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Abstract A gene signature was previously found to be correlated with mosaic adenovirus 26 
vaccine protection in simian immunodeficiency virus and simian-human immunodeficiency virus chal-
lenge models in non-human primates. In this report, we investigated the presence of this signature 
as a correlate of reduced risk in human clinical trials and potential mechanisms of protection. The 
absence of this gene signature in the DNA/rAd5 human vaccine trial, which did not show efficacy, 
strengthens our hypothesis that this signature is only enriched in studies that demonstrated protec-
tion. This gene signature was enriched in the partially effective RV144 human trial that administered 
the ALVAC/protein vaccine, and we find that the signature associates with both decreased risk of 
HIV-1 acquisition and increased vaccine efficacy (VE). Total RNA-seq in a clinical trial that used the 
same vaccine regimen as the RV144 HIV vaccine implicated antibody-dependent cellular phago-
cytosis (ADCP) as a potential mechanism of vaccine protection. CITE-seq profiling of 53 surface 
markers and transcriptomes of 53,777 single cells from the same trial showed that genes in this 
signature were primarily expressed in cells belonging to the myeloid lineage, including monocytes, 
which are major effector cells for ADCP. The consistent association of this transcriptome signature 
with VE represents a tool both to identify potential mechanisms, as with ADCP here, and to screen 
novel approaches to accelerate the development of new vaccine candidates.
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Introduction
The only HIV vaccine in ongoing human efficacy trials employs an adenovirus serotype 26 (Ad26)-
based vector, but tests a different route of infection and geographic population compared to African 
women in whom it failed to show efficacy (Mega, 2019; NIH, 2017; NIH, 2021). Vaccines from these 
trials were previously tested in non-human primates (NHPs) and showed partial protection from infec-
tion (Barouch et al., 2015; Barouch et al., 2018). To date, the pivotal RV144 phase three human effi-
cacy trial conducted in Thailand is the only vaccine to show any protection against HIV (Rerks-Ngarm 
et  al., 2009). This vaccine used a canary-pox ALVAC-based vector with a bivalent gp120 protein 
boost. Although neither of the vaccine regimens using Ad26 or canary-pox viral vectors were fully effi-
cacious, there is some consensus that current preventive and treatment methods along with a moder-
ately effective vaccine could potentially reduce the HIV pandemic (Anderson et al., 1995; Andersson 
et al., 2007; Fauci, 2017; Medlock et al., 2017). While a number of correlates of vaccine protec-
tion have been described for these studies, protection mediated by the humoral immune systems, 
including HIV-1 specific IgG antibody titers, antibody Fc polyfunctionality, antibody interactions with 
HLA class II gene products, and antibody effector functions, has been key features of these partially 
effective vaccines (Barouch et al., 2015; Barouch et al., 2018; Haynes et al., 2012; Prentice et al., 
2015).

We previously showed that a vaccine-induced gene signature identified in B cells by an unbiased 
transcriptome-wide RNA-seq approach associated with decreased risk against simian immunodefi-
ciency virus (SIV)/simian-human immunodeficiency virus (SHIV) infection in NHP studies evaluating 
the Ad26 vaccine (Ehrenberg et al., 2019). This geneset was also enriched in NHP and the human 
RV144 trial that employed a vaccine containing the ALVAC viral vector (Ehrenberg et al., 2019). This 
gene signature is not merely a general response elicited by vaccination, as it was not enriched in 
the Ad26-MVA arm of the SHIV challenge in NHP that showed some protection previously (Barouch 
et al., 2018). This gene signature was initially defined when comparing differentially expressed genes 
(DEGs) between B cells and monocytes from vaccinated individuals in an Influenza immunogenicity 
trial (Nakaya et  al., 2011). The geneset that was submitted to the molecular signature database 
(MSigdb) comprised the top 200 genes that were upregulated in monocytes compared to B cells. 
In our previous study, specific genes in this geneset were upregulated in the uninfected compared 
to the infected group in multiple SIV/HIV trials (Ehrenberg et  al., 2019). Genes that were previ-
ously correlated with immunogenicity in human vaccine trials of influenza and yellow fever, including 
TNFSF13 (APRIL), were also enriched in uninfected rhesus monkeys in the NHP studies (Li et al., 2014; 
Nakaya et al., 2011). Although we first identified this geneset in sorted B cells (Ehrenberg et al., 
2019), we were able to identify the same signature associating with reduced infection in published 
microarray data sets from both bulk unstimulated and in vitro antigen-stimulated PBMC from three 
independent preclinical and clinical studies (Fourati et al., 2019; Vaccari et al., 2018; Vaccari et al., 
2016). To determine if specific immune responses might be driving protection in conjunction with the 
gene signature, we examined whether this geneset associated with these responses measured in the 
NHP studies. We observed that this gene signature was also enriched in animals with the increased 
magnitude of ADCP (Ehrenberg et al., 2019). We propose that this gene signature is a correlate of 
reduced risk of infection in efficacy studies and that further investigation of the enriched genes in the 
geneset could potentially help uncover the mechanism of vaccine protection. Here, we investigate 
this gene signature further as a proxy of vaccine-induced protection in human clinical trials to identify 
the cellular origin, as well as to investigate potential mechanisms for the decreased risk of infection.

Results
Gene signature is absent in a human HIV vaccine trial that did not show 
efficacy
Since the gene signature associated with protection within the vaccinated group in multiple studies 
from different sources and regimens, we wanted to further confirm that this signature was truly asso-
ciated with protection by looking for its presence or absence in a human vaccine trial that failed to 
show efficacy (Supplementary file 1a). We screened for this gene signature in whole-transcriptome 
data within participants vaccinated with the DNA/rAd5 HIV-1 preventive vaccine in the HVTN 505 
human efficacy trial. Immunizations in this trial were halted prior to reaching the clinical endpoint due 
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to lack of efficacy (Hammer et al., 2013). When comparing infection status within vaccinated individ-
uals, enrichment of this gene signature, as defined by the normalized enrichment score (NES), was 
not significant in transcriptome data from sorted B cells or monocytes 1 month after the final immu-
nization (NES=–1.18, p=0.09 and NES=1.12, p=0.18, respectively). This finding further supports our 
hypothesis that this gene signature is associated with protection, as summarized in Table 1.

Genes from this signature are the strongest correlate of protection in 
RV144
In previous analyses of NHP preclinical studies, we utilized a composite gene expression score (GES) 
consisting of an average of standardized expression of the specific number of enriched genes in one 
study to predict infection status in an independent study using the overlapping expressed genes from 
the first study (Ehrenberg et al., 2019). While this method is successful in evaluating gene signa-
tures in studies using similar vaccine strategies, we wanted to explore this approach across different 
studies using diverse platforms. For each independent study, we computed a GES derived from genes 
within the geneset that were enriched in uninfected donors by averaging standardized expression 
and showed that it associates with decreased HIV-1 infection (Figure 1). The magnitude of the GES 
and total number of enriched genes present in the gene signature are specific to each study and are 
higher in the uninfected compared to infected animals in the two NHP preclinical trials evaluating the 
mosaic Ad26 vaccine (09–11 and 13–19), including the different arms of the 13–19 study (13–19 a-b) 
(Figure 1A–C). Further, in the RV144 trial, the GES of 63 enriched genes in the gene signature also was 
higher in the vaccinated individuals that remained uninfected (Figure 1D). The number of enriched 
genes in each study might vary due to global differences in the vaccine strategies, but we consistently 
observed that higher GES associated with protection from HIV acquisition. We took advantage of the 
composite GES measurement to compare it with the other known primary correlates of HIV-1 infection 
risk in the human RV144 trial. IgG antibodies binding to the variable regions 1–2 (V1V2) of the HIV-1 
Envelope (Env) have been shown to correlate with decreased risk of infection, while IgA binding to 
Env associated with increased risk of infection (Haynes et al., 2012). We show that the association 
of the GES in RV144 is a stronger correlate of reduced risk of infection than the previously described 
V1V2-specific IgG antibodies (Figure  2A). Cumulative incidence curves of HIV-1 infection showed 
decreased rates of infection among vaccine recipients with high GES (Figure 2B). Estimated vaccine 
efficacy (VE) was higher among vaccine recipients with higher GES (Figure 2C). The distribution of 
area under the receiver operating characteristic curve (AUC) and accuracy suggested that GES was 
also able to predict HIV-1 infection (Figure 2D). The effect of GES was also tested in RV144 vaccine 
and placebo participants who became infected during the trial (Rolland et al., 2012). If the GES was 
associated with VE, we would expect that vaccinees with a high GES would not get infected, hence 
vaccinees who became infected should have lower GES than placebo participants (who reflect the 
entire distribution of GES). This was observed across 43 breakthrough participants, with a significant 
difference among participants infected with single HIV-1 founder variants (N=29) (Figure 2—figure 
supplement 1). These findings strengthen the hypothesis that the GES is associated with VE.

