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Hormonal contraceptive drugs are used by adolescent and adult women worldwide.
Increasing evidence from human neuroimaging research indicates that oral
contraceptives can alter regional functional brain connectivity and brain chemistry.
However, questions remain regarding static whole-brain and dynamic network-wise
functional connectivity changes. A healthy woman (23 years old) was scanned every day
over 30 consecutive days during a naturally occurring menstrual cycle and again a year
later while using a combined hormonal contraceptive. Here we calculated graph theory-
derived, whole-brain, network-level measures (modularity and system segregation) and
global brain connectivity (characteristic path length) as well as dynamic functional brain
connectivity using Leading Eigenvector Dynamic Analysis and diametrical clustering.
These metrics were calculated for each scan session during the serial sampling periods
to compare metrics between the subject’s natural and contraceptive cycles. Modularity,
system segregation, and characteristic path length were statistically significantly higher
across the natural compared to contraceptive cycle scans. We also observed a shift
in the prevalence of two discrete brain states when using the contraceptive. Our
results suggest a more network-structured brain connectivity architecture during the
natural cycle, whereas oral contraceptive use is associated with a generally increased
connectivity structure evidenced by lower characteristic path length. The results of this
repeated, single-subject analysis allude to the possible effects of oral contraceptives
on brain-wide connectivity, which should be evaluated in a cohort to resolve the extent
to which these effects generalize across the population and the possible impact of a
year-long period between conditions.

Keywords: oral contraceptive (OC), functional connectivity (FC), functional magnetic resonance imaging (fMRI),
menstrual cycle, steroid hormones, dynamic functional connectivity (dFC), hormonal contraceptive, brain
modularity
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INTRODUCTION

Naturally cycling women undergo menstrual cycles for
approximately a third of their lifespan, involving profound
sex steroids level fluctuations across 24- to 36-day cycles,
frequently with coinciding fluctuations in mood, impulsivity,
and irritability (Pletzer et al., 2017; Lewis et al., 2019). Such
hormonal rhythms are significantly altered by oral contraceptive
(OC) medication, which (Iversen et al., 2020) are used by more
than 100 million women globally (Brynhildsen, 2014) and in
Denmark 42% of women in the reproductive age use OCs, while
80% have used them at some point in their lives (Skovlund
et al., 2016). The most common OCs combine an estrogen and
a progestin to downregulate endogenous ovarian sex steroid
hormone levels, resulting in inhibited follicular growth, egg
maturation, and ovulation, thus preventing pregnancy. There
has been a significant focus on somatic side effects of OC
use, such as the increased risk of thromboembolic disease
(Amoozegar et al., 2015; Roach et al., 2015; Keenan et al., 2018).
However, women also report adverse impacts on psychological
wellbeing, e.g., mood instability, irritability, sadness, symptoms
of depression and anxiety, and a decrease or lack of libido (Guen
et al., 2021) which has recently received increased attention.
Epidemiological studies show an association between starting
an OC and the emergence of depressive episodes, especially
among adolescents (Skovlund et al., 2016; Zettermark et al., 2018;
Anderl et al., 2020, 2021).

Sex-steroid milieu changes have been found to alter brain
biology, including hippocampal plasticity (Barth et al., 2016;
Taylor et al., 2020) and serotonergic neurotransmission (Barth
et al., 2015), both crucial to maintaining mental health (Frokjaer,
2020). In addition, mental disorders, such as anxiety and
mood disorders, can be exacerbated during certain menstrual
cycle phases, including premenstrual symptom worsening
(Pinkerton et al., 2010; Green and Graham, 2022; Kuehner and
Nayman, 2021). Hormonal fluctuations across the menstrual
cycle putatively trigger severe depressive symptoms in some
women, i.e., premenstrual dysphoric disorder (PMDD), which
can be treated with specific OCs but worsened by others
(Rapkin et al., 2019).

