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Abstract: A comparative study on the self-assembly of sexi-
phenyl-dicarbonitrile on highly oriented pyrolytic graphite

and single-layer graphene on Cu(111) is presented. Despite

an overall low molecule–substrate interaction, the close-

packed structures exhibit a peculiar shift repeating every
four to five molecules. This shift has hitherto not been re-

ported for similar systems and is hence a unique feature in-

duced by the graphitic substrates.

Introduction

Graphene as a 2D material with exceptional properties holds

great promise in future electronic applications.[1, 2] The intro-
duction of organic molecules can be seen as a way to easily

and cheaply steer the already outstanding properties of gra-
phene. Accordingly, molecular self-assembly on graphene has

been increasingly studied in the last years.[3–6] To date, studies
almost exclusively observed an influence of the substrate on

molecular self-assemblies when the molecules were deployed
on strongly corrugated graphene substrates such as graphene

on Ru(0001).[7–9] On substrates where the interaction of gra-

phene with the underlying metal substrate is weak, e.g. ,
Pt(111), SiC, or Cu(111), the self-assembly was mainly governed

by intermolecular interactions.[10–14]

Herein, we report the self-assembly of sexiphenyl-dicarboni-
trile (NC-Ph6-CN, Scheme 1) on highly oriented pyrolytic graph-
ite (HOPG) and single-layer graphene on Cu(111). We studied

the structural and electronic properties of the molecules using
scanning tunneling microscopy (STM), scanning tunneling
spectroscopy (STS), and low-energy electron diffraction (LEED).

Complementary information was obtained from density
functional theory (DFT) calculations. For NC-Ph6-CN on HOPG,

we found a close-packed structure in which parallel molecules
align in rows. A peculiar feature was a shift of every fourth

molecule. Such a shift has not previously been reported for
similar molecules on metallic substrates or for the bulk crys-
tal.[15, 16] Upon deposition of NC-Ph6-CN on graphene on

Cu(111), we found two related close-packed structures. In both
structures, the parallel molecules again aligned in rows with

molecules shifting either every fourth or fifth molecule. This in-
dicates that: 1) the observed shift is per se a unique feature of
NC-Ph6-CN on graphitic substrates and 2) one layer of gra-

phene already suffices to induce it. Furthermore, we could
identify small but distinct differences in the NC-Ph6-CN struc-

tures on HOPG compared with single-layer graphene on
Cu(111), demonstrating that even for weakly corrugated gra-

phene substrates the role of the underlying metal substrate is
not negligible.
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Results and Discussion

NC-Ph6-CN on HOPG

After deposition of a submonolayer coverage of NC-Ph6-CN
onto HOPG, we performed STM measurements at 5 K. This

temperature was necessary to restrict molecular movement
observed at higher temperatures. We found NC-Ph6-CN assem-

bled into a close-packed structure exhibiting long-range order
with island sizes of several hundred nanometers. However, we
observed a considerable number of defects (Figure S1 a). An
overview STM image of NC-Ph6-CN on HOPG is shown in Fig-
ure 1 a. The molecules assembled into parallel rows as indicat-

ed by grey lines. A high-resolution STM image (Figure 1 b) re-
veals the molecular assembly in detail. Individual molecules

can be discerned as rod-shaped protrusions. Black lines repre-

senting individual molecules are added in the image to guide
the eye. Within one row, the molecules are parallel to each

other. Furthermore, each fourth molecule along a row was
shifted along the long axis of the molecules. Based on this pe-

culiar feature, we determined the oblique unit cell of NC-Ph6-
CN on HOPG (marked in green) as a = 2.9 nm, b = 2.2 nm, V=

1048.

Figure 1 c shows a tentative structural model of NC-Ph6-CN
on HOPG. The unit cell contains three molecules. Every fourth

molecule within a row is shifted by approximately one phenyl
ring along the long axis of the molecule. Looking from one

row to the other, we see that molecules are positioned in such
a way that opposing carbonitrile groups interdigitate. Such a

formation of antiparallel, interdigitating carbonitrile groups
was reported to be the most stable structure for benzonitrile
molecules in the gas phase and on Au(111), and has also been
seen for NC-Ph6-CN on Ag(111).[16, 17] We therefore propose that
the following intermolecular interactions stabilized the close-

packed structure of NC-Ph6-CN on HOPG: 1) dipolar coupling
between opposing carbonitrile groups and 2) H-bonding
(CN···HC) between the CN group of one molecule and the clos-
est CH of the opposing molecule.

