,11,12]. Also, in the past, most
authors have used only one or the other part of the plants
(leaf/bark/seed/flower/fruit) for GNP synthesis. In contrast,

the present study is based on the use of whole plant of a highly
pernicious weed, pistia (Pistia stratiotes). It is a free-floating
pleustonic macrophyte belonging to the Araceae family. It is

one among the world’s worst weeds and is now widespread in
the lakes and ponds of the warmer parts of the world, seriously
harming water quality and endangering biodiversity [13,14].

Given this context, the method presented here opens an avenue
for the gainful utilization of pistia. The ability of the method to
utilize the whole plant is significant because on one hand it

enhances the utility value of each plant and on the other hand
it makes the utilization of the invasive so potentially gainful
that it may become remunerative to control the invasive
through its harvesting and use. Hence, the present study can

have far-reaching beneficial portent for the protection of large
tracts of aquatic ecosystems currently plagued with pistia.
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Experimental

All chemicals were of analytical grades unless specified other-
wise. Deionized, double-distilled water was used throughout.

Preparation of aqueous extracts of the aerial and submerged

parts of pistia

Pistia was collected from the ponds situated near the campus
of Pondicherry University, Puducherry. The fresh, mature,
and disease-free plant portions were washed thoroughly with

water and then dipped in saline water to sterilize their surface,
followed by washing liberally before blotting them dry. A
known quantity of plant samples was dried at 105 �C to a con-
stant weight [15]. On the basis of dry weight thus obtained,

extracts for nanoparticle synthesis were made by boiling
1.0 g dry weight equivalent plant material with 100 ml of water
for 5 min. The contents were filtered through a Whatmann

number. A Whatman No. 42 filter paper and the filtrate were
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Fig. 1 Typical UV–visible spectra of gold nanoparticles formed

using the aqueous extract of the aerial parts of pistia: (a) of

monodispersed spherical GNPs; (b) of polydispersed anisotropic

GNPs.
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Fig. 2 Typical UV–visible spectra of gold nanoparticles formed

using the aqueous extract of the submerged parts of pistia: (a) of

monodispersed spherical GNPs; (b) of polydispersed anisotropic

GNPs.
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stored under refrigeration at 4 �C [4,16]. Reconnoitery experi-
ments indicated that the extracts retained their integrity for up

to 3 days, as evidenced by the extent of intensity of nanoparti-
cles generated by them. Hence, in all the experiments, the
extracts were used within 3 days of preparation.

Au (III) solution

A 10�3 M solution of Au (III) was prepared with HAuCl4. It
was stored in amber bottles covered with black sheets.

Nanoparticle synthesis

The plant extracts were mixed with Au (III) solution at ambient

temperature. The GNPs began forming almost immediately as
indicated by the appearance of pinkish red or purple color which
grew in intensity with time. The spectra of the reaction mixtures

were continuously recorded using UV–visible spectrophotome-
ter and indicated that the hue of the color and its intensity
depended on the stoichiometric ratio in which the plant extract
and the metal ion had been mixed. Metal: extract combinations

varying in concentration from 1:1 to 1:40were explored. Typical
results, of six of the combinations, are given in Table 1.

Characterization of the GNPs

UV–visible spectroscopy

The nanoparticle formation was monitored by recording
the UV–vis spectra in the wavelength range 190–1100 nm
employing Labindia (model UV 3000+) and ELICO (model
SL 164) double beam UV–visible spectrophotometers operated
at 1 nm resolution (Figs. 1 and 2). Typical results of the kmax

and absorbance are presented in Table 1.

SEM/TEM studies

SEM (scanning electron microscopy) and TEM (transmission

electron microscopy) studies were carried out to determine
the size and morphology of the synthesized GNPs. The reac-
tant–GNP mixtures were centrifuged at 12,000 rpm for

20 min using Remi C 24 centrifuge. The resulting pellets were
washed thrice with water to remove the unreacted constituents
and were re-dispersed in water. SAED (selected area electron

diffraction) studies were done in conjunction with TEM to
assess the crystalline nature of the GNPs.

The samples for SEM studies were prepared by placing a

drop of suspension on a carbon-coated SEM grid. For high
resolution SEM studies, the samples were prepared by placing
dried pellets on a carbon coated aluminum stub. For TEM
studies, the GNPs were pelletized by centrifuging and through

sonication. The micrographs were recorded by depositing a
drop of the well-dispersed samples on carbon coated 300 mesh
placed on copper TEM grids.