Table 1. Gene signature associates with vaccine protection in multiple trials.

Study Vaccine regimen Species Partial protection
 
N Method Protective signature

09–11 Ad26/gp140 NHP Y 10 RNA-seq Y

13–19 Ad26/gp140 NHP Y 11 RNA-seq Y

13–19 A26/Ad26+ gp140 NHP Y 12 RNA-seq Y

13–19 Ad26/MVA+ gp140 NHP Y 9 RNA-seq N

ALVAC-SIV/gp120 NHP Y 27 Microarray Y

DNA-SIV/ALVAC+ gp120 NHP Y 12 Microarray Y

RV144 ALVAC/gp120 Human Y 170 Microarray Y

HVTN 505 DNA/rAd5 Human N 42 RNA-seq N

https://doi.org/10.7554/eLife.69577
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Gene signature associates with an antibody effector function in a 
human vaccine trial
Immune responses correlating with this signature can provide additional insights into mechanisms that 
could be harnessed to improve vaccine design. We previously showed in the NHP studies that the 
protective gene signature that was enriched in uninfected monkeys after Ad26/gp140 vaccination was 
also associated with higher magnitude of ADCP (Ehrenberg et al., 2019). In the RV144 human trial 
a number of immunological parameters were previously measured as part of the immune-correlates 
analysis, but not ADCP. The RV306 immunogenicity trial that employed a similar prime-boost RV144 
vaccine regimen with additional late boosts provided us with a unique opportunity to test if the gene 
signature was associated with ADCP (Pitisuttithum et al., 2020). We generated transcriptome-wide 
gene expression data from peripheral blood 2 weeks after the RV144 vaccine regimen (prior to the 
additional boosts) and assessed for enrichment of the gene signature with the magnitude of ADCP 
measured at the same time point in 24 participants. The gene signature with 118 enriched genes was 
significantly associated with higher magnitude of ADCP (NES=3.0, p<0.001) (Figure 3A, Supplemen-
tary file 1b). Using the same geneset, 93 genes were found to be enriched in a subset of overlapping 

Figure 1. Composite gene expression scores (GES) are higher in the uninfected compared to infected groups. GES computed from enriched genes 
in the geneset is higher in the uninfected compared to infected vaccinated NHP and humans. (A) Ad26/gp140 (09–11 NHP SIV challenge study, 
58 enriched genes, N=10), (B) Ad26/gp140 (13–19 NHP SHIV challenge study, 58 enriched genes, N=11), (C) Ad26/Ad26+ gp140 (13–19 NHP SHIV 
challenge study, 68 enriched genes, N=12), and (D) ALVAC/gp 120 (RV144 human efficacy trial, 63 enriched genes, N=170). Statistical significance 
was calculated by either Mann-Whitney or unpaired t-test. NHP, non-human primate; SHIV, simian-human immunodeficiency virus; SIV, simian 
immunodeficiency virus.

https://doi.org/10.7554/eLife.69577
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participants (N=21), where samples were collected 3 days after the RV144 immunizations (NES=2.5, 
p<0.001) (Figure 3A, Supplementary file 1b). The model built using ADCP GES from day 3 was able 
to predict ADCP responses measured 2 weeks after the last vaccination with an accuracy of 0.71. The 
receiver operator characteristic (ROC) curve illustrates the discriminating ability of the classifier from 
the day 3 training data set (AUC=0.8, 95%  confidence interval [CI]: 0.6–0.99, p=0.01) and the week 
2 testing data set (AUC=0.73, 95% CI: 0.5–0.95, p=0.03) to predict ADCP responses (Figure 3B). To 
evaluate these findings in the context of an efficacy trial, a GES from the list of enriched genes asso-
ciating with ADCP from both time points was computed in the RV144 study. ADCP GES from both 

Figure 2. GES is a stronger correlate of reduced risk of infection in RV144. A GES of the 63 enriched genes in the RV144 study was examined as a 
continuous variable (N=170). (A) GES is associated with lower odds of HIV acquisition compared to the other two primary correlates of risk. Variables 
were measured at week 26, 2 weeks post last vaccination. For each variable, the OR is reported per 1-SD increase. Transcriptome data was available 
only in a subset of the 246 donors. (B) Probability of acquiring HIV-1 is lower in individuals with higher GES. (C) Vaccine efficacy is increased significantly 
in individuals with high GES. (D) Distribution of AUC and accuracy plotted after repeating the process 1000 times showed that GES could predict HIV-1 
infection with AUC of 0.67±0.08 and with accuracy of 0.81±0.04. GES, gene expression score.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Association of the GES with HIV-1 breakthrough infections in a human vaccine trial.

https://doi.org/10.7554/eLife.69577
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time points correlated strongly with the protective RV144 GES (Rho=0.74, p=2.2e−16, Rho=0.75, 
p=2.2e−16) (Figure 3C–D). Given the strong correlation in RV144 for the enriched genes from both 
time points with infection status, we investigated the overlapping 82 genes from day 3 and week 2 
time points in a prediction analysis (Figure 4A–B). In addition to being able to successfully predict 
ADCP magnitude, the genes also show a very clear distinction between the high versus low ADCP 
groups at both time points (Figure 4C, Supplementary file 1b). To gain understanding of the poten-
tial role of the 82 genes, we used GeneMANIA to explore the gene function of the 82 overlapping 

Figure 3. Strong relationship between functional ADCP responses in a human vaccine trial and the protective RV144 signature. The geneset 
that associated with protection in an efficacy study was also enriched with higher magnitude of ADCP measured 2 weeks after vaccination in an 
immunogenicity trial that employed the RV144 vaccine regimen. NES from RNA-seq data at time points (A) 2 weeks (118 enriched genes) (N=24) and 
3 days (93 enriched genes) (N=21) post the RV144 vaccine regimen in the RV306 trial are indicated. (B) The model built using ADCP GES from day 3 
was able to predict ADCP responses measured 2 weeks after the last vaccination with an accuracy of 0.71. The ROC curve illustrates the discriminating 
ability of the classifier from the day 3 training data set (AUC=0.8, 95% CI: 0.6–0.99, p=0.01) and the week 2 testing data set (AUC=0.73, 95% CI: 0.5–0.95, 
p=0.03) to predict ADCP responses. (C) GES computed from the enriched genes associating with ADCP correlated strongly with the protective GES 
in the RV144 study (N=170) at time points 2 weeks (115 enriched genes) and (D) 3 days (91 enriched genes) post the RV144 vaccine regimen. ADCP, 
antibody-dependent cellular phagocytosis; CI, confidence interval; GES, gene expression score; NES, normalized enrichment score.