Although OCs are beneficial for reproductive health and
well tolerated by some women, it is necessary that we
examine their effect on brain function and how this may
affect mental health. Previous neuroimaging studies of the
relationship between hormonal dynamics during the menstrual
cycle, OC, and brain function have predominately used
task-based functional magnetic resonance imaging (fMRI)
during a few selected time points, i.e., during the follicular
and luteal phases (Dubol et al., 2020). Most studies on
OCs use a between-subject design that can be subject to
individual-based confounding factors, e.g., duration and onset
of OC use (Montoya and Bos, 2017) and self-selection bias
(Brønnick et al., 2020). Test-retest reliability of task-based
fMRI measures is overall poor and is further impacted by
repeated measurements, i.e., habituation effects (Elliott et al.,
2020). Thus, studies have increasingly investigated resting-
state fMRI (rs-fMRI) by applying dense sampling across

multiple time points in individual subjects (Arélin et al., 2015;
Pritschet et al., 2021b).

Recently, the “28andMe” project (Pritschet et al., 2020)
acquired serial measures of rs-fMRI of one woman once per
day during one natural menstrual cycle. A year later, the study
was repeated while on a combined OC with estrogen and an
androgenic progestin. The initial report on this data found that
17β-oestradiol appeared to facilitate tighter coherence within
static functional brain-networks, while progesterone had the
opposite effect (Pritschet et al., 2020). Additionally, network
reorganization occurred in several networks across the menstrual
cycle, most strikingly in a default mode subnetwork localized to
prefrontal cortex regions during the ovulatory hormone peaks
(Mueller et al., 2021). This reorganization was not present while
on OC, despite a similar mid-cycle oestradiol peak on OC,
suggesting that this OC constrained or blunted default mode
network (DMN) connectivity during estrogen fluctuations.

These studies did not evaluate graph-theoretical estimates of
overall brain connectivity either on a network-wise or global
level. Modularity and system segregation are static estimates of
whole-brain connectivity related to relative within- and between-
network connectivity strength (Cohen and D’Esposito, 2016;
Sporns and Betzel, 2016). In contrast, characteristic path length
is a network-independent measure of “connectedness” between
brain regions, representing an approximation of capacity for
information flow throughout the brain (Rubinov and Sporns,
2011). In contrast to “static” functional connectivity measures,
which evaluate average connectivity across the entire scan
session, thus presuming signal stationarity, dynamical functional
connectivity (dFC) provides a framework for estimating signal
fluctuations within a resting-state scan session (Chang and
Glover, 2009; Preti et al., 2016; Cabral et al., 2017). Using dFC,
we may characterize discrete time-varying brain connectivity
patterns, denoted brain states, whose expression may be related
to the use of OC medication.

Here we leverage the repeated rs-fMRI acquisition framework
of the “28andMe” project, where we evaluate whether the
above graph-theoretical and dynamical whole-brain connectivity
measures differed throughout the natural and OC cycles
measured one year apart. This explorative approach characterizes
how these measures may vary during this subject’s natural
cycle and when on OC medication. Evaluating differences in
these measures during the natural and OC cycle offers a novel
perspective into how OC use may affect brain function. The
nature of the dataset does not allow us to discriminate with
certainty between effects of OC or effects of time between the
two series of measurements, which should be kept in mind when
interpreting the results, but offers a fundament for hypotheses to
be tested in other study designs.

MATERIALS AND METHODS

The 28andMe dataset for this study was obtained from the
OpenNeuro database (Accession Number: ds002674, version
1.0.5, doi: 10.18112/openneuro.ds002674.v1.0.5) (Pritschet et al.,
2021a) and is available under the CC0 license. The subject,
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FIGURE 1 | Hormonal timelines in each of the two conditions. The subject’s hormone levels during the natural cycle and while taking the oral contraceptive in the
order of experiment days. Modified from Taylor et al. (2020).

the study design, and magnetic resonance imaging (MRI)
acquisition are described previously (Pritschet et al., 2020,
2021b; Taylor et al., 2020) and summarized here. MRI
acquisition and fMRI preprocessing steps are described in the
Supplementary Material.

The Subject and Study Design
The subject was a right-handed 23-year-old Caucasian female
graduate student with no neuropsychiatric or endocrine
disorders or prior head trauma history. She had a history
of regular menstrual cycles (no missed periods, cycle length
26–28 days) and had not taken hormone-based medication in
the 12 months before study onset.