Energy dispersive X-ray (EDAX) studies

The elemental composition of the GNPs was assayed using the
EDAX equipment attached with the SEM/HRSEM micro-

scopes. The EDAX spectrum was recorded after documenting
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the electron micrographs in the spot-profile mode by focusing
on the densely occupied gold nanoparticle region.

X-ray diffraction (XRD) studies

The powder XRD (X-ray diffraction) spectrum of the NPs was
recorded to investigate the crystallinity of the material being
analyzed. An aliquot of the pelletized GNPs was drop-casted

to thin film on a glass slide and its XRD spectrum was
obtained by scanning in the 2h region, from 0� to 80�, at
0.02� per minute. Cu Ka1 radiation with a wavelength of

1.5406 Å, tube voltage 40 kV, and tube current 30 mA, was
used.

Fourier transform infrared spectroscopic (FTIR) studies

FT-IR spectroscopy was done to identify the functional groups
involved in the reduction, stabilization and capping of the
GNPs. For this, the samples were dried and grounded with

potassium bromide. The spectrum was recorded between
4000 and 400 cm�1 in diffuse reflectance mode, at 4 cm�1

resolution.

Results and discussion

Purple-red colors of different hues appeared in the otherwise
colorless reaction mixture when GNP formation commenced.

These colors, caused by surface plasmon resonance (SPR) in
the GNPs, led to either a sharp peak in the 530–570 nm region
(Fig. 1c–e) or a broader peak in the 650–800 nm region

(Fig. 2a–c). In a few cases, two peaks were observed (Fig. 2d
and f) – a sharp one in the 530–570 nm region and a very broad
one in the near infra-red (NIR) region. Hence, in summary,

basically two types of spectra were obtained, one contained a
single peak and the other two peaks. In case of aerial parts,
the second type of spectra occurred at metal-extract propor-
tions of 1:6 while in case of the extracts of the submerged parts

this happened at metal-extract proportions of 1:7–1:10. In all
other cases, the first type of spectra was obtained. As was sub-
sequently confirmed by electron microscopic and other studies,
these two types of spectra were indicative of the formation of

two types of GNPs-monodispersed spherical shaped GNPs
(first type) and polydispersed mixed shaped (anisotropic) (sec-
ond type).

In most cases, close to 90% of nanoparticle formation was
complete by the 6th hour as thereafter the absorbance at
different kmax either increased only marginally or remained

unchanged for several hours before beginning to decline. The
decline may be due to the suspended destabilization of the
nanoparticles leading to their agglomeration past the colloidal

state.
In all the spectra, the presence of a single peak in the visible

region is attributable to the transverse plasmon resonance
(TPR) band, which arises due to the formation of spherical

shaped GNPs. This was confirmed by the SEM and TEM
micrographs, described below, which revealed the formation
of spherical GNPs when these metal: extract combinations

were used. In contrast, the presence of two peaks arose when
there was anisotropic nanoparticles formation [17–19]. In this
case also, SEM and TEM confirmed what the visible spectra

had indicated.

Electron microscopic (SEM, Hr-SEM, TEM) and EDX studies

The SEM and Hr-SEM images of GNPs obtained from reac-
tant mixtures, which gave single-peak (Type 1) visible spectra,
exemplified by Fig. 3 showed that the particles were spherical
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Fig. 5 X-ray diffraction spectrum of gold nanoparticles formed with the extracts of the aerial parts (i and ii), and submerged parts (iii

and iv) of pistia.

Table 2 2h Position of the Bragg’s plane observed from the X-

ray diffractograms.

Bragg’s plane Type of GNP (111) (200) (220) (311)

2h position Monodispersed,

spherical

38.83 45.19 65.15 77.79

38.79 44.59 65.05 78.09

Polydispersed,

anisotropic

38.81 45.09 65.05 77.97

38.73 44.31 64.35 76.99
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in shape. The TEM images reveal that their sizes were in the
range 2–40 nm (Fig. 4).

For the reactant combinations that led to GNP spectra of
two peaks (Type II spectra), the SEM, Hr-SEM and TEM
micrographs showed the presence of anisotropy-nanoparticles
of triangular, hexagonal, pentagonal, and truncated triangular

shapes (Figs. 3 and 4). The sizes of these nanoparticles ranged
20–155 nm.