We would like to point out that, under certain tip conditions,
the molecules exhibited a zigzag shape (Figure S1 b). This

shape is a fingerprint of alternatingly twisted phenyl rings and

was reported for para-sexiphenyl (Ph6) as well as for NC-Ph6-CN
on Ag(111).[15, 18] Near-edge X-ray absorption fine-structure

measurements of NC-Ph6-CN on Ag(111) was used to deter-
mine the twisting angle as d= :258 with respect to the mo-

lecular plane.[15] As we cannot quantify the twisting angle for
NC-Ph6-CN on HOPG, we used the angle of d= :258 for our

structural model (Figure 1 c). It should be noted that the zigzag

shape for NC-Ph6-CN on Ag(111) was only reported for a
second layer of molecules. The first layer of NC-Ph6-CN did not

show a zigzag shape because of the interaction with the metal
substrate. In our case, the interaction of NC-Ph6-CN with HOPG

was consequently small enough to promote a zigzag contrast
in STM already for the first layer of molecules.

To further investigate the molecule–substrate interactions,

we probed the electronic structure of NC-Ph6-CN on HOPG
using STS. Figure 1 d shows a STS spectrum taken on top of a

NC-Ph6-CN molecule in the close-packed structure. Two peaks
at @4.6 V and 3.1 V can be seen. We attribute these to the

highest occupied and lowest unoccupied molecular orbital
(HOMO and LUMO) of NC-Ph6-CN on HOPG, respectively. This

leads to a large band gap of Egap = 7.7 eV, suggesting that NC-

Ph6-CN interacts only weakly with the underlying HOPG. To-
gether with the observed alternating twisting of the phenyl
rings, we conclude that NC-Ph6-CN is physisorbed on HOPG.

One outstanding feature of the close-packed structure of

NC-Ph6-CN on HOPG is the shift of every fourth molecule along
a row. Such a feature has not been observed on metallic sub-

strates. To further investigate this shift, the self-assembly of
NC-Ph6-CN on graphene on Cu(111) was studied. By moving
from multilayer to single-layer graphene, we reduce the

number of graphene sheets to the ultimate limit of one. By
doing so, we address the questions of whether a single layer

of graphene suffices to induce this peculiar shift and which, if
any, influence the underlying Cu(111) has on the molecular

self-assembly.

NC-Ph6-CN on graphene on Cu(111)

Upon deposition of submonolayer coverage of NC-Ph6-CN

onto graphene on Cu(111), we were able to perform STM
measurements at 77 K, indicating an increased diffusion barrier

Figure 1. Self-assembly and electronic structure of NC-Ph6-CN on HOPG.
a) Overview STM image (50 V 50 nm2, 3.2 V, 8 pA, 5 K). The molecules ar-
ranged into a close-packed structure consisting of parallel rows. Grey lines
highlight one row. b) High-resolution STM image (10 V 10 nm2, 2.8 V, 3 pA,
5 K). The oblique unit cell of the structure is shown in green. Black lines indi-
cate individual molecules. One row is highlighted by grey lines. c) Tentative
structural model. The unit cell contains three molecules. Every fourth mole-
cule within a row exhibits a shift. d) STS spectrum of a NC-Ph6-CN molecule
(Uset = 3.5 mV, Iset = 150 pA). The spectrum was taken in the center of the
molecule. The dotted lines denote the HOMO level at @4.6 V and the LUMO
level at 3.1 V, respectively.
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compared with HOPG. We again observed a close-packed
structure with exceptional long-range order. In contrast to the

case of HOPG, the molecular islands showed fewer defects on
graphene on Cu(111) (Figure S1 c). We attribute this to the

higher structural quality of epitaxially grown graphene com-
pared with mechanically cleaved HOPG, that is, the lack of

well-known large-scale morphological deviation in HOPG de-
rived from mechanical cleavage.[19]