The subject underwent rs-fMRI daily at 11 a.m. for
30 consecutive days. 12 months later the subject repeated
the 30-day fMRI protocol while on a monophasic hormonal
contraceptive regime of 21 active days (20 µg ethinylestradiol
and 100 µg levonorgestrel, Aubra, Afaxys Pharmaceuticals) and
7 placebo days, which she began 10 months before the second
data collection. The subject began each test session with daily
behavioral assessments and blood measurements, see Taylor et al.
(2020).

Hormone levels were not attached in the OpenNeuro data
set and were extracted from Figure 1 from Taylor et al. (2020)
using WebPlotDigitizer 4.5 (Rohatgi, 2021). The study days were
transformed into cycle days as in Taylor et al. (2020) and plotted
in Figure 1.

Graph-Theory Measures
To evaluate graph-theory measures, we considered a graphical
representation of the brain, where brain regions are described as
nodes and edges between those nodes that represent connection
strength. The set of connections (i.e., connectivity strengths) can
be represented as a connectivity matrix, a diagonally symmetrical
n × n matrix containing continuous values, where n is the
number of nodes (Schaefer et al., 2018) and each matrix
element represents the magnitude of estimated static connectivity

between that node pair, expressed either as a Pearson’s correlation
coefficient or Fisher’s transformed r-to-z (r2z) score.

We summarize the graphical representation of static brain
connectivity using several established metrics (Rubinov and
Sporns, 2009) including modularity (Cohen and D’Esposito,
2016) and system segregation (Chan et al., 2014) which
relate to network connectivity through the lens of modular
brain networks, and characteristic path length (CPL) (Rubinov
and Sporns, 2009), which evaluates connectivity of the brain
considered as a whole. See Supplementary Figure 1A for a
simplified diagram. Brain regions were allocated based on the
Schaefer-400 atlas (Schaefer et al., 2018). This matrix can be
expressed as a graph that can be made sparse by applying
a threshold and retaining only edges above that threshold.
Depending on the metric, edge strength can be weighted,
reflecting observed connectivity strength (a value between 0
and 1), or binarized (0 or 1) based on the defined threshold.
In the absence of an a priori optimal threshold, binarization
was performed over a range of thresholds. For modularity and
system segregation analyses, regions were allocated to seven
canonical resting-state networks: the visual, somatomotor, dorsal
attention, ventral attention (salience), limbic, default mode, and
executive control networks from a commonly used parcelation
(Yeo et al., 2011). Further elaboration on the precise graph
theory metrics utilized in this analysis are available in the
Supplementary Material.

Dynamic Functional Brain Connectivity
We estimate dynamic connectivity structures using Leading
Eigenvector Dynamics Analysis (LEiDA) (Cabral et al., 2017),
followed by diametrical clustering as in Olsen et al. (2021;
see Supplementary Figures 1B–E). The brain was parcelated
into cortical regions from the Schaefer-100 atlas (Schaefer
et al., 2018). LEiDA assesses dynamic functional connectivity
by estimating regional instantaneous phases through the Hilbert
transform, constructing a P × P phase coherence map
for every timepoint t, and extracting its leading eigenvector
(see Supplementary Section 2 and Supplementary Figure 1
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for more details). The leading eigenvector represents the
dominant instantaneous connectivity pattern for every functional
volume acquired. Clusters in the pool of leading eigenvectors
(assumed independent) are informative of general states of brain
connectivity. Diametrical clustering is a k-means type clustering
algorithm which acknowledges the unit norm and sign invariance
of eigenvectors and which, for a specified number of states k
produces dynamic brain connectivity states and a labeling for
all acquired volumes (Dhillon et al., 2003). We evaluated k in
the range 2–20 and, for each scan session and k, computed the
fractional occurrence of all states.

Statistical Analysis
We evaluated differences in brain imaging measures between the
natural cycle and OC condition using paired t-tests, our statistical
significance threshold was set at α < 0.05. As our estimates across
both 30-day periods are effectively time series, we considered
evidence for autocorrelation. See Supplementary Figure 2 for
correlograms of the paired difference for all metrics. Based on
visual inspection we observed potential autoregressive effects for
bCPL and modularity. For these, we modeled the autocorrelation
with lag 1 using a generalized least squares regression of the
paired differences using the nlme package version 3.1 for R and
reported the associated p-value (Pinheiro et al., 2021). One ROI
(122/400 from Schaefer 400, temporal pole) was removed from
bCPL analyses as it produced infinite path lengths in some scans;
this had a negligible impact on other bCPL values.