https://doi.org/10.7554/eLife.69577
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Figure 4. Overlapping enriched genes associating with ADCP responses. (A) There were 82 overlapping genes between the day 3 (N=21) and week 
2 (N=24) ADCP enriched genes in the RV306 study. (B) The model using GES obtained from the 82 genes was also able to predict ADCP responses 
measured 2 weeks after vaccination with an accuracy of 0.71. The ROC curve illustrates the discriminating ability of the classifier from the day 3 training 
data set (AUC=0.81, 95% CI: 0.62–1, p=0.007) and the week 2 testing data set (AUC=0.75, 95% CI: 0.53–0.97, p=0.02) to predict ADCP responses. (C) 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.69577
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genes based on physical interaction, co-expression, co-localization, and shared pathways. There 
were 41 genes that belonged to specific top pathways including the immune system, innate immune 
system, signaling by interleukins, hallmark inflammatory response, hallmark TNFA signaling via NFKB, 
cell-cell communication, interleukin-10 signaling, signal regulatory protein family interactions, and 
pentose phosphate pathway (Figure 4D, Supplementary file 1c). A focused search for gene ontology 
(GO) terms identified four genes with phagocytosis pathway membership (TYROBP, SIRPA, SIRPB1, 
and RAB20) (Supplementary file 1d).

Pathways and genes shared between ADCP and vaccine protection 
phenotypes
These findings demonstrate a strong link of the geneset with both vaccine protection and ADCP in 
NHP and human studies. We sought to broaden our understanding of the relationship between the 
different enriched genes in the geneset and establish some of the top pathways with gene member-
ship from the different studies. Networks and associated pathways from genes that were significantly 
enriched with either the ADCP or infection phenotypes from the 09–11, 13–19, RV144, and RV306 
studies were determined using GeneMANIA. The top pathways were the immune system, innate 
immune system, H1F1 TF pathway, hypoxia, TNFA signaling via NFKB, cytokine signaling, inflamma-
tion response, signaling by interleukins, and IL-10 signaling (Figure 5A). The genes with the most 
connections were TYROBP, FPR1, CD14, CCR1, TNFRSF1B, CD68, CD63, CEBPD, and LST1. Clus-
tering on the enriched genes to identify highly interconnected regions in the GeneMANIA network 
showed that TYROBP, FPR1, CD14, TNFRSF1B, CD68, and LST1 were all members of the cluster with 
the greatest number of genes (Figure 5B). There were no specific enriched genes that were common 
to all studies (Supplementary file 1b). Pathway enrichment analysis of the 63 genes in the RV144 
signature revealed that the top non-redundant enriched clusters with gene membership were myeloid 
leukocyte activation, lysosome, and cellular response to oxidative stress genes (Figure 5C).

Cellular origin of the protective genes by single-cell transcriptomics
To dissect the cellular origin of these genes, we performed simultaneous detection of mRNA and cell 
surface expression from single cells using the cellular indexing of transcriptomes and epitopes by 
sequencing (CITE-seq) technology in a subset of the vaccinated RV306 participants (Figure 6A). This 
technology allows simultaneous detection of cell surface markers and mRNA gene expression from 
the same single cells. Our analyses revealed that a majority of the genes in the RV144 signature were 
expressed in cells of the myeloid lineage, with monocyte subsets having the highest average gene 
expression (Figure 6B). A subset of 32 genes were also significantly associated with decreased risk of 
acquisition in a univariate analysis (odds ratio [OR ]<1.0, p<0.05, q<0.1) (Figure 6C). A GES of the 32 
significant genes is also associated with decreased risk of acquisition, increased VE, and was able to 
predict infection status in RV144 (Figure 6—figure supplement 1A-D). A stepwise logistic regression 
analysis identified specific genes (SEMA4A, SLC36A1, SERINC5, IL17RA, CTSD, CD68, and GAA) 
to have independent associations with reduced risk of acquisition and was mainly expressed in the 
monocyte compartment (Figure 6D). CD14+ monocytes also had the greatest number of DEGs that 
were associated with ADCP, which was not dependent on the frequency of the cell subset (Figure 6E, 
Figure 6—figure supplement 2).

Discussion
Though an effective vaccine has been a challenge for the HIV field, we see a glimpse of optimism in 
partially protective NHP and human studies (Barouch et al., 2015; Barouch et al., 2013; Barouch 

Heatmap showing the hierarchical clustering of gene expression of the 82 genes (day 3 and week 2 after 4th vaccination) when stratified by magnitude 
of ADCP responses measured 2 weeks after the 4th immunization. (D) The list of 82 ADCP enriched genes was uploaded in GeneMANIA. Edges 
represent physical interactions, co-expression, co-localization, and shared pathways. Circles depict the 82 genes, gold circles are the four genes that 
belong to the gene ontology Phagocytosis pathway, blue circles are genes that are directly connected to them, diamonds indicate related pathways, 
and the color of the edge indicates the type of connection. ADCP, antibody-dependent cellular phagocytosis; CI, confidence interval; GES, gene 
expression score; ROC, receiver operator characteristic.

Figure 4 continued

https://doi.org/10.7554/eLife.69577
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et al., 2018; Rerks-Ngarm et al., 2009; Vaccari et al., 2018; Vaccari et al., 2016). These studies 
provide a unique opportunity to identify correlates of reduced risk that could help inform protective 
signals and enable the design of enhanced vaccine strategies. Targeted and unbiased approaches 
have implicated non-neutralizing antibodies as the major correlate of reduced risk of HIV infection 
(Barouch et al., 2015; Barouch et al., 2013; Barouch et al., 2018; Haynes et al., 2012; Vaccari 
et al., 2018; Vaccari et al., 2016). We previously showed that a transcriptomic signature first identi-
fied in sorted B cells at time points prior to challenge was a correlate of protection in two NHP studies 
after administration of the Ad26/gp140 vaccine. This signature is also associated with the increased 
magnitude of ADCP in the vaccinated monkeys (Ehrenberg et al., 2019). Additionally, we identified 

Figure 5. Pathway analyses of the enriched genes in the different vaccine studies. A meta-analysis of pathways including enriched genes with reduced 
infection or higher ADCP was performed. (A) Genes that were enriched in at least one of the nine ADCP or infection status analyses (178) were used 
as input for GeneMANIA in Cytoscape. The connections between the different genes and the top MSigDB and Reactome pathways are shown. Each 
gene is represented by a circle and size is proportional to the number of connections with other genes or pathways. The color of each node indicates 
the enrichment status in the different studies. (B) Clustering of the enriched genes from the different studies. The color of each node represents the 
membership in a cluster and size is proportional to the number of connections with other genes or pathways. (C) Pathway enrichment analysis results of 
the 63 enriched genes that associated with reduced infection in the RV144 study. ADCP, antibody-dependent cellular phagocytosis.

https://doi.org/10.7554/eLife.69577
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Figure 6. Cellular origin of the RV144 signature. Single-cell CITE-seq in vaccinated participants (N=12) who received the RV144 vaccine regimen 
(day 3 after last vaccination) identified expression of the genes in the signature in cells from the myeloid lineage. (A) Clustering based on cell surface 
expression of CITE-seq data. (B) Heatmap of the mRNA expression of the 63 genes from the RV144 signature from single cells. Columns represent single 
cells from different protein cell subsets and rows the mRNA gene expression. (C) Radar plot showing significant genes in the signature that associated 
with decreased risk of infection in RV144 (p<0.05, q<0.1) (N=170). (D) Feature plots of the expression of the most protective genes show that SEMA4A, 
IL17RA, CTSD, CD68, and GAA were mainly expressed in monocytes. (E) CD14+ monocytes had the highest number of differentially expressed genes 
(DEGs) when comparing high versus low ADCP (2 weeks after vaccination) from single-cell CITE-seq vaccinated participants who received the RV144 
vaccine regimen (day 3 after last vaccination). ADCP, antibody-dependent cellular phagocytosis.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. GES of the most significant genes is a correlate of reduced risk of infection in RV144.