A close look at NC-Ph6-CN on graphene on Cu(111) revealed

that there were, in fact, two phases of close-packed structure.
Both phases are shown in Figure 2 a and Figure 2 b, respective-
ly. In both images, individual molecules can be identified as
rod-shaped protrusions. Black lines representing individual
molecules are added to the image to guide the eye. Similar to
the case of NC-Ph6-CN on HOPG, the molecules assembled for

both phases into rows, as indicated by the grey lines. For both

phases, we observed a shift similar to that of NC-Ph6-CN on
HOPG. However, the difference between the two phases lies in

the frequency of the aforementioned shift. In phase 1 (Fig-
ure 2 a, marked in cyan), every fourth molecule along a row

was shifted. In phase 2 (Figure 2 b, marked in magenta), this
shift occurred only every fifth molecule along a row. Accord-

ingly, the unit cells differ in size. For phase 1, we determined

an oblique unit cell with a1 = 2.9 nm, b1 = 2.2 nm, V1¼ 942

while the oblique unit cell of phase 2 has the values a2 =

2.9 nm, b2 = 2.6 nm, V2¼ 1068. Figure 2 c shows a tentative
structural model of phase 1. The unit cell of phase 1 contains

three molecules. Similar to the case of NC-Ph6-CN on HOPG,
every fourth molecule within a row exhibits a shift along the

long axis of the molecule by approximately one phenyl ring. In
contrast, the unit cell of phase 2 contains four molecules (Fig-

ure 2 d) and every fifth molecule displays a shift. For both
phases, the carbonitrile groups of adjacent rows interdigitate.

This suggests that, again, a combination of dipolar coupling of
opposing carbonitrile groups and H-bonding between CN

groups and closest CH groups stabilizes adjacent rows of both

phases. We also observed a twisting of the phenyl rings for
NC-Ph6-CN on graphene on Cu(111) (Figure S1 d), which was in-
corporated in the tentative structural models.

To further assess the self-assembly of NC-Ph6-CN on gra-

phene on Cu(111), we performed LEED measurements.[20] Gra-
phene epitaxially grown on Cu(111) exhibits multiple rotational

domains.[21] This leads to a ring structure in LEED images that

surrounds the diffraction spots of the Cu(111) substrate (Fig-
ure S2 a). This ring structure has a varying intensity, indicating

preferred rotational orientations of graphene on Cu(111). Upon
deposition of submonolayer coverage of NC-Ph6-CN, we noted

clear diffraction spots (Figure S2 b). Superimposing the simulat-
ed LEED patterns for phase 1 and 2 (Figure S2 c) yielded good

agreement with the observed diffraction spots. Note that for

both phases the diffraction spots associated with the long unit
cell vector coincided with the [1-10] direction of Cu(111). For

almost all STM images, we furthermore found the long unit
cell vectors aligned with the direction of the graphene lattice.

If we also consider that most graphene domains on Cu(111)
are not rotated, this suggests that submonolayer coverages of

NC-Ph6-CN molecules grew preferentially on graphene do-

mains that were not rotated with respect to the underlying
Cu(111) surface lattice.

Computational Results

To gain additional insight into the behavior of NC-Ph6-CN, we

performed DFT calculations. In a first step, we aimed to calcu-
late the band gap by studying the individual molecule in the

gas phase. However, when compared to the experimentally de-
termined value of Egap = 7.7 eV, the most commonly used func-
tionals for similar systems failed to reproduce the experimen-
tally determined band gap for NC-Ph6-CN (Table S1). Even

more sophisticated functionals (e.g. , optimally tuned range-
separated hybrid functionals such as HSE) failed to describe
the system. Only by tuning the fraction of the Hartree–Fock
(HF) exchange was a calculated value of the band gap closer
to the experimental one obtained (Figure 3 a and Table S1). By

using the PBE0 hybrid exchange-correlation functional (which
has a 25 % HF exchange contribution)[22, 23] with dispersion cor-

rections included,[24] a band gap of 4.23 eV for NC-Ph6-CN was

obtained. Our situation is similar to, for example, the case of
benzene, for which a band gap of 10.3 eV was determined ex-

perimentally, while the calculated value was ca. 5 eV.[25] This so-
called “band gap problem” is well known in the theoretical

modeling community.[26] However, it should be noted that a
discrepancy between calculated band gap and STS measure-