All confidence intervals (CI) presented are 95% confidence
intervals. For tests of brain state fractional occurrence, we employ
within-k, Bonferroni-corrected statistical significance thresholds
to control the family-wise error rate (FWER).

Visualizations and Code
MATLAB (The MathWorks Inc.) and R 4.11 were used
to generate the results presented here; the corresponding
code has been made publicly available at https://github.com/
anders-s-olsen/28andme. BrainNet Viewer 1.72 was used to
generate connectivity visualizations (Xia et al., 2013). Some
plots were constructed using ggplot2 in R (Wickham, 2016).
The BrainConnectivity toolbox was used to estimate CPLs,
and bCPL was calculated with the distance_bin function
(Rubinov and Sporns, 2009).

RESULTS

Weighted Graph-Theory Measures
System Segregation
System segregation across the natural cycle (0.98 ± 0.05)
was statistically significantly greater than across the OC
cycle (0.92 ± 0.06; difference: 0.052, 95% CI: 0.023:0.081,
p = 9.19 × 10−4; Figure 2A) with a large effect size (Cohen’s
d = 0.97, 95% CI: 0.33–1.61).

1https://cran.r-project.org/
2https://www.nitrc.org/projects/bnv/

Weighted Characteristic Path Length
Weighted characteristic path length across the natural cycle
(0.86 ± 0.01) was statistically significantly greater than across
the OC cycle (0.85 ± 0.01; difference: 0.0071, 95% CI: 0.002–
0.012, p = 0.0078; Figure 2B) with a medium effect size (d = 0.62,
95% CI: 0.15–1.11).

Binarized Graph-Theory Measures
Modularity
Estimates of modularity were statistically significantly higher
during the natural cycle (0.01 at threshold 0.1, 0.23 at threshold
0.25) compared to the OC cycle (−0.02 at threshold 0.1, 0.20 at
threshold 0.25) across the range of connectivity thresholds (range
of mean difference in modularity 0.028–0.036; all p≤ 1.2× 10−5;
Figure 2C) with a large to medium effect size across the range of
connectivity thresholds (d = 1.00, 95% CI: 0.46–1.55 at threshold
0.1 to d = 0.69, 95% CI: 0.26–1.11 at threshold 0.25). See
Supplementary Figure 3 for plots of estimates and p-values
across threshold values.

Binarized Characteristic Path Length
Estimates of bCPL were statistically significantly longer in the
natural cycle (1.64 at threshold 0.1, 2.02 at threshold 0.25)
compared to the OC cycle (1.62 at threshold 0.1, 1.98 at threshold
0.25) across the range of connectivity thresholds (range of mean
difference in bCPL 0.021–0.049; all p ≤ 3.1 × 10−5; Figure 2D)
with a large effect size across the range of connectivity thresholds
(d = 0.93, 95% CI: 0.29–1.56 at threshold 0.1 to d = 1.02, 95% CI:
0.33–1.70 at threshold 0.25). See Supplementary Figure 3 for
plots of estimates and p-values across threshold values.

Dynamic Functional Brain Connectivity
The evaluation of differences between natural and OC cycle
dynamic functional connectivity identified two brain states for
which the fractional occurrence differed statistically significantly
in 8 and 10 of 19 models, respectively. In total, 209 statistical
tests were performed. Summary Bonferroni-corrected p-values
are presented in Figure 3C across the range of k ∈ {2, . . . , 20}.

For k ≥ 3, we observed one brain state (“State 1,” green
triangle in Figure 3C) for which the fractional occurrence was
significantly higher in the OC state (k = 7: estimate = 0.0455;
CI = 0.0209, 0.0701; p < 0.001; pFWER = 0.005, Cohen’s d = 1.00;
Figure 3A). The difference in fractional occurrence of this state
between the natural cycle and OC condition was statistically
significant over the interval k ∈ {3, . . . , 10}. State 1 is mainly
characterized by functional coherence between regions related
to the dorsal attention network and, to some extent, limbic,
and control networks (see Supplementary Figure 4 for centroid
loadings). These are in turn antisynchronous with regions related
to the visual and DMNs and partly to the salience/ventral
attention network (Figure 3A). Brain state 1 was structurally
similar across k (Supplementary Figure 4).