A strong clear peak for gold atoms was seen in the spot-

directed EDX spectrum of all the GNPs (insets of Fig. 3).
The presence of carbon, nitrogen and oxygen atoms was indi-
cated by the weaker signals. This is likely to be due to X-ray

emission from proteins/enzymes present in the biomolecules
that had capped the GNPs. Given that the GNPs had
remained stable (retaining clear shapes) even after the pistia

extract had been centrifuged out, these signals can only be
from biomolecules that have remained adhered to the GNPs.
An optical absorption peak at approximately 2 keV is seen,
which is characteristic of gold nanoparticles [1,2].

The bright circular spots recorded in the SAED patterns
(Fig. 4(i–iv) f) corresponding to the Bragg’s planes confirm
the crystalline nature of all types of GNPs [20].

X-ray diffraction (XRD) studies

The powder X-ray diffractograms reveal that all the GNPs had

crystalline structure. The X-ray diffraction spectra (Fig. 5)
showed intense peaks at 2h position, corresponding to (111),
(200), (220) and (311) Bragg’s planes and denoted the fcc

(face centered cubic) structure of the GNPs [21] (Table 2).
The XRD patterns which match with the database of JCPDS
file no. 04-0784, indicate that all types of synthesized GNPs
were of pure crystalline nature. The Debye–Scherrer’s equa-

tion was used to calculate the size of the GNPs on the basis
of the FWHM of the (111) Bragg’s reflection arising from
the diffractograms [22].

The crystal sizes of the GNPs were found to be between
19.8 and 22.1 nm. In case of reactant mixtures which gave
Type 1 visible spectra, the particle sizes as seen from the

XRD (Fig. 5a and c) were close to the average size ca.
18.75 nm obtained from the electron micrographs. This were
due the formation of monodispersed spherical particles. In

case of reactant mixtures which gave Type II spectra, the
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particle size calculated from the XRD pattern (Fig. 5b and d)
was less than that of the size determined from electron micro-
graphs. This was probably due to the polycrystalline nature of

the synthesized GNPs [23]. The ratio of optical density
between the (200) and (111) Bragg’s diffraction peaks was
calculated to be in the range 0.04–0.16. This is lesser than

the intensity ratio (i.e. 0.52) of conventional bulk gold, indicat-
ing the presence of nanoparticles with (111) facets [24].
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Fourier transform infra-red spectroscopic studies

The biomolecules that could have played a role in the reduc-
tion of GNPs and the subsequent stabilization-capping of
the GNPs were identified using FT-IR (Figs. 6 and 7). There

is presence of strong absorption bands at 1650–1550 cm�1

and 1090–1020 cm�1 region and weaker signals in the 1550–
1350 cm�1 region. In general, the bands found in the 1650–
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1550 cm�1 region correspond to secondary amine NH bend
(�NAH) and the band in the 1090–1020 cm�1 regions is char-
acteristic of ACAN stretching vibration due to the presence of

primary amines [25,26]. The weaker signals found in 1550–
1350 cm�1 region can be assigned to the aromatic nitro com-
pounds. Hence, it can be inferred that primary and secondary

amines found in the polypeptides of proteins could have
played a role in the bioreduction and capping/stabilization of
gold ions into GNPs.
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Mechanism of GNP formation

From the initial studies on extracellular GNP synthesis
[9,18,21] onwards, a 2-step mechanism has been proposed for
GNP formation: (a) reduction of gold (iii) ions to zerovalent

gold by the biomolecules present in the plant extract and, (b)
the stabilization of the agglomerating gold atoms at nano-
size by the enveloping of the biomolecules around them
(Fig. 8). In absence of any evidence to the contrary, we believe
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the same mechanism was operative in case of the GNPs
described in this paper.

Conclusions

Aquatic weed pistia (P. stratiotes) was successfully utilized for
the synthesis of gold nanoparticles (GNPs). Extracts from all
the parts of the plant – the aerial as well as the submerged –
were able to successfully induce GNP formation. SEM,

TEM, FT-IR, EDX, XRD, and SAED studies reveal that
based on the concentration of the extract relative to Au (III),
different sizes and shapes of nanoparticles were generated. It

was possible to obtain isotropic spherical or anisotropic
triangular, hexagonal, pentagonal and truncated triangular
shaped GNPs of different sizes. Given the fact that pistia is

freely available in large quantities, with no other recognized
use, the present method opens up a possibility for large-scale
utilization of pistia in synthesizing GNPs in a rapid, non-
polluting, energy frugal, and inexpensive manner.
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