Figure 2. Self-assembly of NC-Ph6-CN on graphene on Cu(111). a) High-reso-
lution STM image of phase 1 (20 V 20 nm2, 1.2 V, 20 pA, 77 K). The oblique
unit cell is shown in cyan. One row of molecules is highlighted by grey lines.
Black lines indicate individual molecules. b) High-resolution STM image of
phase 2 (20 V 20 nm2, @1.6 V, 20 pA, 77 K).[55] The oblique unit cell is shown
in magenta. c) Tentative structural model of phase 1. The unit cell of phase 1
contains three molecules. Every fourth molecule within a row exhibits a
shift. d) Tentative structural model of phase 2. The unit cell of phase 2 con-
tains four molecules. Every fifth molecule within a row exhibits a shift.
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ments could also be the result of temporary charging of the
molecule[27] facilitated by a double barrier tunnel junction.[28, 29]

In a second step, we looked at the adsorption of NC-Ph6-CN
on graphene by comparing an individually adsorbed molecule,

a unit cell without shift, and a unit cell that incorporates a shift
every fourth molecule (Figure S3).[30] Without shift, we deter-

mined a unit cell of a = 2.9 nm, b = 0.7 nm, V= 908. The unit

cell with shift of every fourth molecule was a = 2.9 nm, b =

2.2 nm, V= 908 (Figure 3 b), agreeing reasonably well with our

experimental values. Comparing the adsorption energies
(Table S2), we find an energy gain of 0.07 eV per molecule in

the unit cell with shift compared with the unit cell without
shift. This means that the incorporation of a shift is slightly en-

ergetically favorable on graphene. It should be noted that the

shifted unit cell did not converge during gas-phase calcula-
tions, that is, the presence of the graphitic substrate was a pre-

requisite for the emergence of the shift.

Discussion

At this point, we would like to address the previously posed

question and highlight the changes to the molecular assembly
of NC-Ph6-CN when replacing the HOPG substrate with gra-

phene on Cu(111). Although Cu(111) is regarded as weakly in-
teracting with graphene,[31] we observed several aspects indi-
cating an increased diffusion barrier and molecule–substrate
interaction in comparison to HOPG: 1) we were able to per-

form STM measurements at 77 K and found stable molecular
structures. A fortiori, LEED measurements showed that these
structures were even stable at RT. In contrast, NC-Ph6-CN on

HOPG could only be imaged in STM when cooled to 5 K and
was mobile at higher temperatures. 2) On HOPG, the NC-Ph6-

CN close-packed structure exhibited a shift with every fourth
molecule along a row. On graphene on Cu(111), we observed

two phases with a shift every fourth and every fifth molecule,

respectively. While the shift remained upon moving from mul-
tilayer to single-layer graphene, the presence of the underlying

metal substrate for single-layer graphene facilitated the exis-
tence of a second, distinct phase. 3) STM showed both phases

of NC-Ph6-CN on graphene on Cu(111) aligned with the gra-
phene lattice. LEED data showed that both phases coincided

with the [1-10] direction of Cu(111). This suggests a preferential
growth of both phases on graphene domains that were not ro-
tated with respect to the Cu(111) lattice. On HOPG, in contrast,
we did not observe a preferred orientation of the close-packed
structure with respect to the underlying substrate lattice in
STM. Furthermore, we were not able to perform LEED meas-

urements of NC-Ph6-CN on HOPG. This indicates that the mole-
cules were mobile at RT and that the diffusion barrier was con-
siderably smaller on HOPG compared with graphene on