In contrast, for k ≥ 4, we observed a second brain state
(“State 2,” purple triangle in Figure 3C) for which the fractional
occurrence was statistically significantly higher during the natural
cycle (k = 7: estimate = −0.0502; 95% CI = −0.0789, −0.0213;
p = 0.001; pFWER = 0.009, d = 0.92, Figure 3B). This effect
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FIGURE 2 | Static functional connectivity comparisons between naturally cycling and oral contraceptive (OC) condition scans. Panels (A,B) show Tukey’s boxplots
representing system segregation and weighted characteristic path length values (CPL), respectively. The horizontal lines represent medians, and the vertical limits of
the colored area represent the first and third quartiles. Notches represent 95% confidence intervals for comparing medians, calculated as 1.58 × IQR

√
n

. Panels (C,D)
show modularity and binarized CPL values reported for each condition at a range of sparsity threshold values between 0.1 and 0.25 and are plotted as mean ± SD.

was statistically significant for k ∈ {4, 5, 7, 9, 12, . . . , 18}. We
note that the highlighted brain states for k ∈ {4, 5, 9} are
structurally somewhat different than for the rest of the range,
particularly regarding the representation of the visual network
(see Supplementary Figure 4). Brain state 2 is characterized by
functional coherence between the dorsal attention and salience
networks, and, to some extent, the somatomotor network.
These are in turn antisynchronous with regions related to the
visual, default-mode, control, and limbic networks (Figure 3 and
Supplementary Figure 4).

DISCUSSION

Here we investigated static and dynamic functional connectivity
during two 30-day periods a year apart during which a
single healthy woman completed daily rs-fMRI scan sessions.
Contrasting the 30-day period during which the subject had her
natural menstrual cycle with the data from the OC condition,
we observed higher modularity, system segregation, and
characteristic path length during her natural cycle relative to OC
(Table 1). These findings suggest that OC may alter brain network
organization and point to a whole-brain connectivity architecture
that is less strongly partitioned into resting-state networks during

OC use. Dynamic functional connectivity analysis identified two
discrete brain states for which the fractional occurrence was
significantly altered between the natural cycle and OC condition.
Together, these results suggest an association between OC use
and changes in brain network segregation, including connectivity
dynamics in this single subject.

Brain Connectivity Organization
Associated With Oral Contraceptive Use
We show that the subject’s static brain connectivity during rs-
fMRI in the OC cycle relative to the natural cycle was less
modular and less segregated into independent systems, i.e.,
had greater between vs. within network connectivity. Also, on
average, shorter paths were required for information transfer
between brain regions in the OC cycle.

A recent meta-analysis of 12 studies showed that low
brain modularity was associated with major depressive disorder
(MDD) with a small to medium effect size (Hedge’s g = −0.33)
(Xu et al., 2021). CPL is a measure of information transfer
efficiency (Bullmore and Sporns, 2012). In contrast to modularity,
system segregation and CPL were not associated with MDD
(Xu et al., 2021), and current data investigating the relation
between CPL and MDD and anxiety disorders and the effects of
previous pregnancy and PMDD are conflicting (Dan et al., 2020;
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FIGURE 3 | Two brain states for k = 7 identified as having significantly elevated fractional occurrence when oral contraceptive medication is used compared to a
natural menstrual cycle (A), and opposite (B), and summary p-values across the range of k (C). In the connectivity visualizations, nodes are only shown if the
corresponding centroid element has a strength of at least 50% of the maximum absolute loading. In panel (C), green triangles correspond to state 1, purple triangles
to state 2, and the dotted black line corresponds to the within-k Bonferroni-corrected threshold for statistical significance.

TABLE 1 | Graph theory measures and state prevalence during oral contraceptive (OC) and naturally cycling state 1 and 2 are both states involving the
frontoparietal network.

