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Abstract: Essential metals such as copper (Cu) and zinc (Zn) are important cofactors in diverse
cellular processes, while metal imbalance may impact or be altered by disease state. Cu is essential
for aerobic life with significant functions in oxidation-reduction catalysis. This redox reactivity
requires precise intracellular handling and molecular-to-organismal levels of homeostatic control.
As the central organ of Cu homeostasis in vertebrates, the liver has long been associated with Cu
storage disorders including Wilson Disease (WD) (heritable human Cu toxicosis), Idiopathic Copper
Toxicosis and Endemic Tyrolean Infantile Cirrhosis. Cu imbalance is also associated with chronic liver
diseases that arise from hepatitis viral infection or other liver injury. The labile redox characteristic of
Cu is often discussed as a primary mechanism of Cu toxicity. However, work emerging largely from
the study of WD models suggests that Cu toxicity may have specific biochemical consequences that
are not directly attributable to redox activity. This work reviews Cu toxicity with a focus on the liver
and proposes that Cu accumulation specifically impacts Zn-dependent processes. The prospect that
Cu toxicity has specific biochemical impacts that are not entirely attributable to redox may promote
further inquiry into Cu toxicity in WD and other Cu-associated disorders.

Keywords: copper; zinc; Wilson Disease; copper toxicity; oxidative stress

1. Introduction
1.1. Copper

Cu (atomic number 29, average molecular weight 63.55) is an essential micronutrient
with electronic configuration [Ar] 3d104s1 and placement in group XI, period IV of the peri-
odic table. This configuration is important to explain the reactivity of Cu and its enzymatic
utility through labile oxidation and reduction between Cu(I) and Cu(II) under physiological
conditions. However, unbound or “free” Cu ions are not generally encountered in cells in
either valence state (for a detailed discussion of the chemical speciation of Cu in cells, see
Fahrni [1]). Cu is essential for many physiological processes including iron homeostasis [2],
angiogenesis [3], neurotransmitter biosynthesis [4], immune function (including neutrophil
activation and macrophage function) [5] and energy metabolism [6].

1.2. Normal Copper Metabolism and Its Relationship with Liver

The transition metal Cu is an essential trace element that must be acquired from
the diet. Its high redox potential readily permits electron transfers to oxygen [7]. This
property allows Cu to serve as an indispensable cofactor for enzyme function, but also
requires that Cu be sequestered to avoid the generation of reactive oxygen species. Given
its unique anatomical location and microcirculatory anatomy, the liver is a master regulator
of nutrient metabolism, including Cu. The absorption, uptake, export, and transport of Cu
are tightly regulated because both too much and too little Cu are associated with oxidative
cell damage, compromised immune function and organ dysfunction. In liver parenchymal
cells, Cu is locally utilized for cellular processes including mitochondrial respiration and
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free radical detoxification, while it is also actively transported into the trans-Golgi network
via ATP7B transporters [8]. Excess Cu can be sequestered by metallothionein (MT) proteins,
as well as exported via ATP7B, which traffics to endo- or lysosome-derived compartments
and the apical (bile canalicular) membrane [9,10]. Alternately, Cu exits hepatocytes via the
basolateral membrane as a cofactor of the ferroxidase ceruloplasmin [11]. Blood circulating
Cu can be acquired by other tissues including the brain, kidney, heart, connective tissue,
and pancreas [12]. Although most whole-body Cu regulation is attributed to ATP7B, the
Cu exporter ATP7A has central roles in intestinal Cu acquisition and mobilization across
the blood–brain barrier [13]. ATP7A may also function to mobilize Cu from the liver to
the bloodstream across the hepatocyte basolateral membrane in order to serve specific
organ systems [14]. The cellular localization of Cu in the liver may be important in Cu
homeostasis. For example, high Cu localization to lysosomes is found in the neonatal
cholestatic liver [15]. Additionally, high cytosolic Cu in cholestatic hepatocytes is similar to
the diffuse localization of Cu in the early stages of Wilson Disease (WD) [15]. In summary,
Cu metabolism and liver function are closely intertwined.