Figure supplement 2. Frequencies of cell subsets do not differ between ADCP high and low samples.

https://doi.org/10.7554/eLife.69577
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this signature in bulk PBMC from other studies that used the ALVAC/protein regimen, suggesting that 
the gene signature might be an indicator of effective vaccination. In this report, we further investi-
gated this gene signature to answer the following questions, including: (1) can the gene signature’s 
association with protection be substantiated in additional human efficacy trials, (2) does it associate 
with ADCP in human trials, and (3) what is the cellular origin of the signature at the single-cell level?

The gene signature was previously associated with HIV vaccine protection in a number of studies 
with partial protection (Ehrenberg et  al., 2019). We hypothesized that if this geneset was a true 
marker of HIV vaccine protection, it would not be enriched in a failed vaccine trial. HVTN 505 is a 
DNA based vaccine which, despite not showing overall efficacy in a Phase 2b trial, demonstrated both 
cellular and antibody effector mediated protection in specific subgroups of individuals in follow-up 
studies (Fong et al., 2018; Janes et al., 2017; Neidich et al., 2019). We performed transcriptomics 
on sorted cell subsets from HVTN 505 vaccinated individuals and did not observe enrichment of the 
gene signature, further strengthening our notion that the geneset could be a proxy for vaccine protec-
tion. Given that this signature is derived by comparing infected versus uninfected vaccinated groups, 
this analysis was only tested in studies with partial protection, and not in vaccine regimens where all 
recipients were infected.

Next, we developed a method to assess this gene signature compared to other correlates of risk 
in the human RV144 study. This method employs an analytical method using a GES which is computa-
tional score generated from the average expression of all genes enriched in the signature and associ-
ating with a phenotype. This method was tested across different NHP studies and RV144 and showed 
consistent association with reduced risk of infection based on the study-specific GES. The composite 
GES computed from RV144 consisting of the standardized expression of 63 genes had the strongest 
association with decreased risk of infection and increased vaccine efficacy. The RV144 GES was also 
able to accurately predict infection status in the study. This study shows that the GES composite score 
provides a robust analytical measurement to explore the effect of genes as a continuous variable in 
immune-correlates analyses, and that it could be applied to other ongoing efficacy studies. Further, 
the analysis of RV144 breakthrough infections was consistent with GES being lower in the vaccinated 
infected participants compared to placebos and hence protective. These observations, albeit only 
significant in the group infected with single founder viruses, strengthen the premise of the RV144 GES 
being a correlate of reduced risk of infection.

We previously showed in NHP challenge studies that the gene signature correlated with an increased 
magnitude of functional antibody responses (Ehrenberg et al., 2019). Although this geneset is asso-
ciated with ADCP in NHP, the same analyses were previously not possible in the human RV144 study 
since this immune response was not reported (Haynes et al., 2012). ADCP has since been implicated 
with vaccine protection in a number of NHP challenge studies (Ackerman et al., 2018; Barouch et al., 
2015; Barouch et al., 2013; Barouch et al., 2018; Bradley et al., 2017; Neidich et al., 2019). It is 
reported that ADCP could be involved in most studies that previously showed antibody-dependent 
correlates of protection against viruses (Tay et al., 2019b). To investigate the effect of the gene signa-
ture on the magnitude of ADCP, we performed transcriptomics in samples from a human trial (RV306) 
that employed the same RV144 regimen. At both day 3 and 2 weeks after the 4th vaccine corre-
sponding to the last RV144 vaccine dose, this signature was associated with an increased magnitude 
of ADCP responses. A strong correlation was also observed between GES from the ADCP enriched 
genes and the vaccine protection genes in RV144. The ADCP GES at both day 3 and week 2 after 
the last vaccination was able to predict ADCP magnitude at peak immunity. Similarly, a GES of the 
82 overlapping genes between the two time points was also able to predict ADCP magnitude. This 
finding would suggest that measuring gene expression 3 days after vaccination in preclinical and clin-
ical trials may be used as a tool for titrating effective responses. Although the 82 genes did not have 
membership in a previously described Fc-gamma receptor signaling pathway, a GO query identified 
SIRPA, SIRPB1, RAB20, and TYROBP in the phagocytosis GO term (Swanson and Hoppe, 2004) 
(http://amigo.geneontology.org/amigo/term/GO:0006909#display-lineage-tab). These four genes 
were also connected to an additional 44 genes from the total 178 genes enriched in at least one of 
our GSEA analyses, supporting a possible role in phagocytosis (Supplementary file 1d). SIRPA and 
SIRPB are signal regulatory proteins that are expressed on myeloid cells, and the former is known 
to bind to CD47 to regulate migration and phagocytosis (Barclay, 2009). RAB20 is a member of the 
Rab GTPase family and is involved in phagosome maturation (Seto et al., 2011). Finally, TYROBP 
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had the maximum connections in a network of these genes, was present in the largest cluster, and 
was related to other highly connected genes expressed in effector cells such as monocytes or neutro-
phils. TYROBP (DAP12) is a cytosolic adaptor that associates with triggering receptors expressed on 
myeloid cells (TREMs) to promote phagocytosis (N’Diaye et al., 2009). Genes such as TNFSF13 and 
BHLHE40 that were previously identified as protective against SIV/SHIV acquisition in the NHP model 
were also present in the same cluster, supporting a similar function (Ehrenberg et al., 2019). Taken 
together, these findings provide evidence supporting the antibody-mediated effector function as a 
potential mechanistic basis of this protective gene signature.

The enriched genes from ADCP and infection risk in multiple studies of both NHP and human were 
involved in overlapping functions related to leukocyte activation, lysosomal degradation, and immune 
stimulation by cytokines. The 63 genes from the RV144 signature had the highest membership in 
the myeloid leukocyte activation pathway, perhaps alluding to the cellular origin of this signature. 
The specific genes in the geneset that associated with the greatest odds of reduced risk of infection 
including SEMA4A, CTSD, CD68, and GAA were all members of this pathway, but not TNFSF13 (APRIL) 
which was the most protective gene in the NHP studies. Although the geneset of interest was first 
seen in sorted B cells from vaccinated NHP, it was subsequently identified in transcriptomic data from 
PBMC in the RV144 study (Ehrenberg et al., 2019). While samples were exhausted from the RV144 
primary data set, the RV306 clinical trial that employed the same ALVAC/protein vaccine regimen 
gave us a unique chance to explore the cellular origin of the RV144 signature using single-cell tran-
scriptomics. Single-cell surface expression data revealed that the majority of genes were expressed in 
monocytes, which was not surprising given the fact that this geneset was originally defined as genes 
downregulated in B cells compared to monocytes after influenza vaccination (Nakaya et al., 2011). 
While our initial study found this signature in sorted B cells from the NHP challenge studies, single-cell 
data provides further insight that monocytes could be the cellular origin of these genes in the RV144 
study. Although monocytes were classified as mononuclear phagocytes almost 50 years ago, assays 
designed to specifically measure monocyte ADCP were not widely used in the context of vaccination 
until a few years ago (van Furth et al., 1972). While monocytes have been implicated in vaccine-
induced protection in preclinical vaccine trials of SIV challenge, our findings in human trials at the 
single-cell level provide greater impetus to explore the role of other non-lymphoid cell populations on 
HIV-1 VE (Gorini et al., 2020; Vaccari et al., 2018). Though we think that monocytes are important in 
the vaccine responses observed in RV144, it would be remiss not to mention that the effect of granu-
locytes (including neutrophils) in response to vaccination is missed when transcriptomics is performed 
in PBMC compared to blood. Regardless of the cellular origin, we think this set of 200 genes with a 
coordinated expression may not be specific to a cell type, but might mark a certain biological state, 
such as response to a cytokine, and can be identified even in PBMC and blood samples. Other than 
the phagocytic cell, antibody and Fc receptor diversity can also influence ADCP mediated immune 
responses to viral pathogens and are elements that warrant further study and may potentially be 
manipulated to improve VE (Chung and Alter, 2017; Geraghty et al., 2019; Tay et al., 2019b).

