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Introduction
Sickle cell disease (SCD) is one of the most common mono-
genic diseases in the world.1 The missense mutation from glu-
tamic acid to valine at the sixth codon (E6V) of the β-globin 
gene (HBB) leads to the production of the sickle β-globin (βS), 
which heterodimerizes with α-globin (α) to form the sickle 
hemoglobin (α2βS

2). The sickle hemoglobin polymerizes under 
lower oxygen tension and forms sickle-shaped red blood cells 
(RBC). Sickle cell disease possesses considerable clinical het-
erogeneity even though all patients with SCD have the same 
mutation and produce one biochemical phenotype, ie, the 
sickle hemoglobin. At least 23 complications have been 
described, including stroke, retinopathy, acute chest syndrome 
(ACS), pulmonary hypertension, avascular necrosis, painful 
vaso-occlusive episodes, nephropathy, skin ulcers, and priapism, 
to name a few of the more prevalent ones. Patients can have 
different combinations of these complications: a patient may 
have stroke, retinopathy, and leg ulcers, whereas another may 
have ACS, frequent painful vaso-occlusive episodes, nephropa-
thy, and avascular necrosis. The severity, age of onset, and rate 
of progression for each clinical complication also differ from 
patient to patient. Some patients will suffer the most severe 
forms of these complications and die at a relatively young age, 
but a few may go through a large part of their life without 
knowing that they have SCD even though they are homozy-
gous for the HBBE6V mutation.

Several mechanisms with their causal biochemical pathways 
have been proposed for these complications, including increased 
intravascular hemolysis of the sickle RBC, vaso-occlusion of the 

sickle RBC in small caliber vessels, modification of nitric oxide 
metabolism, and endothelial dysfunction, but the actual genetic 
modifiers governing these complications remained virtually 
unknown. Up until the late 1990s, 2 biochemical and genetic 
modifiers were known to affect the severity (in a very broad and 
general sense) of SCD: α-thalassemia mutation and fetal hemo-
globin fraction. Coinheritance of SCD with α-thalassemia is 
associated with a reduction in the severity of some clinical pres-
entation (stroke, proliferative retinopathy, splenic function, pria-
pism, albuminuria, cholelithiasis, and leg ulcer)2–4 because of its 
effect on sickle hemoglobin concentration5 but has no influence 
on other complications (eg, painful vaso-occlusive episodes).6 
Higher fetal hemoglobin (HbF) fraction, as a result of heredi-
tary persistence of fetal hemoglobin (HPFH) or augmented by 
fetal hemoglobin induction agents such as hydroxyurea,7 is 
associated with a reduction in the number of painful vaso-
occlusion episodes and ACS,7 proliferative retinopathy, and 
improved overall survival.8 Initial haplotype mapping of the 
β-globin locus in linkage studies of patients with SCD revealed 
4 distinct haplotypes: Senegal, Benin, Bantu, and Arab/Indian.9 
Patients carrying the Senegal or Arab/Indian haplotype have 
the highest HbF levels and a milder clinical course, whereas 
patients with the Bantu haplotype have the lowest HbF levels 
and consequently the most severe clinical manifestation of 
SCD.10 However, these genetic modifiers did not explain most 
of the clinical heterogeneity seen in SCD, and in particular, the 
sickle cell haplotypes alone were not sufficient in explaining the 
variations in HbF expression.
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Genome-Wide Association Study
The completion of the human genome project and the 
HapMap project, a catalog of common genetic variants in the 
human genome known as single-nucleotide polymorphisms 
(SNPs),11 provided the necessary foundation to conduct 
genome-wide association studies (GWAS) in search of genetic 
modifiers in human diseases. Prior to this, searches for disease-
causing genetic variants were limited to familial linkage analy-
sis and candidate gene studies. There are several disadvantages 
to these methods. Linkage analysis is designed to detect single 
genes with major effect, requiring large families or sibling 
pairs,12 and candidate gene studies require an a priori biological 
hypothesis which directs the search within a small segment of 
the genome containing genes that may play a plausible role in 
the phenotype.13 Genome-wide association study (GWAS), 
however, is a search within the entire genome to identify 
genetic variations associated with observable traits.14 In 
GWAS, each SNP is examined for its association with a 
dichotomous phenotype (as in a case-control study) or correla-
tion with a quantitative trait (eg, blood pressure or HbF level), 
and upward of several millions of SNPs are examined in each 
study. The number and type of SNPs tested depend on the 
microarray platforms employed, but they are all designed with 
the goal of providing maximal coverage of variations across the 
entire genome. Genome-wide association study rests on a 
hypothesis-free approach that does not presuppose that any of 
the positive SNPs are causal SNPs but rather they are near the 
causal genetic element (an SNP, copy number variation, inser-
tion, or deletion) via linkage disequilibrium (LD). Linkage dis-
equilibrium refers to 2 loci having a high probability of 
transmitting together from one generation to the next due to 
their close proximity to each other on the chromosome or their 
high likelihood of co-inheritance driven by selection or popu-
lation stratification.15 These features imply that GWAS is able 
to detect multiple loci-trait associations of modest effect size, 
ie, strength of the contribution to the trait. There are a number 
of association tests available in calculating the association 
between an SNP and the observable trait, depending on 
whether an a priori genetic model (dominant, recessive, co-
dominant) is available or not,14 the discussion of which is 
beyond the scope of this article.