1.3. Copper Toxicity

Cu toxicity in humans can be a result of mutations in genes encoding Cu handling
machinery, environmental exposure (typically via consumption) or a combination of causes.
Elevated Cu levels are also associated with liver injury due to viral infection or cholestatic
disease. Cu is expected to promote oxidative damage; however, it is not clear that this is
the primary cause of toxicity. Studies in animal models suggest that in response to excess
Cu, cell redox buffering may mitigate acute oxidative stress, yet fail to compensate for
ancillary biochemical impacts such as altered lipid metabolism, impaired transcriptional
activation or mitochondrial fragmentation [16–19]. Bearing these observations in mind,
the objectives of this review are as follows: (1) Provide an overview of Cu toxicity in
humans and in animal models, (2) Examine evidence that Cu toxicity has specific molecular
consequences independent of Cu-induced oxidative damage, and (3) Propose a model
where Cu selectively impacts Zn dependent molecular machinery including Zn containing
transcriptional activators and enzymes with Zn cofactors.

2. Copper Excess and Consequences of Copper Toxicity in Humans and Animal Models
2.1. Copper in Liver Disease: Viral Hepatitis

Liver injury or altered function due to viral infection may impact systemic or organ-
level Cu balance. Elevated serum Cu (along with iron) has been reported in patients with
hepatitis C virus (HCV), with significant increases in cirrhotic patients [20–22]. In patients
with anti-HCV antibodies, increases in essential transition metals were also positively
correlated with markers of oxidative stress [21]. Increases in serum transition metals have
also been studied in hepatitis B virus (HBV) cases at various stages of disease, finding
that HBV patients with hepatocellular carcinoma (HCC) had increased serum Cu but
decreased Zn, Fe and Se levels compared to a control group [23]. It is not yet clear if
viral-induced increases in bodily Cu contribute to liver injury or pathology, though this is
an area currently under study.

A study in female patients reported increased serum and urine Cu and Fe in viral
hepatitis A, B, C, D and E, while the strongest metal associations with hepatitis viruses
were significant Cu increases in the scalp hair of viral hepatitis A, B and C patients [24].
These studies suggest that viral liver injury can cause changes in systemic Cu balance,
although increased serum or plasma Cu may be due to acute infection and ceruloplasmin
production [25]. A study of liver disease progression in chronic HCV found that liver
Cu content increased with the progression of fibrosis and was positively correlated with
bilirubin [26]. This work also reported a negative correlation between Cu and albumin
with no fibrosis grade-associated changes in Fe or Zn. A histological staining analysis in
chronic active viral hepatitis reported that Cu and Fe deposition was associated with lower
proliferative capability, suggesting Cu deposition zones are associated with necrosis in
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these cases [27]. High Cu in HCC in chronic hepatitis or cirrhosis caused by HCV indicated
increased Cu in liver parenchymal tissue with HCC as opposed to tissue without HCC,
while a similar increase in Fe levels was not observed [28]. These studies link Cu accu-
mulation with viral liver injury, particularly implicating hepatic Cu in HCV progression.
However, a mechanism of action where Cu promotes liver injury in these pathologies is
not readily apparent.

2.2. Copper in Liver Disease: Cholestatic Liver Disorders

Hepatic Cu accumulation can result from cholestatic liver disorders, most notably
in primary biliary cirrhosis (PBC), where it appears that normal levels of biliary Cu ex-
cretion are not sufficient to remove Cu accumulated in the liver [29,30]. Treatment with
D-penicillamine (D-PEN) has been tested in PBC as a Cu depletion strategy; however,
D-PEN was not found to be effective in reducing accumulated hepatic Cu or mortality
risk [29,31].

2.3. Copper Toxicity from Excess Consumption

Acute Cu toxicity from consumption is not well understood in humans. The literature
includes a number of case reports documenting acute toxicity from the ingestion of Cu-
laden beverages with many cases exceeding 20 g. A series of cases reporting chronic Cu
poisoning due to tap water contamination in Germany revealed largely gastrointestinal
symptoms and excess non-ceruloplasmin Cu in blood and urine [32,33]. Cases of intentional
acute Cu ingestion are often intentional self-harm, can be fatal, and are characterized by
damage to erythrocytes, the liver and kidneys (two case reports with literature reviews are
illustrative: [34,35]). Molecular mechanisms of such acute toxicity are not characterized.