Our data demonstrate the potential to discover novel protective correlates using an approach 
that mines transcriptomic data in multiple preclinical and clinical trials. Unbiased transcriptome-wide 
analyses are able to identify biological perturbations that associate with vaccine protection even when 
differences are small, but credibility can only be strengthened by replicating findings across multiple 
studies. Gene signatures that associate not only with vaccine protection but with specific immune 
responses can be a prospective tool to evaluate vaccine effectiveness even prior to challenge or 
infection. Developing analytical tools that can interface with phenotypes such as vaccine protection 
across human and preclinical studies can allow for more systematic meta-analyses of data emerging 
from the ongoing, non-efficacious, or halted HIV vaccine clinical trials (Gray et al., 2021; NIH, 2020; 
NIH, 2021). We propose that assessment of such gene signatures with immune responses in human 
immunogenicity trials could provide orthogonal insight for down-selection of vaccine candidates. 
Identifying overlapping immune correlates could be pivotal to making discoveries that may allow for 
licensure and subsequent bridging studies of an effective HIV vaccine.

https://doi.org/10.7554/eLife.69577
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Materials and methods
Study design
The aim of the study was post hoc analyses of a protective gene expression signature identified previ-
ously in five SIV/HIV vaccine studies with efficacy and immune response data (Ehrenberg et al., 2019). 
To enable interpretation of this gene signature, bulk RNA-seq, scRNA-seq, and functional data were 
generated in clinical samples from the RV306 and HVTN 505 human trials. The RV306 vaccine trial was 
conducted in Thailand and all participants received the primary RV144 ALVAC/gp120 vaccine series, 
with additional late boosts assigned to specific groups (Pitisuttithum et al., 2020). Bulk RNA-seq was 
performed in 24 participants 2 weeks after the RV144 vaccine regimen (week 26). Additionally, RNA-
seq was also performed 3 days after the same primary endpoint. The HVTN 505 trial used a DNA/rAd5 
vaccine regimen to test safety and efficacy in a US population (Hammer et al., 2013). PBMC collected 
1 month after the final immunization (month 7) was available from 47 vaccines in the HVTN 505 study 
for RNA-seq (Hammer et al., 2013). The infection status of the vaccinees (22 cases and 25 controls) 
was categorized based on infection status between months 7 and 24. Microarray transcriptome data 
from PBMC and immune response data for 170 vaccinated individuals from the RV144 study at time 
point 2 weeks post last vaccination was used for correlates analyses (Fourati et al., 2019; Haynes 
et al., 2012). All studies were approved by the participating local and international institution review 
boards. Informed consent was obtained from all participants in the different trials included in this 
study (Hammer et al., 2013; Pitisuttithum et al., 2020).

Bulk transcriptomics
RNA was extracted from sorted B cells (Aqua live/dead−CD20+CD3−) and monocytes (Aqua live/
dead−CD20−CD3−CD56−HLA-DR+CD14+) from PBMC of HVTN 505 vaccinees using RNAzolRT (MRC 
Inc) as per recommendations from the manufacturer. For the preparation of mRNA libraries, polyade-
nylated transcripts were purified on oligo-dT magnetic beads, fragmented, reverse transcribed using 
random hexamers, and incorporated into barcoded cDNA libraries based on the Illumina TruSeq plat-
form. Next, libraries were validated by electrophoresis, quantified, pooled, and clustered on Illumina 
TruSeq v2 flow cells. Clustered flow cells were sequenced on an Illumina HiSeq (2000/4000) using 
2×75  base paired-end runs. Total RNA from RV306 participants was extracted from whole blood 
collected in PAXgene Blood RNA tubes using associated RNA extraction (both QIAGEN; German-
town, MD) and GlobinClear purification kits (Thermo Fisher Scientific; Waltham, MA) as per the manu-
facturer’s suggestions. RNA-seq was performed using the SMART-Seq technology (Picelli et al., 2014; 
Ramsköld et al., 2012). Briefly, cDNA was generated from 10 ng of RNA using the SMART-Seq v4 
UltraLow Input RNA Prep Kit (Takara Bio Inc) as per the manufacturer’s suggestions, with control 
RNA spiked-in (Thermo Fisher Scientific). Sequencing libraries were generated using the Nextera XT 
DNA Sample Prep Kit (Illumina, San Diego, CA). Concentration of each sample in the pooled libraries 
was determined using the paired-end 300-cycle MiSeq Reagent Nano Kit v2 (2×150 bp) on a MiSeq 
instrument (both Illumina). Next-generation sequencing was performed on a final adjusted library pool 
using the paired-end 300-cycle NovaSeq 6000 S2 XP Reagent Kit (2×150 bp) on a NovaSeq instru-
ment (both Illumina) as per the manufacturer’s instructions. Fastp v0.19.7 and Trimmomatic v0.33 with 
default parameters were used to trim low-quality bases from both ends of each read (Bolger et al., 
2014; Chen et al., 2018). Trimmed reads were aligned to the human genome (GRCh38 build 88–92) 
using HISAT2 v2.1.0 or the STAR aligner (v2.4.2a) and HTSeq (v0.6.1–0.9.1) was used for counting 
(Dobin et al., 2013; Kim et al., 2015; Anders et al., 2015). Trimmed mean of M-values normalization 
method, as implemented in the R package edgeR, was used for normalization (Robinson et al., 2010).

Single-cell transcriptomics
Simultaneous evaluation of mRNA and cell surface expression from single cells was performed using 
feature barcoding (FB) technology from 10× Genomics, based on the CITE-seq technology (Stoeckius 
et al., 2017). Cell hashing (HTO) was used in conjunction with the 10× Genomics 5’V(D)J Feature 
Barcoding Kit to generate single-cell mRNA gene expression (GEX) and antibody-derived tag (ADT) 
libraries (Stoeckius et al., 2017; Stoeckius et al., 2018). Briefly, PBMC from 12 samples were hashed 
using TotalSeq-C anti-human Hashtag antibodies and combined into two batches. In each batch, 
surface proteins were stained with a cocktail of 53 TotalSeq-C antibodies (BioLegend). Antibody 
concentrations were either predetermined by titration (Kotliarov et al., 2020) or used at a default 
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concentration. 50,000 cells from each batch were loaded onto each of four wells of a Chromium chip, 
and GEX and ADT (HTO and FB) libraries were constructed following the manufacturer’s protocol. 
Libraries were pooled and quantitated using a MiSeq Nano v2 reagent cartridge. Final libraries were 
sequenced on the NovaSeq 6000, S4 reagent cartridge (2×100 bp) (Illumina).