Multiple Testing in GWAS
Each association test between an SNP and a trait is essentially 
a χ2 test if it is a categorical trait or a linear regression test if the 
trait is continuous and follows a normal distribution. Thus, the 
testing of a million SNPs is a million χ2 tests (or linear regres-
sions), each with its own null hypothesis. Each test would yield 
its own P value. The consideration of whether a particular P 
value is significant is based on the significance threshold 
assigned a priori during study design. The significance thresh-
old, or α level, is the probability of rejecting the null hypothesis 
when the null hypothesis is true. This is also termed type I 

error. Consider an α level of 0.05: assuming the null hypothesis 
is true, we can expect to find one SNP to be “significantly” 
associated with the trait in question simply by chance alone 
while examining 20 SNPs. Examining 1 million SNPs would 
theoretically produce 50 000 “significant” SNPs by chance 
alone if an α level of 0.05 is chosen. To express the same con-
cept in terms of probability, where α = α level and k = the  
number of tests, the probability of finding one positive 
SNP = 1 − (1 − α)k.16 It is virtually guaranteed (the probability 
approaches 1) that one will find at least one false-positive SNP 
when examining a million SNPs, assuming that the null 
hypothesis is true, ie, no association between any of the SNPs 
examined and the trait.17 Therefore, the significance threshold 
for an association test with each individual SNP (local signifi-
cance level) must be much lower to take into account the pos-
sibility of false discovery. Furthermore, imputation, or an 
estimation of the allelic dosages of untested SNPs using geno-
typed SNPs, is often necessary because some SNPs may fail 
quality control. Meta-analyses of GWAS also use imputation 
to combine studies conducted on different microarray plat-
forms. Each imputed SNP is associated with a degree of uncer-
tainty that needs to be accounted for as well. Family-wise error 
fraction (also termed family-wise error rate [FWER]) is the 
probability of making at least one false discovery when per-
forming multiple testing.14 Bonferroni correction is the sim-
plest approach where the local significance level ( )α l  is the 
global error fraction ( )α g  one aims to control divided by  
the number of tests performed (M), yielding α αl g M= / .  
Consider an example where the α g  is set at 0.05, and a micro-
array of 1 million SNPs was employed in the GWAS. This 
would yield an α l  of 5.0 × 10−8. A similar method called the 
Sidak correction, where α αl g

M= − −1 1 1( ) / , yields similar 
result to the Bonferroni correction when M is large.18 However, 
most methodologists consider the Bonferroni correction to be 
too stringent and conservative, thus inappropriate for many of 
the GWA studies.14,17–23 Reasons for not using the Bonferroni 
correction are 2-fold. Although the Bonferroni and Sidak cor-
rections control for false-positive discoveries very well, their 
inability to tolerate even one false discovery at a defined prob-
ability leads to an increase in false-negative discoveries, ie, not 
rejecting the null hypothesis of no association between an SNP 
and a trait while the null hypothesis is false.19 This will poten-
tially lead to missing out SNPs that may be truly associated. 
Also, many SNPs are in close LD to one another, but Bonferroni 
and Sidak corrections assume that each SNP (and thus each 
association test) to be independent of each other and fails to 
take LD into account. Methods such as the Sidak correction 
also assume uniformly distributed P values under the null 
hypothesis.24 Population stratification and admixture can con-
found the genotype-phenotype association, thus creating 
departures from the uniform P value distribution expected by 
the Sidak correction,24 making it an inappropriate choice for 
estimating significance threshold in GWAS.
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Other methods to estimate significance threshold in 
GWAS
Methodologists have proposed other methods to estimate sig-
nificant threshold in GWAS. These methods center around 4 
approaches: controlling the false discovery rate (FDR), estima-
tion of the effective number of independent SNPs by account-
ing for LD, permutation testing, and Bayesian approach.

False discovery rate was devised by Benjamini and Hochberg 
in 1995 as a solution to the drawbacks faced by FWER.  
False discovery rate is defined as the expected proportion of  
false-positive associations among all associations that were 
declared significant25 and can be expressed mathematically as 
f f tp p p/ ( )+  where fp is the number of false-positive associa-

tions and tp is the number of true-positive associations. This is 
different from false-positive rate because the FDR is the pro-
portion of false-positive associations among all associations, 
whereas false-positive rate is the average proportion of associa-
tions that will be declared significant assuming that the null 
hypothesis is true.19 In FDR, the local significance threshold 
changes depending on the rank order of each SNP’s P value 
while taking into the total number of SNPs examined into 
account. To use FDR, one first chooses a global significance 

level, such as 0.05. One then rank orders the P value of the 
SNPs from the smallest to the largest (Table 1, column 1). The 
local FDR significance threshold (FDR) for each rank (i) is 
then calculated by multiplying the global significance level (α, 
eg, 0.05 as in the example here) with the rank divided by the 
total number of tests (m) ( FDR i mi =α( / ) ; Table 1, column 4). 
Finally, one compares the P value of each rank with the local 
FDR significance threshold ( )FDRi , and the null hypothesis is 
rejected for any P value that is lower than the FDRi  (Table 1, 
column 5).25 A modified method termed the “local FDR” esti-
mates “the probability of a given null hypothesis to be true 
according to the specific P value of each genetic marker tested.”19 
The calculation requires an estimation of the distribution of P 
values under the null hypothesis and the alternative hypothe-
sis.19 The advantage of the FDR and local FDR is that they are 
much less likely to eliminate true associations (false negatives) 
at the expense of having an acceptable proportion of false-posi-
tive association. What is considered “acceptable” is defined by 
the investigator based on the need and stage of the study. The 
disadvantage of the FDR and local FDR in the setting of 
GWAS is that it fails to account for the LD between SNPs 
because it considers each SNP to be independent of each other.