Chronic Cu toxicity through excess consumption has been studied in animal models.
These studies examine consequences of chronic sublethal Cu “loading” including a series
of reports in the “Cu-loaded rat” fed 1 g/kg Cu for 16 weeks. This experimental series
reported kidney Cu sequestration in MT-containing granules and association with higher
molecular weight proteins in the liver [36]. Increases in circulating and urinary Cu and
MT were reported, suggesting a non-biliary route of excretion may be activated by excess
Cu [37]. Further study reported Cu in the nucleus, nucleolus and lysosomes of hepatocytes,
indicating a partitioning system in cells [38].

Work in a diabetic vs. non-diabetic male rat model treated with a 30-day regime of 10
or 60 mg/kg Cu/day via gastric tube reported adverse Cu-induced changes to serum lipid
profiles and decreased antioxidant enzyme activity with greater susceptibility in diabetic
rats, indicating that Cu toxicity may be augmented by diabetes [39]. Similarly, mice fed a
range of 0–16 mg/kg/day Cu via gavage exhibited inflammatory responses and liver injury
in response to Cu administered above 4 mg/kg/day [40]. Further, an important study in
rats quantified malondialdehyde (MDA) by the thiobarbituric acid reaction as a readout of
lipid peroxidation in response to long-term dietary Cu [41]. Although histological lesions
were induced by Cu consistent with dose-response (six diet groups from 4.8–766 µg/g Cu),
there were no significant differences in MDA levels between groups.

In another long-term dietary Cu loading experiment, Cebus capucinus monkeys were
fed a high Cu diet that increased from an initial 5 mg/kg/day Cu (as Cu gluconate) to
7.5 mg/kg/day over two months. The feeding regime was maintained for three years,
resulting in hepatic Cu increases of approximately 5-fold (~15 vs. ~75 µg/g dry weight)
in Cu-treated animals (>250 µg/g hepatic Cu is characteristic of WD [42]). This treatment
promoted a transcriptional response consistent with inflammation and proliferative gene
expression. However, there was no apparent blood chemistry, clinical or histological
indication of damage [43]. The Cu-loading experiment in C. capucinus was followed up in
the same animals by a one-week break from Cu treatment and subsequent challenge with
an acute toxic dose of acetaminophen [44]. Although liver pathology was not apparent, the
Cu-treated animals exhibited an attenuated transcriptional response to acetaminophen as
well as decreased liver injury compared to non-Cu treated animals as measured by serum
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alanine transaminase (ALT). This observation suggests broad Cu tolerance and capacity to
prevent toxicity in mammals via both adaptive and homeostatic responses.

2.4. Human Copper Toxicosis—Wilson Disease

Wilson Disease is the most well-documented disorder of Cu toxicity and is an au-
tosomal recessive disorder of Cu metabolism with an estimated global allele frequency
of 1:90 [45]. This rare disease is caused by a mutation in the ATP7B gene [46] that is
characterized by excessive Cu accumulation, primarily in the liver, but also in other tis-
sues including the brain [47]. The disorder is potentially lethal if untreated. WD can
lead to diverse clinical manifestations such as hepatitis, cirrhosis of the liver, and liver
failure, as well as neurological symptoms including tremors, dystonia, and psychological
conditions [48–50]. Symptom onset in WD patients typically begins between the ages of
3 and 40, while initial observations often include neurological or behavioral symptoms
akin to Parkinson’s Disease in addition to symptoms of liver disease. Diagnosis is usually
established after the evaluation of serum ceruloplasmin (CP, which is typically below the
reference range in WD), 24hr urinary Cu excretion and a slit lamp examination for the
presence of Kayser–Fleischer rings (indicative of corneal Cu deposition) [42].