Modular graph theory Global graph theory Leading Eigenvector Dynamics Analysis (LEiDA)

Modularity System segregation Weighted characteristic
path length (CPL)

Binarized CPL Fractional occurrence

OC vs natural ↓Modularity ↓Segregation ↓Path length ↓Path length ↑State 1 ↓State 2

Chu et al., 2021; Guo et al., 2021; Zhang et al., 2021). Additionally,
across MDD patients, these measures appear to vary by the age of
disease onset, further complicating interpretation of these metrics
(Yun and Kim, 2021).

Transient reorganization of functional brain networks during
the NC has been observed in the 28andme dataset by Mueller
et al. (2021); the most striking reorganization occurred in a DMN

subnetwork localized to regions of the prefrontal cortex, during
peaks in oestradiol and gonadotropins, which was not observed
during OC despite a similar oestradiol peak. This suggests that
the OC-induced suppression of gonadotropins reduces network
flexibility and the brain’s ability to reorganize at the mesoscale
level in response to oestradiol (Mueller et al., 2021). Similarly,
using a novel metric of brain macroscale information processing
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known as brain turbulence, higher turbulence levels at lower
scales (i.e., long distances in the brain) and higher information
transmission across scales were observed in the luteal versus the
follicular phase (Filippi et al., 2021). In contrast, during OC-
use, there were no shifts in information processing across the
OC-cycle. Taken together, these findings could be interpreted
as increased stability or blunted dynamics by the OC-induced
hypothalamic-pituitary-gonadal (HPG) axis suppression. This
may be related to the decreased modularity, system segregation
and CPL that we observed during OC when compared to NC.

A previous analysis of the 28andMe data showed oestradiol’s
ability to modulate information transfer efficiency within the
DMN was present in both NC and OC (Pritschet et al., 2020).
However, the subject has a retained oestradiol peak during OC,
which is uncommon (Río et al., 2018), and may be specific to
that subject or that cycle. We cannot exclude that, women on
OCs with a more profoundly suppressed HPG axis would display
stronger effects of OC use compared to natural cycling, an effect
that should be considered in future population studies evaluating
similar effects.

Oral Contraceptive Associated With
Changes in Brain Dynamics
The highlighted dFC brain states 1 and 2 were characterized by
loadings (Figure 3 and Supplementary Figure 4), that to a large
degree, mapped on to functional networks (Yeo et al., 2011). State
1, and the OC condition, is visually characterized by reduced
within-network connectivity for the DMN, and slightly increased
within-network connectivity for the dorsal attention network.
Although this is numerically consistent with previous studies
reporting, reduced DMN-connectivity in depressed individuals,
it is relevant to note that this effect is of small size and
variable across study populations (Yan et al., 2019; Tozzi et al.,
2021). Although the DMN and visual networks appear together
with the antisynchronous dorsal attention network in both
states, it appears that the somatomotor, salience, limbic, and
executive control networks shift their associations (Figure 3).
However, for both the executive control and limbic networks
the effects appear to be confined to single regions rather than
the network. Expressed crudely, OC use is associated with
a shift in dorsal attention and DMN connectivity with the
limbic and executive control networks to the somatomotor
and salience networks in the evaluated subject. Functional
hyperconnectivity has previously been reported in relation to
depression. A similar study in the same dataset employed edge
time series (Esfahlani et al., 2020) to detect communities of
distinct high-amplitude fluctuations (Greenwell et al., 2021). The
study focused on two communities, of which one displayed
opposed fluctuation between regions in the DMN with the dorsal,
salience, and sensorimotor networks, similar to state 2 presented
here. Likewise, the second community was characterized by
opposed co-fluctuations in the control and dorsal attention
networks with the DMN, similar to state 1 presented here.
Although edge time series is fundamentally different to LEiDA
and diametrical clustering, it is encouraging that the two
studies show converging results. Taken together, our findings

suggest hormonal contraceptive effects on the occurrence of
brain states and corresponding network-specific connectivity in
a single subject.

Methodological Considerations
The major limitation of this study is that all analyses were
performed on a single individual, across single cycles and in
relation to one single type of OC, and that data acquisition for
the two conditions was performed 1 year apart. Future studies in
a cohort of women, ideally across multiple cycles are required to
establish population-level effects of OC use on distributed brain
connectivity estimates. Additionally, it is unclear whether the
observed differences in brain connectivity are due to OC use (or
not) or other factors that may have changed between these two
scan periods. Nevertheless, it is a strength of these data that this
individual was scanned 30 times, limiting sensitivity to spurious
differences that may have emerged were data collected across
fewer days. This represents an intriguing dataset with which
we have generated observations that support novel hypotheses
regarding OC effects on brain connectivity that can be evaluated
in larger cohorts.