Table 1. Using FDR to estimate significant threshold in multiple testing.

P vAlUE I m FDR THRESHOlD ACCEPT/REJECT NUll

.000001 1 17 0.002941176 Reject

.000013 2 17 0.005882353 Reject

.000065 3 17 0.008823529 Reject

.00063 4 17 0.011764706 Reject

.0008 5 17 0.014705882 Reject

.0017 6 17 0.017647059 Reject

.0032 7 17 0.020588235 Reject

.0065 8 17 0.023529412 Reject

.0148 9 17 0.026470588 Reject

.049 10 17 0.029411765 Accept

.094 11 17 0.032352941 Accept

.11 12 17 0.035294118 Accept

.15 13 17 0.038235294 Accept

.24 14 17 0.041176471 Accept

.45 15 17 0.044117647 Accept

.56 16 17 0.047058824 Accept

.87 17 17 0.05 Accept

Abbreviation: FDR, false discovery rate.
In this example adapted from Benjamini et al, 17 tests were performed, and the P values were rank ordered from the smallest to the largest. The 
FDR threshold was then calculated and any P value that is smaller than the FDR threshold is where the null hypothesis is rejected. Adapted with 
permission from Benjamini et al (2001).
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To account for LD between SNPs, several authors have 
derived significant thresholds based on an estimation of the 
effective number of independent SNPs. Pe’er et al26 derived a 
set of “genome-wide test burden” values based on data collected 
by the International Haplotype Map Consortium, which when 
multiplied with the nominal P values provide “a practical, first-
cut guideline” for correcting nominal P values. The resultant 
significant threshold is approximately 1 × 10−7 for the European 
HapMap but higher for the Yoruba HapMap (YRI; derived 
from an African tribe) at 1 × 10−6 because there are more SNPs 
and lower LD between SNPs in the YRI HapMap.26 Dudbridge 
and Gusnanto provided an estimate of the local significance 
level at 7.2 × 10−8 via a permutation approach based on the 
Wellcome Trust Case Control Consortium data.27 Gao et al18 
proposed a method of deriving the effective number of inde-
pendent tests (Meff) in a study by first computing the eigenval-
ues from the pairwise SNP correlation matrix created with 
composite LD correlation and then derive the Meff using prin-
cipal component analysis. The αl can then be calculated by tak-
ing αg and dividing by Meff. They have shown that the αl 
derived by this method is very close to permutation-based 
methods. Gao also compared his method of Meff with SLIDE, 
a method that assumes a asymptotically multivariate normal 
distribution of commonly used association statistics, to 
examine whether such estimation method can provide an 
approximation of αl to the computationally demanding per-
mutation-based method when imputed SNPs are considered.28 
The author found that the Meff method provided the closest 
approximation to the permutation method using the least com-
putation time.28 In a similar approach to Gao et  al, Duggal 
et al21 evaluated the effective number of “independent” SNPs 
in the Illumina 317 K and Affymetrix 500 K marker sets and 
derived the α l  to be at 1.21 × 10−5 and 1.49 × 10−5, respectively, 
which are significantly less stringent than the conservative esti-
mate of Bonferroni correction. Finally, the Bayesian approach 
of addressing the issue of multiple testing involves accepting or 
rejecting the null hypothesis of association between an SNP 
and the trait under study based on whether the posttest prob-
abilities is above the threshold Bayes factor (BF). The posttest 
probabilities are derived from assumed pretest probabilities in 
conjunction with the data.17 The predetermined threshold BF 
is determined by conducting simulations to compute the 
expected number of false-positive associations for different 
threshold BF.29 A threshold BF is chosen such that it will 
reduce the probability of obtaining a false-positive association 
to an acceptable level.29

Power and sample size

Power in a GWAS depends on a number of factors, including 
the sample size available, the putative effect size of the associ-
ated SNP, the strength of the LD between the associated SNP 
and the causal locus, the minor allele frequencies of the associ-
ated SNP and the causal locus, and the number of SNPs 

tested.30 Methods in determining the significance threshold 
can indirectly influence power substantially because a more 
stringent significance threshold, such as a Bonferroni correc-
tion, will require a trait-associated SNP to have a larger effect 
size to be declared significant or needing a larger sample size 
for a given effect size.23,30 Despite the fact that SCD is the 
most common monogenic disease in the world, the prevalence 
is far lower than common disease such as heart attack or stroke. 
Sickle cell disease often remained underdiagnosed, especially if 
the complications are insidious in nature, such as osteonecrosis, 
silent cerebral infarcts, pulmonary hypertension, proliferative 
retinopathy, and obstructive lung disease. A few epidemiologic 
registries are underway in SCD, including the National 
Haemoglobinopathy Registry in the United Kingdom. The 
combination of such registries with genetic sampling can 
become a powerful tool in the search for genetic modifiers in 
SCD. Until such registries and biobanks come to fruition, sub-
ject availability will continue to be a major limiting factor on 
power in GWAS-involving SCD traits. Methods such as esti-
mation of effective number of SNPs, FDR, permutation, and 
Bayesian methods provide the means to improve power with 
limited sample size while striking a balance between the risk of 
eliminating false-negative association and having an acceptable 
amount of false-positive associations.17

Multistage Design, Replication, and Meta-Analysis 
of GWAS
Regardless of the method used to correct for multiple testing, 
one cannot be certain whether the discovered SNPs in one 
GWAS cohort are true associations or false positives, even with 
highly stringent methods such as the Bonferroni correction. 
Therefore, any putatively associated SNPs that were discovered 
on the first GWAS cohort must undergo further scrutiny. 
There are 3 methods in which this can be achieved: multistage 
design, replication, and meta-analysis.