The neuropathology for WD is well defined and deserves specific attention. However,
less is understood about neurologic compared to hepatic WD as well as the relationship
between hepatic and brain Cu toxicity. Cu accumulates nonspecifically in the WD brain
at concentrations up to 10 times higher than normal [51]. Astrocytes are the primary
regulators of brain Cu loading. In WD, they grow in number and in size as they store large
quantities of Cu locally, as well as produce abnormal astrocytic cells known as Alzheimer
type I glia and Opalski cells. This process impairs normal astrocyte function in the brain,
which may contribute to the neuropathology of WD through damage to neurons and
oligodendrocytes [52]. Poujois et al. (2017) provide an up-to-date review of WD brain
pathology in patients with neurologic symptoms, including the lack of correlation between
cerebral Cu and symptom severity and the implication that WD brain pathology may be
more complex than direct Cu toxicity [53]. Furthermore, it is notable that WD is one of the
few neurodegenerative disorders that can be successfully treated with pharmacological
therapies as found in multiple long term followup studies [54–56].

Wilson Disease shares many symptoms with other neurological diseases such as
Alzheimer’s and Parkinson’s—diseases that are also characterized by Cu accumulation
in the brain [57]. It is possible that study in WD may illuminate etiologies in these more
common pathologies.

Since the underlying disease mechanisms are not fully understood, there are resul-
tant limitations on our understanding of WD treatment and its metabolic consequences.
Therapies for WD include the consumption of a low-Cu diet, treatment with de-coppering
agents such as D-PEN, trientine, tetrathiomolybdate, and Zn supplementation. All of these
treatments focus on reducing the overall Cu burden in the body. Poor response to these
therapies necessitates liver transplant. While these therapies may reduce hepatic Cu accu-
mulation, they do not always ameliorate and can even induce neurological symptoms [58].
For example, tetrathiomolybdate treatment was reported to have negative neurological
impacts in 9% of patients in one study [59]. It is possible that these responses may be due
to a temporary transference of Cu from the liver to the circulation, worsening the overall
Cu stress. Alternatively, WD treatment might negatively impact brain homeostasis of Cu
or other transition metals such as Zn.

2.5. Non-Wilson Copper Toxicosis

Non-Wilson Cu toxicosis is also recognized in several other liver disorders including
Idiopathic Copper Toxicosis (ICT), Endemic Tyrolean Infantile Cirrhosis (ETIC), and Indian
Childhood Cirrhosis (ICC), which can all manifest as cirrhosis with Cu accumulation. These
diseases are characterized by liver Cu accumulation without ATP7B mutation, though
they do appear to have both a genetic and an environmental (i.e., high Cu in the diet)
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component [60–62]. These non-WD disorders associated with hepatic Cu overload have
varied phenotypes including onset in infancy as opposed to later in life as in WD [62].
The divergence of ICT onset as well as pathology from that of WD is proposed as a
synergy between an unknown genetic factor and high dietary Cu [63,64]. Similarly, ETIC is
another early-onset Cu disorder that can lead to fatal hepatic insufficiency and cirrhosis.
Evidence supports familial clustering in ETIC [65], with clinical profiles divergent from
WD including: CP within reference range, and high ALT, aspartate transaminase (AST),
and gamma-glutamyltransferase (GGT). Both ICT and ICC also diverge from WD in that
they are both characterized by elevated serum Cu: individuals with ICC have increased
serum Cu compared to controls and family members [66], while ICT is described with
serum Cu above the reference range [65]. Importantly, ICC is strongly associated with high
Cu consumption in the diet and is thus considered treatable [67,68].

Domesticated animals are also observed with Cu toxicosis. The Bedlington Terrier
dog was initially proposed as a canine model for WD over 40 years ago with hepatic Cu
concentrations ranging up to nearly 10,000 µg/g (dry weight) in liver tissue [69,70]. This
Cu accumulation was predominantly localized to lysosomes, while the causative mutation
is not in ATP7B but was rather identified in a gene initially called Murr1 (later named
COMMD1) [71]. Other dog breeds have been found with elevated hepatic Cu, including
Labrador Retrievers homozygous for ATP7B mutation [72,73]. Interestingly, some Labrador
Retrievers also have an ATP7A variant that is protective through apparent delayed Cu
accumulation [73]. The Labrador Retriever was reported in 2016 as the first natural, non-
rodent variant WD model, though the mechanistic characterization of Cu toxicity has not
been extensively explored.