CITE-seq data analyses
FASTQ files were demultiplexed with bcl2fastq v2.20 (Illumina). Alignment and counting were 
performed using Cell Ranger v3.1.0 (10× Genomics) and the human reference files provided by 10× 
Genomics (human genome GRCh38 and Ensembl annotation v93). The average number of genes 
per cell was 1453 and the average number of unique molecular identifiers was 4248. The mean read 
depth per cell was approximately 65,000–84,000. The minimum fraction of reads mapped to the 
genome was 88 % and sequencing saturation was above 85 % for all lanes, with an average of 88 %. 
The computational analysis of ADT data was performed using the Seurat v3.1 package (Stuart et al., 
2019). HTO expression matrices were CLR (Centered Log-Ratio) normalized and demultiplexed using 
MULTIseqDemux. The FB matrices from the Seurat objects were split into cell-positive and negative 
droplet matrices using the HTO demultiplexing results, and were used for DSB (Denoised and Scaled 
by Background) normalization (Kotliarov et al., 2020) (https://cran.r-project.org/web/packages/dsb/​
index.html). Only cells with  <10% mitochondrial genes were retained, and cells were assigned to 
specific donors using the HTO demultiplexing results. A total of 53,777 single cells remained after the 
quality control process. The gene expression matrices for all samples were normalized and integrated 
into a single object in Seurat (Stuart et al., 2019). Based on the workflow described in Kotliarov et al., 
a distance matrix was generated from cell surface protein features (Kotliarov et al., 2020). This matrix 
was used for shared-nearest-neighbor finding and clustering at resolution=0.5. Neighbor finding 
and clustering were performed on the integrated gene expression data at a resolution=0.75  and 
dimensions=1:30. A tSNE (t-distributed stochastic neighbor embedding) was generated from the 
protein data PCA. Seurat was used to generate a heatmap, dotplot, and featureplots. Differential 
gene expression testing was performed within each cluster between the high and low ADCP groups 
using Seurat’s FindMarkers function. ADCP DEG was filtered to genes with >10% expression in either 
group, a log fold change >0.25, and a Bonferroni p<0.05.

ADCP assay
The antibody effector function ADCP was measured as previously described (Ackerman et al., 2011; 
Tay et al., 2019a; Tay et al., 2016). Briefly, A244 gp120 Env-coated fluorescent beads were incubated 
at 37 °C for 2 hr with diluted plasma (1:50) collected at week 26, 2 weeks after administration of the 
RV144 vaccination series. Anti-CD4 monoclonal antibody-treated THP-1 cells (human monocytic cell 
line; ATCC TIB-202) (treated for 15 min at 4 °C) were added to immune complexes and spinoculated 
for 1 hr at 4 °C to allow phagocytosis to occur. Supernatant was removed, cells were washed, and 
fixed in paraformaldehyde. Phagocytosis was measured by flow cytometry and a phagocytosis score 
was calculated as follows: phagocytosis score=(% pos*MFI of Sample)/(% pos*MFI of no-antibody 
PBS control). The HIV-1 CD4 binding-site broadly neutralizing antibody (bnAb), CH31, was used as a 
positive control, and the influenza receptor binding site-specific bnAb, CH65, was used as a negative 
control. Results are representative of two independent experiments.

Pathway analyses
Association of the protective gene signature with infection (HVTN 505) or magnitude of median 
ADCP (RV306) responses were analyzed using the Gene Set Enrichment Analysis (GSEA) method as 
described previously (Ehrenberg et al., 2019; Subramanian et al., 2005). GSEA was performed on 
vaccinated HVTN 505 participants at the visit seven time points, 1 month after the last immunization. 
RNA-seq was performed on samples prior to infection, but participants were categorized based on 
their infection status. GSEA was performed on 45 RV306 RNA-seq samples that also had ADCP scores 
obtained at the week 26 (week 2 after the 4th vaccination) time point. Participants were categorized 
into high and low ADCP groups based on the median values of ADCP measured in a total of 79 
vaccinated participants. The RNA-seq gene expression values at the day 3 and week 2 time points 
were then analyzed for gene enrichment using a gene set of 200 genes, obtained from the Broad 
Institute (GSE29618_BCELL_VS_MONOCYTE_DAY7_FLU_VACCINE_DN), between the two groups 

https://doi.org/10.7554/eLife.69577
https://cran.r-project.org/web/packages/dsb/index.html
https://cran.r-project.org/web/packages/dsb/index.html


 Research article﻿﻿﻿﻿﻿﻿ Microbiology and Infectious Disease

Shangguan et al. eLife 2021;10:e69577. DOI: https://​doi.​org/​10.​7554/​eLife.​69577 � 15 of 24

of samples. The gene signature of interest was considered significantly enriched using a threshold 
of NES ≥1.4 and p<0.001 as described previously (Ehrenberg et al., 2019). The 178 genes enriched 
with ADCP or infection status in any of the nine analyses, as well as the 82 genes overlapping in 
enrichment between the two RV306 time points, were used as search terms in GeneMANIA in the 
Cytoscape software (Montojo et al., 2010; Warde-Farley et al., 2010). We selected connections such 
as co-expression, co-localization, pathway, and physical interactions, as well as Reactome and MSigDB 
for Attributes. Zero additional genes and up to 10 additional attributes were found with GO biological 
process-based weighting. The genes in the nine-analysis network were clustered further using the 
MCODE algorithm in the clusterMaker2 Cytoscape plugin with default settings (Morris et al., 2011). 
Pathway enrichment analysis of the 63 genes enriched in the RV144 infection analysis was performed 
using Metascape with default parameters, database v20210201 (Zhou et al., 2019).

Correlates of protection
Composite GES was computed as the average of standardized expression of normalized enriched 
genes in the gene signature in different vaccine studies. The samples in each vaccine study were 
grouped into outcomes after challenge or infection status after immunization (Barouch et al., 2015; 
Barouch et al., 2018; Rerks-Ngarm et al., 2009). Logistic regression was used for evaluating the 
association between GES and HIV-1 infection in the RV144 study. The fitting methods accommodate 
the two-phase sampling design via maximum likelihood estimation (Breslow and Holubkov, 1997). 
Cumulative HIV-1 incidence curves were plotted for the three subgroups of vaccine recipients defined 
by tertiles into the lower, middle, and upper third of the GES (Low, Medium, and High subgroups), 
as well as for the entire placebo group HIV negative at week 24 (N=6267 subjects) for reference. 
These curves were estimated using the Kaplan-Meier method with inverse probability weighting 
that accounted for the sampling design. Next, VE for the GES subgroups versus the entire placebo 
group was estimated as one minus the odds of infection in vaccine recipients with Low/Medium/High 
response divided by the odds of infection in the entire placebo group HIV-1 negative at week 24 of 
enrollment in the study. The RV144 prediction analysis was implemented by logistic regression. The 
data set was randomly split into training and testing sets in a 7:3 ratio, while retaining class distri-
butions within the groups. The training data set consisted of 119 individuals while the test data set 
consisted of 51 individuals. A logistic regression of GES was fit on to the training data set (Prentice 
et al., 2015). The model’s discriminative ability was evaluated by generating a ROC curve and the 
corresponding AUC on the test data set. The prediction accuracy of the model was also assessed 
on the test data set. The probability that gives minimum misclassification error was chosen as the 
cutoff. This process was repeated 1000 times and the distribution of the resulting AUC and accuracy 
were demonstrated by a histogram with a density curve. Similar analysis was performed using a GES 
computed from the 32 genes that were significantly associated with HIV acquisition.