In multistage design, candidate SNPs identified from the 
initial stage of GWAS dictate the search for association in the 
next stage. The search in the next stage is restricted to genomic 
regions that contain these candidate SNPs so that the search 
can employ higher density SNPs to hone in to the interested 
regions. The data from the initial and subsequent stages of the 
GWAS are then combined to form the result. The advantages 
of a multistage design is 3-fold: cost is reduced by genotyping 
a smaller number of subjects without having to examine the 
entire genome at later stages, mapping of interested regions in 
later stages on a finer scale, and using different genotyping 
platforms at different stages of the study avoid false-positive 
reports and any technical artifacts that are specific to one plat-
form.14 The use of different genotyping platforms at different 
stages of a multistage design and in replication studies is cur-
rently considered the gold standard.14,30

Replication of identified associations between SNPs and 
the phenotypic trait under examination is essential and is con-
sidered the gold standard in differentiating true associations 
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from false-positive associations in GWAS.14,31,32 There are a 
number of approaches to replication. Some investigators will 
only carry forward a small number of candidate SNPs from 
the initial GWAS, selected by a stringent significant thresh-
old, to the next replication cohort. Others will use a smaller 
cohort in the initial GWAS and then carry forward a larger 
number of candidate SNPs to the next replication study using 
a more lax significant threshold to minimize the risk of miss-
ing any false-negative associations.31 Irrespective of the 
approach chosen, in order for a replication study to be consid-
ered valid, it should have (1) sufficient sample size to convinc-
ingly distinguish the proposed effect from no effect, (2) been 
conducted in independent data sets, (3) same or a very similar 
phenotype, (4) similar population, (5) similar magnitude of 
effect and significance in the same direction with the same 
SNP or an SNP in very high LD, (6) reporting of statistical 
significance should be derived from the same genetic model 
used in the initial study (7) a joint or combined analysis should 
lead to a smaller P value than the one observed in the initial 
study, (8) a strong rationale for selecting SNPs for replication, 
based on putative functional data or published literature, and 
(9) the same level of detail of study design and analysis as the 
initial study.33 These criteria were established by the Working 
Group on Replication in Association Studies from the 
National Cancer Institute and the National Human Genome 
Research Institute as a way of standardizing the interpretation 
of results from replication studies.

As discussed previously, increase in stringency of the signifi-
cance threshold will result in the reduction in false-positive 
associations but concomitantly reduce power. Power loss can be 
compensated by increasing the number of subjects in the study, 
but this is often not possible in the study of rare diseases such 
as SCD. Meta-analysis of GWAS has been employed as a solu-
tion to overcome the limiting factor of small sample size. The 
purpose of performing meta-analysis in GWAS is to increase 
power to achieve significance that exceeds a study-wide thresh-
old and to prioritize SNPs for subsequent studies. There are 3 
approaches to perform meta-analysis in GWAS: analysis of the 
aggregated data from different studies at the log odds ratio 
level, retrospective pooled analysis of individual data from the 
primary studies, and prospectively planned pooled analysis of 
individual data from several studies.14 Both random and fixed 
effects models can be employed in the analysis. Random effects 
model produces a more accurate estimate and is considered to 
be more conservative, as it takes heterogeneity between studies 
into account, whereas the fixed effects model can lead to false-
positive associations because of overconfidence (lower P value) 
in results when there is considerable heterogeneity between 
studies.34 However, Cantor et al34 argues that it is not critical to 
have an accurate estimate of the association when the goal of 
the meta-analysis is to prioritize candidate SNPs for future 
investigations and they surmise that this may be one of the 
reasons why fixed effects model is the more popular choice. 

Recently, investigators have conducted mega-analyses with 
multiple GWAS to increase the sample size and discovery 
power. Mega-anlaysis refers to the analysis of combined raw 
microarray data and outcomes data from multiple GWA stud-
ies. Although this method has been attempted in cardiovascu-
lar medicine35 and psychiatry,36 no such attempts were made in 
the field of SCD.