It is clear from both WD and non-WD Cu toxicosis that Cu accumulation is hepatotoxic
as determined by clinical values indicative of liver injury. Underlying these studies as
well as Cu-loading work in animal models is the understanding that the liver and other
tissues have homeostatic and adaptive mechanisms to mitigate the stress of excess Cu.
The variability in the age of onset for WD and other disorders of Cu metabolism also
suggests Cu toxicity mechanisms that are an accumulation of damage at the molecular
level. Therapy for Cu accumulation disorders focuses on relieving the Cu burden, as noted
for WD. These therapies may also offer insight into molecular mechanisms of Cu toxicity.

2.6. Zinc as a Therapy for Wilson Disease—Competition with Copper and Negative Copper
Balance

Oral Zn treatment for WD was first proposed by Schwudick in a thesis [74] and later
elaborated by Hoogenraad, illustrating the inhibition of Cu absorption in the intestine [75].
Current practices mirror this treatment [42]. We now know that MT transcription is
regulated by cellular Zn levels and that MT preferentially binds to Cu [76,77]. Thereby, in
the presence of high Zn concentration, MT transcription is upregulated and preferentially
binds and retains Cu in enterocytes. Thus, the current conceptual model indicates that the
induction of MT in the intestine sequesters excess Cu in the epithelial cells, preventing
transfer into the bloodstream and thus creating a negative Cu balance [78].

Zn is currently a first-line treatment in presymptomatic cases of WD as well as long-
term treatment of recovering symptomatic WD patients. Oral Zn is supported by long-term
clinical studies that report improved hepatic, neurological and excretory symptoms. Studies
that include both Zn and chelator pharmaceuticals are included in Table 1. These findings
indicate positive outcomes in a number of trials and retrospective studies for both Zn and
chelator treatments.
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Table 1. Summary of Zn and chelator treatment studies in Wilson Disease.

Author, Year,
Citation Duration Patient Count Treatment

Short Term
Outcomes
(<1 Year)

Long Term
Outcomes
(>1 Year)

Beinhardt et al. 2014
[92]

14.8 years mean
observation

229 (retrospective
study)

D-PEN chelation
therapy (dosage not

reported)
N/A

35% stabilized, 24%
improved, 26%
recovered with

chelation therapy,
15% deteriorated.

Brewer et al. 1998
[54] 12 years 141

Zn: variable between
3 × 50 mg/day and

1 × 25 mg/day

Reduction in urine,
plasma and (minor)

hepatic Cu.
Increase in urine and

plasma Zn.
Partial improvement

of neurological
symptoms.

Urine Cu above
normal.

High urine and
plasma Zn.

Gradual reduction in
non-CP plasma and
liver Cu to normal

values at years 8–12.
Gradual neurological
improvement over 6

years.

Brewer et al. 2001
[55] 5 years 34–4 (pediatric)

Zn: 50–150 mg/day
depending on age of

patient

Reduction in urine
Cu and non-CP

plasma Cu
(p < 0.0001 and
p < 0.05, resp).

Increase in urine and
plasma Zn

(p < 0.0001, both).
Speech measures

improvement
(p < 0.05).

Neurologic measures
improve (p < 0.05).

Reduction in
aminotransferases

ALT, AST (p < 0.01)

Urine and non-CP
plasma Cu stabilizing

in normal ranges.
Urine and plasma Zn

stabilizing at high
concentrations. Little

long term (3 year)
improvement in

dysarthria.
Continuing

improvement of
neurologic measures.

Bruha et al. 2011 [93] 15.1 years mean 117
Zn (17%); D-PEN

(81%); 3 transplant
(dosage not reported)

N/A

82% improvement in
hepatic WD; 69%
improvement in
neurologic WD.

Long-term survival
similar to reference

population.