Cu(111). All these points are indicative of an increased diffusion
barrier and molecule–substrate interaction for NC-Ph6-CN on

graphene on Cu(111) compared with HOPG. It should be noted
that the lattice contraction of graphene on Cu(111)[53, 54] could

be another reason for the aforementioned differences of the
structures. Now we would like to focus on the most peculiar

feature of the close-packed structure of NC-Ph6-CN on HOPG

and on graphene on Cu(111)—the occurrence of a shift every
fourth or fifth molecule. We start by highlighting previous in-

vestigations on similar molecules or substrates. Submonolayer
coverages of the unfunctionalized parent molecule of NC-Ph6-

CN, para-sexiphenyl (Ph6), assembled into a close-packed struc-
ture of flat-lying, parallel molecules arranged in rows on

Au(111), HOPG, and single-layer graphene on Ir(111).[32–34] In-

creasing the coverages led to Ph6 molecules adsorbed with
their edge facing the substrate. By introducing terminal car-

bonitrile groups, Kehne et al. observed structural changes of
the close-packed structure of NC-Ph6-CN on Ag(111) in compar-

ison to Ph6.[16] For coverages below 0.5 ML, NC-Ph6-CN on
Ag(111) assembled into a variety of coexisting structures. For

coverages close to one monolayer, NC-Ph6-CN on Ag(111)

again formed rows of parallel molecules. Within the rows, the
molecules were densely packed while the interdigitating car-

bonitrile groups connected one row to another. Contrasting
this to our observations for graphitic substrates, we can recog-

nize two key differences: 1) we found the same structures in-
dependent of coverage. 2) While the close-packed structure of

NC-Ph6-CN on Ag(111) is similar to the structures found by us,

most noticeably no shift along the long molecular axis was ob-
served on Ag(111). At this point, one may argue that graphene
or HOPG are so weakly interacting with NC-Ph6-CN that inter-
molecular interactions are driving the observed shift. In this

case, the shift should be adopted in the bulk crystal. However,
X-ray structure analyses of Ph6 and NC-Ph4-CN showed no fea-

tures resembling a shift.[15, 32] The comparison with the bulk ar-
rangement performed here is warranted, given that it has
been reported that 2D molecular self-assembly on surfaces can

be similar to the arrangement of the molecules within a certain
crystallographic plane in the bulk, especially for weakly inter-

acting surfaces.[56–59]

From the points made in the previous paragraph, we con-

clude that the shift observed by us is a result not only of the

presence of the dicarbonitrile groups but also of the graphitic
substrates. Indeed, our DFT calculations indicate that the incor-

poration of a shift on graphene results in a net gain of energy
for the assembly. However, it should be noted that although

the adsorption energies are quite similar, no structure without
shift was observed on graphene. Hence, we propose that an

Figure 3. Computational results for NC-Ph6-CN. a) DFT gas-phase calculations
for NC-Ph6-CN using a hybrid functional[51] and varying its Hartree–Fock (HF)
exchange contribution.[52] With increasing the HF exchange contribution the
density of states of NC-Ph6-CN exhibits an increasing band gap. The spectra
are offset for better visualization. b) NC-Ph6-CN adsorbed on graphene. The
unit cell is marked in cyan.
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additional effect might influence the occurrence of a shift. In
comparison to metal substrates, screening effects by graphe-

ne’s electrons have been shown to, for example, facilitate an
otherwise repulsively interacting close-packed structure of

F4TCNQ molecules and to have an exceptionally large screen-
ing length on the order of nanometers found for individual

charged adsorbates.[35, 36] The shift every fourth or fifth mole-
cule within a row might hence be a unique feature of NC-Ph6-
CN on graphene and HOPG, enabled not only by an energy

gain but also by the different screening properties of graphitic
substrates compared with metals. We suggest that the incor-
poration of the shift in the close-packed structures counterbal-
ances the otherwise anisotropic charge distribution due to the
linear arrangement of the carbonitrile groups and, consequent-
ly, results in a lowering of the overall energy. Given that this

tendency to counterbalance an anisotropic charge distribution

is expected to be universal, we suggest that similar molecules
bearing polar functional groups, such as in our case the car-

bonitrile group, will also exhibit an altered molecular arrange-
ment on graphene compared with metal substrates.