GWAS in SCD
Genetic modifiers in association with fetal 
hemoglobin variations

The most successful discovery of genetic modifiers using 
GWAS in SCD thus far has been in the realm of HbF level. 
Thein et al37 conducted a candidate gene association study in 
2041 non–sickle cell monozygotic and dizygotic twin pairs and 
unrelated individuals, which identified several SNPs within the 
HBS1L-MYB region as being strongly associated with F cell 
(HbF) levels. The first GWAS by Menzel et  al genotyped 
using a 308 000 SNP arrays in 179 unrelated individuals, 
selected for extremes of F-cell distribution, identified markers 
near BCL11A (P values between 4.6 × 10−8 and 2.5 × 10−20), 3 
markers within 6q23 (P values between 8.2 × 10−6 and 
2.8 × 10−27) later confirmed to be between the HBS1L and MYB 
genes, and Xmn1 polymorphism at 158 base pairs (bp) upstream 
of the Gγ globin (HBG) gene (2.0 × 10−30) as being significantly 
associated with F-cell levels.38 The findings were replicated in 
90 individuals, again with extremes in F-cell distribution, and 
in an unselected 720 twins cohort (ie, not selected for extremes 
of F-cell distribution). Most of these markers retained similar 
levels of significance on replication. In parallel, Uda et  al39 
identified a strong association between SNP rs11886868 in 
BCL11A gene and HbF levels in a GWAS with 362 129 SNPs 
in 4305 Sardinians. The C variant of this SNP was more fre-
quent in heterocellular HPFH and in homozygous β0-
thalassemia with mild phenotype compared with the severe 
form.39 The same study also confirmed the SNPs between 
MYB and HBS1L genes which were associated with elevated 
HbF levels. Lettre et al40 was the first to replicate these find-
ings in a cohort of sickle cell patients by showing that the SNPs 
discovered in the previous retained their significance within a 
cohort of 1275 North American and 350 Brazilian patients 
with SCD. The BCL11A finding was further replicated in an 
independent cohort of 255 SCD individuals from the United 
States.41 To search for other genetic modifiers of HbF level, 
Solovieff et  al42 conducted a GWA study in 1153 African 
Americans (848 individuals in the discovery set and 305 in the 
validation set). Single-nucleotide polymorphisms centered 
around BCL11A again were significantly associated with HbF 
level, but new SNPs surrounding olfactory receptor genes on 
chromosome 11 (lowest P = 4.7 × 10−8) were also identified. The 
investigators defined the significance threshold as <1.0 × 10−6 
but did not explicitly state the method of deriving the 
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threshold. Bhatnagar et al43 conducted a GWAS on the F-cell 
level of 440 African American patients with SCD from the 
Silent Infarct Transfusion (SIT) trial cohort using 661 000 
SNPs. The investigators determined the significance threshold 
by permutation method, resulting in a value of 1.27 × 10−7. This 
is significantly less conservative than what would be expected if 
Bonferroni correction was employed (7.56 × 10−8). Also of note 
is that unlike other GWAS in SCD, Bhatnagar et al explicitly 
defined their method of deriving the significance threshold. In 
addition to confirming the association of BCL11A with F-cell 
variation, sex-stratified analysis also identified an SNP in the 
glucagon-like peptide-2 receptor (GLP2R) gene reaching 
genome-wide significance as defined by the investigators. Bae 
et  al44 recently conducted a meta-analysis of 7 cohorts of 
African Americans with SCD totaling 2040 patients in 585 563 
common SNPs to locate loci of modest effect size. The investi-
gators chose 5.0 × 10−8 as the significance threshold. Although 
SNPs from BCL11A and HMIP (a gene between the HBS1L 
and MYB genes) were successfully replicated, SNPs from the 
olfactory receptor genes did reach significance. Mtatiro et al45 
conducted a GWAS in sickle cell anemia (HbSS and HbS/β0-
thalassemia) patients from Tanzania and the United Kingdom. 
The discovery phase assayed ~2.4 million SNPs in 1213 indi-
viduals from Tanzania. The replication cohort included 321 
patients from the United Kingdom and included 16 SNPs 
from 10 loci. The investigators used the 1000 Genomes Phase 
1 release data for imputation. Although the investigators were 
able to replicate BCL11A and HMIP, they were not able to 
replicate 8 other associations with P < 10−6 in the United 
Kingdom SCD replication cohort.45 Functional study by Xu 
et al demonstrated that BCL11A encodes a zinc-finger tran-
scription factor and is critical in HbF switching by occupying 
the upstream locus control region and γ-δ intergenic regions of 
the β-globin locus and via interaction with corepressor com-
plexes, Mi-2/NuRD, and LSD1/CoREST, as well as the eryth-
roid transcription factor GATA-1 and the HMG-box protein 
SOX6.46 Observations and functional studies also confirmed 
the biologic significance of the HBS1L-MYB region on HbF 
expression. Sankaran et al47 observed microRNA miR-15a and 
miR-16-1 to act via MYB to elevate fetal hemoglobin expres-
sion through mapping of 57 partial trisomy 13 cases in humans. 
Suzuki et al48 demonstrated in a mouse model that the disrup-
tion of HBS1L-MYB locus result in HPFH, of which the 
downregulation of MYB suppresses the KLF1/BCL11A path-
way, resulting in activation of fetal globin gene expression. Pule 
et al49 has shown that the treatment of ex vivo differentiated 
primary erythroid cells from 7 unrelated individuals and K562 
cells (immortalized erythroleukemic cells) with hydroxyurea, a 
known HbF inducer, resulted in downregulation of MYB, 
BCL11A, and KLF-1 and upregulation of γ-globin (thus HbF) 
expression. The discovery of BCL11A and the region between 
HBS1L-MYB as crucial regulators of HbF variation illustrates 
the importance of multiple replications in validating any 

GWAS discovery leading to identification of meaningful regu-
lators of phenotypic variation with therapeutic potential.