Członkowska et al.
1996 [86] 12 years 67 (34-D-PEN, 33 Zn) Zn: variable

600–800 mg/day N/A

Similar
improvements in
patients between
D-PEN and Zn

treatment. Zn was
better tolerated and
had a greater rate of

continuation through
the 12 year period
(88% Zn vs. 56%

D-PEN)

Członkowska et al.
2014 [94] 5 years

143 (neurological: 35
D-PEN, 21 Zn;

hepatic: 36 D-PEN, 51
Zn)

unknown

Similar frequency of
improvement in

neurological
symptoms and liver

enzymes.

Probability of not
remaining on

first-line therapy was
higher for Zn than
D-PEN in hepatic
WD but similar in
neurological WD.

Adverse events more
common with D-PEN
than Zn (15% vs. 3%)
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Table 1. Cont.

Author, Year,
Citation Duration Patient Count Treatment

Short Term
Outcomes
(<1 Year)

Long Term
Outcomes
(>1 Year)

Dziezyc et al. 2014
[95]

Median 12 years
(range 3–52)

87 (presymptomatic)
66.7% Zn treatment,

33.3% D-PEN
unknown N/A

Positive treatment
outcomes were

similar between Zn
and D-PEN with all

patients.
Non-compliant

patients had
significantly greater
instances of neuro,
hepatic and serum

dysfunction or
failure.

Farinati et al. 2003
[87] 12 years 67 Zn: 600–800 mg/day;

D-PEN: 1–1.5 g/day N/A

Of those that
continued treatment
through the period,

32% and 42%
improved with
D-PEN and Zn,

respectively.

Haiman Hou et al.
2021 [83] 6 years 36

Zn: 2 × 25 mg/day
in ages < 6

3 × 25 mg/day in
ages 6–16 years

3 × 50 mg/day >
16 years

70% of patients had
significant reductions

in ALT with Zn
monotherapy, 30%

experienced
treatment failure and

added D-PEN

Patients improved to
normal ALT levels

with Zn
monotherapy or Zn

and D-PEN

Hoogenraad et al.
1987 [84]

27
9 patients Zn
monotherapy,

8 patients developed
D-PEN intolerance,

10 patients switched
from D-PEN to Zn
w/o developing

intolerance

Zn: 3 × 200 mg/day
in adults

3 × 100 mg/day in
children

N/A

Eight of nine Zn
patients had

responded favorably
to treatment, with a

final patient dying in
a hepatic coma. All
eight patients with
D-PEN intolerance
improved with oral
Zn, with two having

deteriorating
neurological

symptoms during
D-PEN treatment. Six
of nine patients in the

final group
responded favorably,

along with two
asymptomatic

patients.

Linn et al. 2009 [56] 24 years

17
7 hepatic patients,

5 neurologic patients
and 5 with both

Zn: 136–276 mg/day N/A

(median 12 years)
Consistent and

significant
improvement in

neurological patients
(p < 0.01). No

significant
improvement in liver

biochemistry in
hepatic patients.
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Table 1. Cont.

Author, Year,
Citation Duration Patient Count Treatment

Short Term
Outcomes
(<1 Year)

Long Term
Outcomes
(>1 Year)

Marcellini et al. 2005
[81] 10 years 22

(pediatric)

Zn: 50–150 mg/day
depending on age of

patient
N/A

5 year: Reductions in
AST, ALT and

urinary Cu (p < 0.001)
10 year: No

significant difference
between 5- and

10-year outcomes.
Significant reduction

in Hepatic Cu
(p = 0.001)

Merle et al. 2007 [96] 5 years 163 (retrospective)

Zn: 150–250 mg/day;
D-PEN:

900–1800 mg/day;
trientine:

900–2100 mg/day

N/A 76.1% improved or
stable disease.

Svetel et al. 2009 [97] 15-years 142 (prospective) Zn or D-PEN;
(dosage not reported)

76.7% cumulative
probability of

survival, better
prognosis with
neurologic WD.

Similar survival with
Zn vs. D-PEN vs.

combined.

Weiss et al. 2011 [85] Median 17.1 years
288 (tertiary care

centers, retrospective
analysis)

Zn and D-PEN
(dosage not reported) N/A

Hepatic treatment
failure more often in

Zn monotherapy
than with chelator or
combination therapy.

Zn treatment or
chelators were

effective in most
patients; chelators

were better at
preventing hepatic

deterioration.