Conclusion

We observed upon deposition of submonolayer coverage of

NC-Ph6-CN on HOPG a close-packed structure consisting of
rows of parallel molecules with a peculiar shift along the mo-
lecular long axis of every fourth molecule within a row. The
molecule–substrate interaction is weak, as evidenced by the
large HOMO–LUMO gap. Depositing NC-Ph6-CN on graphene
on Cu(111) resulted in subtle but distinct changes to the mo-
lecular assembly due to the presence of the underlying metal
surface. An overall increased molecule–substrate interaction as
well as diffusion barrier could be determined while we still ob-
served a shift for every fourth or fifth molecule along a row.
Such distinguishing feature has not previously been reported

for similar molecules on metallic substrates or in the bulk
phase. Furthermore, our calculations show that the presence
of the graphene substrate is necessary to observe the incorpo-

ration of a shift into the molecular assembly. We conclude that
the shift of every fourth or fifth molecule within a row by ap-

proximately one phenyl ring is a unique feature of NC-Ph6-CN
on graphitic substrates, possibly additionally promoted by the

screening properties of the electrons in the graphene lattice.

Experimental Section

Sample preparation : HOPG was prepared by cleavage under am-
bient conditions using adhesive tape. A single layer of graphene
on Cu(111) was grown ex situ via chemical vapor deposition in a
commercial heater (Carbolite). For the graphene growth, the
Cu(111) crystal was held at 1280 K in a gas atmosphere of 0.1 mbar
Ar and 0.5 mbar H2 for 4 h. This was followed by additionally intro-
ducing 0.5 mbar CH4 for 5 min. Subsequently, the CH4 inlet was
closed and the sample was kept at 1280 K for an additional
30 min.

After the ex situ sample preparation, both substrates were intro-
duced into an ultra-high vacuum (UHV) chamber with a base pres-

sure of <1 V 10@10 mbar and annealed in situ for 30 min to ensure
clean surfaces. The annealing temperatures were 370 K for HOPG
and 720 K for graphene on Cu(111).[37] Subsequently, we sublimed
the NC-Ph6-CN at a temperature of 620 K using a Knudsen cell
evaporator (Omnivac). During deposition, the sample was held at
room temperature (RT). We define a monolayer (ML) of molecules
as the coverage at which the substrate is fully covered by the
close-packed structure of NC-Ph6-CN.

STM and LEED measurements : We performed experiments in a
two-chamber UHV setup. The first chamber was equipped with a
low-temperature STM (Scienta Omicron GmbH) and had a base
pressure <5 V 10@11 mbar. The second chamber hosted a MCP-LEED
(Scienta Omicron GmbH) and the Knudsen cell evaporator. The
base pressure of the second chamber was <1 V 10@10 mbar. STM
and STS measurements were performed at 5 K for HOPG and 77 K
for graphene on Cu(111). In contrast, the samples were held at RT
for LEED measurements. STM images were obtained in constant
current mode using tips made from a mechanically cut Pt/Ir wire.
The STS data were acquired with a lock-in using a frequency of
680 Hz and a modulation voltage of 10 mV (rms). All voltages are
given with respect to a grounded tip. We processed the STM
images using the software WSxM.[38]

Computational details : The Amsterdam Density Functional (ADF)
software package was employed to perform DFT calculations for
the single NC-Ph6-CN molecule in gas phase optimized with differ-
ent functionals (see the Supporting Information).[39–41] The BAND
software was employed for calculations of the NC-Ph6-CN molecule
on graphene.[42–46] The numerical integration was performed using
the procedure developed by Becke et al.[47] The triple-x with one
polarization function (TZP) basis set was used for all calculations.
The core–shells of all elements were treated by the frozen-(large)-
core approximation.[48] For all the calculations of NC-Ph6-CN on gra-
phene the PBE-D3 functional[49, 50] was used and the positions of
the carbon atoms within the graphene layer were kept fixed. All
the calculations were performed with k-space sampling restricted
to the G-point.
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