In search of genetic modifiers in association with 
other SCD variations

The success of discoveries in genetic modifiers governing HbF 
variation using GWAS prompted the search for genetic modi-
fiers in other SCD traits using the GWAS approach. A search 
through Medline using the Medical Subject Heading (MeSH) 
terms “Genome-Wide Association Study”[Mesh] AND 
“Anemia, Sickle Cell”[Mesh] revealed 30 citations. One article 
in which the search failed to locate but the author has knowl-
edge of was also included. After excluding review articles, 8 
GWAS covering 8 traits (not including the aforementioned 
studies in HbF variation) were examined. This included stroke, 
systolic blood pressure, ACS, painful crises, hemolysis, biliru-
bin and cholelithiasis, hemoglobin A2 (HbA2), and SCD dis-
ease severity score (Table 2).

Approximately 11% of the patients with SCD will have an 
overt stroke by 20 years of age.50 Sibling-pair study had shown 
that a genetic component exists in SCD strokes.51 Flanagan 
et  al52 conducted a GWAS in which they genotyped 512 
patients (177 with stroke and 335 having no stroke as controls) 
from various sources including the Hustle study, SWiTCH 
study, Cooperative Study of Sickle Cell Disease (CSSCD), and 
the Comprehensive Sickle Cell Centers Collaborative Data 
Project.52 They interrogated ~770 000 SNPs but found none 
that reached genome-wide significance, which the investiga-
tors defined as 5 × 10−8. The investigators did not specify the 
method used to derive the significance threshold. The strin-
gency of the threshold chosen by this study was quite similar to 
the one obtained via the Bonferroni method (6.5 × 10−8). For 
purposes of illustration, if FDR was the chosen method of 
establishing significance, the P value of the top 4 SNPs versus 
their respective corrected FDR threshold would be 2.71 × 10−7 
vs 6.49 × 10−8, 3.13 × 10−7 vs 1.30 × 10−7, 5.52 × 10−7 vs 1.95 × 10−7, 
and 9.77 × 10−7 vs 2.60 × 10−7. Thus, employment of the FDR 
method would also have resulted in the rejection of the  
candidate SNPs. Instead of taking the top candidate SNPs and 
replicating the findings in other cohorts or to perform a  
meta-analysis with other cohorts, the investigators took a 
whole-exome sequencing approach with the same cohort of 
patients and found 22 candidate variants. Validation study and 
in combination with the GWAS data resulted in isolation of 2 
associated variants, but none of these 2 appeared in the top 10 
SNPs identified by the initial GWAS.

The study by Bhatnagar et  al53 examined the genetic  
determinants of systolic blood pressure in SCD. A previous 
study identified a higher systolic blood pressure (not hyperten-
sion) as a risk factor for development of silent cerebral infarc-
tion in SCD children.53 The study used 2 unrelated admixed 
African American SCD cohorts from 2 different studies: the 
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SIT trial cohort and the CSSCD cohort. The SIT trial cohort 
was divided into 2 subsets, the first subset (N = 573) was 

genotyped on a ~661 000 SNPs array, and the second subset 
(N = 509) was genotyped on a ~1 140 000 SNPs array. The 

Table 2. Summary of genome-wide association studies in sickle cell disease complications, with focus on the discovery cohort 
size, array size, genome-wide significance level (α level), derivation of the significance threshold and the presence or absence of a 
multistaged design, replication studies, or meta-analysis.

STUDy DISCOvERy 
COHORT SIzE

ARRAy SIzE α lEvEl DERIvATION 
METHOD

MUlTISTAGED, 
REPlICATION, OR 
META-ANAlySIS

COHORT 
SIzE

Trait: stroke

Flanagan, 2013 512 770 000 5.0 × 10−8 Not stated No

No SNPs passed the significance threshold

Trait: systolic blood pressure (surrogate marker for silent cerebral infarction)

Bhatnagar, 2013 573
692

661 000
600 000

5.0 × 10−8 Bonferroni 2-staged
Meta-analysis

509
1617

No SNPs passed the significance threshold

Trait: acute chest syndrome

Galarneau, 2013 1514 237 643 1.0 × 10−4 FDR Multistaged 387
318
449

17 SNPs were declared significant in the discovery cohort, 1 SNP was replicated in the combined discovery and replication cohorts, the same 
SNP was also replicated and reached genome-wide significance after combining the data from all 4 cohorts

Trait: painful crises

Galarneau, 2013 1514 237 643 1.0 × 10−4 FDR Multistaged 387
318
449

19 SNPs were declared significant in the discovery cohort, none of the SNPs were replicated in a combined discovery and replication CSSCD 
cohorts, and none of the SNPs reached genome-wide significance after combining the results from all 4 cohorts

Trait: hemolysis (hemolytic score)

Milton, 2013 1117 569 554 1.0 × 10−8 Not stated Replication
Meta-analysis

745
213

2075

Although none of the SNPs reached the significance threshold stated by the investigators, 4 SNPs were very close to the significant threshold 
in the discovery set (5.87 × 10−5 to 6.04 × 10−7) and remained significant in the replication sets. All 4 SNPs were significant on meta-analysis of 
the 3 cohorts

Trait: bilirubin and cholelithiasis

Milton, 2012 1117 569 615 5.0 × 10−8 Not stated Replication 195
522
530
905

15 SNPs had a P < 5.0 × 10−8 in discovery cohort and retained their significance in the all the replication cohorts

Griffin, 2014 618 ~600 000 1.0 × 10−5 Not stated Replication 128
45

580

14 SNPs had a P < 1.0 × 10−5 in discovery cohort and 2 achieved nominal replication, 1 achieved genome-wide significance

Trait: SCD disease severity score (“mild” vs “severe” disease)