Weiss et al. 2017 [98] 2 years 28 (prospective)
Bis-choline

tetrathiomolybdate:
15–60 mg/day

N/A

71% met criteria for
treatment success
(25% decrease in

non-ceruloplasmin-
bound Cu). No

drug-related
neurological

worsening. All stable
liver function.

Wu et al. 2003 [80] 5 years 17 (presymptomatic) Zn: 2 × 50 mg/day
No significant change

in serum CP or
urinary Cu

Significant reduction
in Serum CP and

urinary Cu at 5 years.
No adverse effects in

any Zn treated
patients.

Abbreviations: Alanine transaminase (ALT), aspartate transaminase (AST), ceruloplasmin (CP), D-penicillamine (D-PEN).

Zn is well tolerated among WD patients in long-term studies, particularly when
compared to D-PEN, and has relatively few side effects, chiefly gastric irritation. Zn acetate
is approved as a WD maintenance therapy in the United States and Europe, while other
salts including Zn gluconate, Zn sulfate and Zn picolinate are also available as nutritional
supplements. A single-center retrospective study reported similar therapeutic results with
different salts [79]. Treatment with Zn appears to improve neurological WD symptoms over
long periods of time (>1 year) [54–56]. Other responses to oral Zn include decreases in both
non-CP bound plasma Cu and 24-h urinary Cu excretion with improved markers of hepatic
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enzyme function [55,80]. Additionally, there is conflicting evidence to suggest that Zn
treatment can reduce hepatic Cu load over time [56,81]; however, in cases of hepatic failure,
Cu chelators such as D-PEN are more effective at preventing hepatic deterioration [82,83].
Studies on both chelators and Zn reveal largely similar patient outcomes in WD, with
improved metrics such as those stated above. Specifically, in cases of extreme Cu load and
symptoms, Zn has a higher rate of treatment failure [83,84]. For example, in a 2011 review
by Weiss [85], Zn had a significantly higher rate of treatment failure when compared with
chelators. Additionally, in long term studies, chelators are less likely to be well-tolerated
by patients, while switching treatment to oral Zn typically has a greater rate of patient
compliance [84,86,87]. Furthermore, some patients exhibit deteriorating neurological
symptoms under treatment with D-PEN, some of whom improved only after treatment
was switched over to Zn [84,88,89]. This is thought to be due to an increased mobilization
of free Cu that is associated specifically with D-PEN [90,91].

Notably for this review, the therapeutic effects of Zn supplementation, as well as its
limitations, provide an initial clue into molecular mechanisms of Cu toxicity. The induction
of MTs by Zn suggests that Cu excess may interact with or influence cellular Zn handling
machinery and that this interaction may extend beyond the intestinal epithelium targeted
by oral Zn therapy. The discrete response of MTs to both Cu loading and Zn therapy
as discussed above suggests that Cu excess might selectively target other Zn-associated
systems. The global therapeutic effect of oral Zn treatment in WD is illustrative of this
concept.

3. Specific Targets of Copper Toxicity in Wilson Disease

A major challenge in understanding how Cu toxicity causes WD pathology, as well
as that of other Cu accumulation disorders, has been the identification of functional links
between global Cu accumulation and subcellular damage. Specifically, the mechanism by
which Cu accumulation affects cellular function is not well understood. A general mecha-
nism of oxidative stress is often cited [99] and is supported by evidence in advanced stages
of Wilson-associated liver disease or in the early-onset model Long-Evans Cinnamon (LEC)
rat [100–102]. However, the variability of symptoms and onset, even among monozygotic
twins [103], suggests that specific biochemical pathways or mechanisms may be impacted
by Cu, particularly in WD. Thus, the search for impacts on cellular and molecular processes
in WD has gained recent attention and has illuminated both disease mechanisms and
potential therapeutic targets.