Among 121 RV144 participants who became infected during the trial and had their HIV-1 genome 
sequenced at diagnosis, 43 had GES measurements computed from microarray data (Fourati et al., 
2019; Rolland et al., 2012). Vaccine and placebo groups were compared overall and after stratifying 
infections with single HIV-1 founders.

Other statistical analyses
Logistic regression that accounted for the sampling design was used for the univariate analyses of the 
63 enriched genes. A radar plot of the significant genes was generated to illustrate OR and 95 % CIs. 
All ORs were reported per 1-SD increase. Significant genes resulted from univariate logistic regres-
sions of the 63 enriched genes were further analyzed with a multivariate stepwise logistic regression 
to identify genes that were independently associated with HIV protection. Akaike information crite-
rion was used to identify the optimal set of genes. The expressed enriched genes associated with 
higher magnitude of ADCP in RV306 at day 3 and 2 weeks post the RV144 vaccine regimen were used 
to compute the ADCP GES in RV144. Spearman correlation was calculated between the ADCP GES 
from the two time points and the infection GES, respectively.

For prediction analyses, a GES was computed using the 93 genes enriched at the day 3 time point 
associating with magnitude of ADCP in RV306. The performance of the classifier was assessed using 
AUC with 95% CI. This model was then tested at the week 2 time point. The prediction accuracy 
of the model was also assessed on the week 2 test data set. The probability that gives minimum 
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misclassification error was chosen as the cutoff. Similar analysis was done using the 82 genes overlap-
ping between the 118 enriched genes from week 2 and the 93 enriched genes from day 3 post the 4th 
RV144 vaccination series that were associated with ADCP in RV306. The average expression values for 
82 overlapping genes in RV306 at the day 3 and week 2 post vaccination time points were stratified by 
ADCP scores to generate a heatmap with the R package pheatmap. Values for each gene were scaled 
and the resulting z-scores were hierarchically clustered using the ‘complete’ method.

All descriptive and inferential statistical analyses were performed using GraphPad Prism 8 
(GraphPad Software) and R 3.6.1 (or later) software packages. Comparison of groups was performed 
using Mann-Whitney tests or t-tests when assumptions were met. All logistic regression models were 
adjusted for gender and baseline risk behavior and one significant principal component axis (Haynes 
et al., 2012; Prentice et al., 2015). A two-sided p-value of less than 0.05 was considered significant. 
The Benjamini and Hochberg method was used to calculate false discovery rate-adjusted p-values for 
multiple testing corrections.
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Appendix 1

Appendix 1-key resources table

Reagent type (species) 
or resource Designation

Source or 
reference Identifiers Additional information

Antibody
Anti-Human CD1c
(Mouse monoclonal) BioLegend

Cat# 331547, Clone L161,
RRID:AB_2800871

10×  Genomics FB Ab 
pool:  
0.25 µg (1:180)

Antibody
Anti-Human CD163
(Mouse monoclonal) BioLegend

Cat# 333637, Clone GHI/61, 
RRID:AB_2810510

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD141
(Mouse monoclonal) BioLegend

Cat# 344125, Clone M80, 
RRID:AB_2810541

10×  Genomics  
FB Ab pool:  
0.5 µg (1:90)

Antibody
Anti-Human CD11a
(Mouse monoclonal) BioLegend

Cat# 350617, Clone TS2/4, 
RRID:AB_2800935

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD197
(Mouse monoclonal) BioLegend

Cat# 353251, Clone G043H7, 
RRID:AB_2800943

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD14
(Mouse monoclonal) BioLegend

Cat# 301859, Clone M5E2, 
RRID:AB_2800736

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD16
(Mouse monoclonal) BioLegend

Cat# 302065, Clone 3G8, 
RRID:AB_2800738

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD19
(Mouse monoclonal) BioLegend

Cat# 302265, Clone HIB19, 
RRID:AB_2800741

10×  Genomics FB  
Ab pool: 0.5 µg (1:90)

Antibody Anti-Human CD45RO (Mouse monoclonal) BioLegend
Cat# 304259, Clone UCHL1, 
RRID:AB_2800766

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD2
(Mouse monoclonal) BioLegend

Cat# 309231, Clone TS1/8, 
RRID:AB_2810464

10×  Genomics  
FB Ab pool:  
0.125 µg (1:360)

Antibody
Anti-Human CD138
(Mouse monoclonal) BioLegend

Cat# 356539, Clone MI15, 
RRID:AB_2810567

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD303
(Mouse monoclonal) BioLegend

Cat# 354241, Clone 201 A, 
RRID:AB_2814295

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD56
(Mouse monoclonal) BioLegend

Cat# 362559, Clone 5.1h11, 
RRID:AB_2801002

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD4
(Mouse monoclonal) BioLegend

Cat# 300567, Clone RPA-T4, 
RRID:AB_2800725

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD3
(Mouse monoclonal) BioLegend

Cat# 300479, Clone UCHT1, 
RRID:AB_2800723

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody Anti-Human CD45RA (Mouse monoclonal) BioLegend
Cat# 304163, Clone HI100, 
RRID:AB_2800764

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD39
(Mouse monoclonal) BioLegend

Cat# 328237, Clone A1, 
RRID:AB_2800853

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD279
(Mouse monoclonal) BioLegend

Cat# 329963, Clone EH12.2H7, 
RRID:AB_2800862

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD8
(Mouse monoclonal) BioLegend

Cat# 344753, Clone SK1, 
RRID:AB_2800922

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD27
(Mouse monoclonal) BioLegend

Cat# 302853, Clone O323, 
RRID:AB_2800747

10×  Genomics  
FB Ab pool:  
0.25 µg (1:180)

Antibody
Anti-Human CD20
(Mouse monoclonal) BioLegend

Cat# 302363, Clone 2H7, 
RRID:AB_2800743

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human HLA-A/B/C (Mouse 
monoclonal) BioLegend

Cat# 311449, Clone W6/32, 
RRID:AB_2800816

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human IgM
(Mouse monoclonal) BioLegend

Cat# 314547, Clone MHM-88, 
RRID:AB_2800835

10×  Genomics  
FB Ab pool:  
0.5 µg (1:90)

Antibody
Anti-Human CD127
(Mouse monoclonal) BioLegend

Cat# 351356, Clone A019D5, 
RRID:AB_2800937

10×  Genomics  
FB Ab pool:  
0.5 µg (1:90)

Antibody
Anti-Human CD195
(Rat monoclonal) BioLegend

Cat# 359137, Clone J418F1, 
RRID:AB_2810570

10×  Genomics  
FB Ab pool:  
0.25 µg (1:180)
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Appendix 1-key resources table

Reagent type (species) 
or resource Designation

Source or 
reference Identifiers Additional information

Antibody Anti-Human HLA-DR (Mouse monoclonal) BioLegend
Cat# 307663, Clone L243, 
RRID:AB_2800795

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human IgG (Fc)
(Rat monoclonal) BioLegend

Cat# 410727, Clone M1310G05, 
RRID:AB_2801087

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody Anti-Human TCR Vd2 (Mouse monoclonal) BioLegend
Cat# 331435, Clone B6, 
RRID:AB_2800864

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human TCR Va7.2 (Mouse 
monoclonal) BioLegend

Cat# 351735, Clone 3C10, 
RRID:AB_2810556

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human TCR Va24-Ja18
(Mouse monoclonal) BioLegend

Cat# 342925, Clone 6B11, 
RRID:AB_2810539

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human TCR g/d
(Mouse monoclonal) BioLegend

Cat# 331231, Clone B1, 
RRID:AB_2814199

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody Anti-Human TCR Vg9 (Mouse monoclonal) BioLegend
Cat# 331313, Clone B3, 
RRID:AB_2814203