Sebastiani, 2010 1265 600 000 >1000 BF Bayesian Replication 163

The investigators discovered 40 SNPs in the discovery cohort and 5 were replicated in the replication cohort. BF refers to Bayes factor 
because a Bayesian approach was undertaken in association tests

Abbreviations: CSSCD, Cooperative Study of Sickle Cell Disease; FDR, false discovery rate; SNPs, single-nucleotide polymorphisms.
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CSSCD cohort (N = 692) was genotyped on a ~600 000 SNPs 
array. Meta-analysis of the results from both cohorts was per-
formed with 1 019 297 evaluable SNPs. The genome-wide sig-
nificance level of 5.0 × 10−8 was determined by the Bonferroni 
method, and none of the SNPs examined in the discovery sets 
or the meta-analysis reached genome-wide significance. The 
top scoring SNP had a P value of 8.57 × 10−7 which was close to 
the prespecified significance threshold, but the rest were in the 
range of 10−6 to 10−5.

The study by Galarneau et al54 involved the search for genetic 
associations with painful crises and ACS. The CSSCD cohort 
(N = 1514) was used as the discovery cohort and 237 643 SNPs 
were tested. False discovery rate was used to correct the local P 
values of each SNP, and the authors chose a local significance 
level of 1 × 10−4 as this provided a 50% power for a quantitative 
trait (eg, frequency of painful crisis and ACS) assuming a minor 
allele frequency of 25% and 1% of variance explained. A total of 
36 SNPs (19 SNPs for painful crises and 17 SNPs for ACS) 
were found to be smaller than 1 × 10−4. As a comparison, a local 
significance threshold of 2.1 × 10−7 would be required to declare 
an SNP significant using the Bonferroni method. The investi-
gators then genotyped these 36 candidate SNPs in 387 patients 
from the CSSCD who were independent from the discovery 
cohort, 318 patients with SCD from Georgia Health Sciences 
University (GHSU), and 449 patients from the Duke SCD 
cohort. Combining the results of the CSSCD discovery and 
replication cohorts with the Duke and GHSU cohorts resulted 
in one SNP reaching genome-wide significance (P = 4.1 × 10−7), 
whereas other SNPs failed to replicate.

Hemolysis is one of the main pathogenic mechanisms that 
lead to complications in SCD. Milton et  al55 conducted a 
GWAS where they genotyped 569 554 SNPs in 1117 patients 
from CSSCD against the phenotype of hemolytic score that 
characterized the degree of hemolysis in the discovery cohort. 
The investigators considered 10−8 as the significance threshold 
but did not specify how they derived it. No SNP reached the 
significant threshold. The significance threshold chosen by the 
investigators might have been too stringent considering that it 
was quite close to the threshold derived by Bonferroni correc-
tion (8.3 × 10−8). The investigators then selected top 4 candi-
date SNPs that had P < 5.0 × 10−4 and successfully replicated 
them in the replication sets of 745 patients from the Walk-
PHaSST and Pulmonary Hypertension and the Hypoxic 
Response in Sickle Cell Disease (PUSH) study and 213 
patients from a London UK SCD cohort. The investigators 
also performed a meta-analysis where all 4 SNPs met genome-
wide significance.

Milton et al56 conducted a GWAS of total bilirubin and risk 
of cholelithiasis analyzing 569 615 SNPs, again using the 1117 
patients from the CSSCD as the discovery cohort. Fifteen 
SNPs reached prespecified significance threshold of 5 × 10−5. 
However, the 15 SNPs were in strong LD to each other, and 
adjustment for the first top SNP resulted in the lack of 

independent association with bilirubin, suggesting that all 15 
SNPs were indeed related to one another. In total, 12 of the 
same 15 SNPs were also associated with the risk of cholelithi-
asis. The replication cohort consisted of an aggregate of 2152 
patients from the Duke cohort (N = 530), the MSH (N = 195), 
Walk-PHaSST (N = 522), and the SIT study (N = 905). All 15 
SNPs isolated from the discovery cohort were successfully rep-
licated. The fact that all 15 SNPs belong to the UGT1A1 gene 
which is responsible for glucuronidation of unconjugated bili-
rubin lends biological support to the discovery.

Hemoglobin A2 is composed of 2 α-globins and 2 δ-globins 
with a physiologic function indistinguishable from adult 
hemoglobin. Its expression is higher in the presence of HbS 
compared with non-SCD adults. As HbA2 has the potential of 
inhibiting the polymerization of HbS, understanding the 
genetic variability of HbA2 expression in patients with SCD 
may open the door to the development of antisickling therapy. 
Griffin et al57 in 2014 reported a GWAS of HbA2 variability 
using a discovery cohort of 618 unrelated African Americans 
from the CSSCD study. The replication cohort consisted of 
128 African American patients from the Walk-PHaSST study, 
45 African Americans from the PUSH study, and 580 Chinese 
from the Hong Kong β-thalassemia trait study. All were geno-
typed using the Illumina Human610-Quad array. Replication 
attempts were performed on 14 SNPs that had a P < 10 × 10−5. 
Two SNPs (rs766432 and rs10195871) achieved nominal rep-
lication with one (rs766432) achieving genome-wide signifi-
cance in meta-analysis, after adjusting for age and sex, but not 
HbF. Both of these SNPs are within BCL11A, and mediation 
analysis suggested that HbA2 variations are partially mediated 
by HbF.57