The reported estimates of functional connectivity based on
binarized connectivity matrices are limited due to the undirected
selection of a sparsity threshold. We demonstrate that reporting
results over a range of thresholds that preserve a balance
between randomness and regularity of network connectivity
(Bassett and Bullmore, 2016) can provide results that are less
constrained by a priori threshold selection, though further work
must work to refine the optimal threshold range for the human
functional connectome. Additionally, we show convergence
between binarized and weighted analysis frameworks for both
global and network-based analyses.

By using LEiDA to delineate dFC structures, we impose little
prior knowledge on the optimal number of brain states and
instead evaluate a range of brain state partitions. Inevitably,
there will be discrepancies between estimated brain states,
dependent on model order k. For both highlighted brain states,
slight alterations in state loadings occur in the transitions from
k = 5 to k = 6, and again from k = 11 to k = 12
(Supplementary Figure 4B). This indicates that the significant
changes in brain state dynamics observed in our statistical
tests probably arise from only a subset of the regions in the
identified brain states.

Combined OCs with the antiandrogenic progestins, i.e.,
Drospirenone and Desogestrel compared to androgenic, appear
to have different effects on functional brain connectivity,
cognition and mood (Poromaa and Segebladh, 2012; Pletzer et al.,
2015, 2016). The OC used by the individual in this study was
a combined OC with the androgenic progestin Levonorgestrel.
Thus, the effects observed in this individual may be particular to
this type of OC.

Perspectives on Future Research
Several epidemiological studies consistently suggest an
association between starting an OC and the emergence of
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depressive episodes, especially among adolescents (Skovlund
et al., 2016; Zettermark et al., 2018; Anderl et al., 2020,
2021). Of concern, adolescents are initiating OC use at
increasingly younger ages, often shortly after the onset of
puberty (Parkes et al., 2009), when the brain is undergoing
organizational changes and maturation related to the surge
of sex hormones (Levitt, 2003), which may affect brain
architecture (Cahill, 2018; Sharma et al., 2020). Furthermore,
many countries have approved and are increasing over-
the-counter access to OCs without age restrictions (ACOG,
2019; MHRA, 2021). Considering this and evidence from
our analysis and other studies that OC use is associated
with changes in brain functional connectivity, it is relevant
for future studies to evaluate whether effects on brain
functional connectivity is a mediator of OC use on mental
health in adolescents.

Also, OC-related brain changes beyond brain network
organization or mechanisms underlying such changes should be
determined in future populations. Such changes may include
key features of the serotonin signaling system (Larsen et al.,
2020), since serotonin (5-HT) is a neurotransmitter implicated
in modulating functional brain activity and neuropsychiatric
pathophysiology (Roseman et al., 2014; Schaefer et al., 2014;
Beliveau et al., 2015; Arnone et al., 2018) and estrogen and
progesterone target the serotonin system (Barth et al., 2015).

Summary
Our analyses have shown significant alterations in static and
dynamic functional connectivity associated with OC use in
an open access dataset of an individual scanned daily over
30 days two times 1-year apart. We show that the OC
state had statistically significantly lower network modularity
and characteristic path length in static estimates of network
connectivity and changes in the dynamic connectivity. Due to
the limitations of this study, we cannot conclude whether these
phenomena generalize or a related to OC use per se. However,
if the observed findings are related to OC use, this would point
to OC-related effects on network dynamics in cognitive and
emotional regulation networks. While it might stabilize cognitive
and emotional function in some individuals, it might blunt
it in others, contributing to an increased vulnerability toward
psychiatric disorders. Although these findings are premature
for clinical decision-making, they offer hypotheses to be tested
in future cohorts designs to determine how the brain-network
organization varies across the natural menstrual cycle and how
it may be altered in the context of different OCs in different
age groups. We propose that these analyses prompt further
investigation into the effects of OCs on brain function, especially

given the widespread use of these drugs in both adolescent and
adult healthy individuals and those with psychiatric disturbances.
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