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD7
(Mouse monoclonal) BioLegend

Cat# 343127, Clone CD7-6B7, 
RRID:AB_2800914

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD11c
(Mouse monoclonal) BioLegend

Cat# 371521, Clone S-HCL-3, 
RRID:AB_2801018

10×  Genomics  
FB Ab pool:  
0.125 µg (1:360)

Antibody
Anti-Human CD185
(Mouse monoclonal) BioLegend

Cat# 356939, Clone J252D4, 
RRID:AB_2800968

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD1d
(Mouse monoclonal) BioLegend

Cat# 350319, Clone 51.1, 
RRID:AB_2800934

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human IgD
(Mouse monoclonal) BioLegend

Cat# 348245, Clone IA6-2, 
RRID:AB_2810553

10×  Genomics  
FB Ab pool:  
0.5 µg (1:90)

Antibody
Anti-Human CD11b
(Mouse monoclonal) BioLegend

Cat# 301359, Clone ICRF44, 
RRID:AB_2800732

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD62L
(Mouse monoclonal) BioLegend

Cat# 304851, Clone DREG-56, 
RRID:AB_2800770

10×  Genomics FB  
Ab pool: 0.125 µg (1:360)

Antibody
Anti-Human CD66a/c/e (Mouse 
monoclonal) BioLegend

Cat# 342325, Clone ASL-32, 
RRID:AB_2810538

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD15
(Mouse monoclonal) BioLegend

Cat# 323053, Clone W6D3, 
RRID:AB_2800847

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD32
(Mouse monoclonal) BioLegend

Cat# 303225, Clone FUN-2, 
RRID:AB_2814129

10×  Genomics  
FB Ab pool:  
0.5 µg (1:90)

Antibody
Anti-Human CD57
(Mouse monoclonal) BioLegend

Cat# 393321, Clone QA17A04, 
RRID:AB_2801030

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD73
(Mouse monoclonal) BioLegend

Cat# 344031, Clone AD2, 
RRID:AB_2800916

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD123
(Mouse monoclonal) BioLegend

Cat# 306045, Clone 6H6, 
RRID:AB_2800789

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human Mouse IgG1, k Isotype Ctrl
(Mouse monoclonal) BioLegend

Cat# 400187, Clone MOPC-21, 
RRID:AB_2888921

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human Mouse IgG2a, k Isotype Ctrl
(Mouse monoclonal) BioLegend

Cat# 400293, Clone MOPC-173, 
RRID:AB_2888922

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human Mouse IgG2b, k Isotype Ctrl
(Mouse monoclonal) BioLegend

Cat# 400381, Clone MPC-11, 
RRID:AB_2888923

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human Rat IgG2b, k Isotype Ctrl
(Rat monoclonal) BioLegend Cat# 400677, Clone RTK4530

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD28
(Mouse monoclonal) BioLegend

Cat# 302963, Clone CD28.2, 
RRID:AB_2800751

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD161
(Mouse monoclonal) BioLegend

Cat# 339947, Clone HP-3G10, 
RRID:AB_2810532

10×  Genomics FB  
Ab pool: 1 µg (1:45)

 Continued on next page
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Appendix 1-key resources table

Reagent type (species) 
or resource Designation

Source or 
reference Identifiers Additional information

Antibody Anti-Human CD95 (Mouse monoclonal) BioLegend
Cat# 305651, Clone DX2, 
RRID:AB_2800787

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Anti-Human CD38
(Mouse monoclonal) BioLegend

Cat# 303543, Clone HIT2, 
RRID:AB_2800758

10×  Genomics FB  
Ab pool: 1 µg (1:45)

Antibody
Hash1: anti-Human CD298 & b2-
microglobulin (Mouse monoclonals) BioLegend

Cat# 394661, Clone LNH-94; 
2M2
RRID:AB_2801031

10×  Genomics  
Hash Ab input:  
1 µg (1:45)

Antibody
Hash2: anti-Human CD298 & b2-
microglobulin (Mouse monoclonals) BioLegend

Cat# 394663, Clone LNH-94; 
2M2
RRID:AB_2801032

10×  Genomics  
Hash Ab input:  
1 µg (1:45)

Antibody
Hash3: anti-Human CD298 & b2-
microglobulin (Mouse monoclonals) BioLegend

Cat# 394665, Clone LNH-94; 
2M2
RRID:AB_2801033

10×  Genomics  
Hash Ab input:  
1 µg (1:45)

Antibody
Hash4: anti-Human CD298 & b2-
microglobulin (Mouse monoclonals) BioLegend

Cat# 394667, Clone LNH-94; 
2M2
RRID:AB_2801034

10×  Genomics  
Hash Ab input:  
1 µg (1:45)

Antibody
Hash7: anti-Human CD298 & b2-
microglobulin (Mouse monoclonals) BioLegend

Cat# 394673, Clone LNH-94; 
2M2
RRID:AB_2820043

10×  Genomics  
Hash Ab input:  
1 µg (1:45)

Antibody
Hash8: anti-Human CD298 & b2-
microglobulin (Mouse monoclonals) BioLegend

Cat# 394675, Clone LNH-94; 
2M2
RRID:AB_2820044

10×  Genomics  
Hash Ab input:  
1 µg (1:45)

Antibody
Hash9: anti-Human CD298 & b2-
microglobulin (Mouse monoclonals) BioLegend

Cat# 394677, Clone LNH-94; 
2M2
RRID:AB_2820045

10×  Genomics  
Hash Ab input:  
1 µg (1:45)

Antibody
Hash10: anti-Human CD298 & b2-
microglobulin (Mouse monoclonals) BioLegend

Cat# 394679, Clone LNH-94; 
2M2
RRID:AB_2820046

10×  Genomics  
Hash Ab input:  
1 µg (1:45)

Antibody
FITC anti-Human CD56 (Mouse 
monoclonal) BD Biosciences

Cat# 340410,
RRID:AB_400025 FACS (1:25)

Antibody
PE Anti-Human CD14
(Mouse monoclonal) BD Biosciences Cat# 555398, RRID:AB_395799 FACS (1:200)

Antibody
APC-Cy7 Anti-Human CD3
(Mouse monoclonal) BD Biosciences Cat# 557832, RRID:AB_396890 FACS (1:50)

Antibody
Brilliant Violet 570 anti-human CD20
(Monoclonal) BioLegend Cat# 302332, RRID:AB_2563805 FACS (1:50)

Antibody
PE-Cyanine5.5 Anti-Human HLA-DR 
(Mouse monoclonal) Invitrogen

Cat# MHLDR18, 
RRID:AB_1500218 FACS (1:100)

Commercial assay or kit
LIVE/DEAD Fixable Aqua Dead Cell Stain 
Kit

Thermo Fisher 
Scientific L34957 FACS

Antibody Anti-CD4 (Human, monoclonal) BioLegend Cat# 344,602 ADCP Assay: (20 µl/ml)

Antibody CH31 (Human monoclonal) PMID: 22301150

ADCP Assay:  
Duke Human  
Vaccine Institute  
(DHVI) Protein 
Production Facility  
(PPF); (50 µg/ml)

Antibody CH65 (Human monoclonal) PMID: 21825125

ADCP Assay: Duke  
Human Vaccine  
Institute (DHVI)  
Protein Production  
Facility (PPF);  
(50 µg/ml)

Cell line (Homo sapiens) THP-1 ATCC Cat# TIB-202

Identity has been  
authenticated by  
STR profiling and  
mycoplasma  
contamination was  
not detected. It is not  
included in the list of  
commonly misidentified  
cell lines.
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