To quantitatively describe the burden of complications in 
individual patients with SCD, Sebastiani et  al29 developed a 
scoring system that described the risk of death within 5 years 
by integrating clinical and laboratory parameters. The scoring 
system was then validated in a cohort of European patients 
with SCD.29 The investigators then genotyped ~600 000 SNPs 
in 1265 patients from the CSSCD cohort at the discovery 
stage. The evidence of association with each genotyped SNP is 
based on the posterior probability using Bayesian test. The sig-
nificance threshold chosen by the investigators was a BF of 
>1000 because this level BF was expected to produce less than 
1 false-positive association in 10 000 independent tests. In 
total, 40 candidate SNPs were strongly associated with sickle 
cell severity with an odds for association of >1000 isolated in 
the discovery set. Only 32 of the 40 SNPs could be analyzed in 
the replication study of 163 patients. Only 5 of the 32 SNPs 
replicated and 8 showed consistent effects but failed to reach 
the significance threshold.

Discussion
The discovery of genetic variants associated with other SCD 
complications has not been as successful as that for HbF 
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variations. Although a number of factors can contribute to the 
lack of success, such as case definition, sample size limitation, 
and population substructure, the focus of the discussion will be 
limited to the issue of multiple testing as a possible reason.

Only 3 of the 6 studies explicitly stated the method of deriv-
ing the significant threshold (Table 2).29,53,54 In studies that did 
not specify the method of deriving the significant threshold, 
the values chosen by the investigators were very similar to the 
one derived by the Bonferroni correction.52,55–57 Consequently, 
the 3 studies that failed to identify any associated SNPs  
(Table 2)52–54 used the Bonferroni correction or had values 
similar to the Bonferroni correction, suggesting that the chosen 
method was overly stringent and may have resulted in false-
negative findings. Conversely, the success of the GWAS con-
ducted by Galarneau et  al may be partly attributed to the 
investigators choosing a less stringent threshold (1.0 × 10−4) at 
the discovery stage, using a different method in adjusting for 
multiple testing (FDR), and employed a multistage design in 
their study.

Even if no association was found at the discovery stage, one 
does not necessary have to abandon the study, especially when 
the significance threshold chosen was a very stringent one. In 
the GWAS of hemolysis by Milton et al,55 none of the SNPs 
reached the prespecified significance threshold, but the investi-
gators chose to carry on the top 4 SNPs into the replication 
study and successfully replicated their findings in independent 
cohorts. This example nicely illustrates the following princi-
ples: using the significance threshold only as a guide and not as 
an absolute cut-off in the initial SNP discovery stage, the value 
of prioritizing candidate SNPs found in discovery cohort for 
further examination in replication cohorts or meta-analysis, 
and the value of conducting replication studies in independent 
populations.

Study by Sebastiani et  al29 used the Bayesian approach 
(Table 2), but surprisingly, none of the studies used the estima-
tion and permutation methods. Adaptation of these less strin-
gent methods in estimating the significance threshold may aid 
in identifying candidate SNPs for subsequent studies, in par-
ticular, where sample size is a limiting factor.

The challenge of GWAS is to identify and separate true 
associations from false-positive associations. Although many 
factors play a role in this process, such as sample quality control, 
genotyping accuracy, and population substructure, correction 
for multiple testing plays a central role. A number of statistical 
methods are available in the correction of multiple testing, 
including FWER (Bonferroni or Sidak), FDR, estimation of 
effective number of SNPs by considering the LD structure, per-
mutation testing, and Bayesian method. There is no “one-size-
fits-all” approach when choosing a particular multiple testing 
correction method for GWAS. However, some general rules can 
be gleaned from the above studies in SCD, which constitute 
only a fraction of all GWAS conducted to date. The choice of 
multiple testing correction method is partly dependent on the 

stage of SNP discovery. At initial stages, one can be more liberal 
as one does not wish to eliminate any SNPs that may be truly 
associated (avoid false negatives). In this case, less stringent 
methods such as FDR or one of the estimation methods out-
lined above would be suitable. Regarding this, investigators con-
ducting GWAS in SCD complications should be encouraged to 
consider using less stringent methods such as the ones described 
in this article to derive significant thresholds. In subsequent 
studies where the aim is to hone in on the specific causal SNPs 
from a handful of candidate genes, one may consider more 
stringent methods such as the local FDR or the Bonferroni cor-
rection. Finally, multistage design and meta-analysis provide 
ways to minimize the sample size required while maximizing 
the power and contain costs in conducting a GWAS. Replication 
is essential and is the gold standard in verifying any initial SNP 
discovery. In the GWAS of SCD stroke by Flanagan et  al,52 
although the study failed to yield any associated SNPs in the 
discovery cohort, the significance threshold chosen was quite 
conservative and was close to that of Bonferroni correction. 
Furthermore, the P values of the top 10 SNPs were in the order 
of 10−7, which might have been declared significance if a less 
stringent threshold was chosen. Furthermore, the investigators 
did not bring forward any of these candidate SNPs for replica-
tion or meta-analysis. In this case, one can consider an attempt 
to replicate the study in the other existing data sets.

Regardless of the statistical significance of the associated 
SNP or gene, a biologically plausible connection to the pheno-
type must be established, via new experiments, clinical studies, 
or prior literature, to prove that such association is a truly causal 
association. This is also the means in which potential therapeu-
tic targets and novel treatment methods can be developed and 
arguably is the ultimate goal of conducting GWAS in human 
diseases.
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