3.1. Metabolic Consequences of Copper Toxicity in Wilson Disease Models

Animal models of WD, including the spontaneous Atp7b mutant toxic milk (tx)
mouse [104,105], Atp7b-/- mouse [106], and LEC rat [107], have provided controlled animal
model data illustrating the mechanisms of Cu toxicity. These models recapitulate many
hepatic symptoms of Wilson Disease but have not been extensively characterized for neu-
rological phenotypes (summarized in a prior review [108]). The initial characterization of
these rodent models focused on metal accumulation and metal-associated molecules such
as MTs [109,110]. Impacts on mitochondria have been reported in mice, including oxidative
stress and cardiolipin fragmentation [111], while autophagy and mitophagy pathways have
been shown in the LPP rat (derived from the LEC rat) [112]. Characterization of the Atp7b-/-

mouse [16,113], as well as the LEC rat and WD patients [19], indicated that direct oxidative
stress from Cu is largely buffered in early disease stages, whereby oxidative damage results
from secondary effects such as those in mitochondria [19]. This Cu-induced oxidative and
apoptotic stress was also studied in a cell culture model where both increased reactive
oxygen species and antioxidant mechanisms are upregulated with Cu challenge [114].
These types of cell and systemic stresses are expected to be broadly damaging to cell health
as radical toxicity is untargeted.

An alternative route to understanding Cu toxicity, starting with WD, implements
systems biology or data-driven approaches. Microarray-based transcriptomics identified
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downregulation in cholesterol synthesis genes in the Atp7b-/- mouse liver that suggested
Cu toxicity indeed impacts specific physiological processes [16]. The synthesis of Atp7b-/-

mouse and LEC rat liver transcriptomics studies revealed that gene expression pathways
regulated by nuclear receptors (NRs) are significantly represented, specifically in lipid
metabolism regulation by Liver-X-Receptor/Retinoid-X-Receptor/Farnesoid-X-Receptor
(LXR, RXR, FXR, respectively) [108]. Both models also increased proliferative gene expres-
sion while the LEC rat, studied at a later disease stage, also increased inflammatory gene
expression. Subsequent untargeted proteomics study revealed decreased abundance of the
FXR protein (also known as NR1H4) in six-weeks-old Atp7b-/- mice, linking suppressed
gene expression to decreased abundance of a specific transcriptional activator [115]. Tran-
scriptional pathways regulated by NRs are of particular interest as they are consistent
with decreased cholesterol levels and biosynthetic gene expression in animal models and
WD patients [16,116]. More recent work found that NRs, specifically LXR, were potential
therapeutic targets in WD [117] and are indeed specifically inhibited from DNA binding
in vitro by excess Cu [18]. This work also found that NR activity in the Atp7b-/- mouse is
improved by dietary Zn supplementation, and verified that WD patients with high hepatic
Cu have gene expression changes consistent with metabolic NR disruption [18].

3.2. Zinc Systems in Wilson Disease: Transcriptional Regulation and Nuclear Receptors

The results of the above-mentioned systems biology work and follow-up on NRs indi-
cated that certain NRs might be specifically targeted by Cu excess in cells. This observation
was also confirmed by treating cultured hepatoma cells with Cu and measuring either NR
activity or abundance [18,118]. NRs are ligand-activated transcriptional activators with Zn
finger DNA binding domains [119]. The NR Zn finger represents a distinct class, in that
the DNA binding domain Zn ion is coordinated by four sulfhydryl groups provided by
two C-X-X-C motifs. Other Zn finger domains coordinate Zn with a combination of two or
three cysteine and one or two histidine motifs (e.g., 2His-2Cys or 3Cys-1His). Curiously, a
similar C-X-X-C motif is highly conserved and provides specific linear Cu(I) coordination
in Cu handling proteins Atox1 and the N-terminal Cu-binding domains of ATP7A and
ATP7B [120,121]. This coordination suggests that NRs may be susceptible to the presence
of excess intracellular Cu due to favorable Cu(I) binding motifs. This observation leads to
the initial hypothesis that Zn-containing proteins or processes may be specifically impacted
by excess Cu in WD.

A recent study constructed a transcriptional network comparing Atp7b-/- and wild
type mice, including up- and down-regulated genes. This network indicated NR involve-
ment in a global network that contained 231 transcript and 15 transcriptional activator
nodes [122]. Four NR clusters were identified with NR3C, NR4A, HNF, PPAR, RORC,
and RAR families of global regulators connecting 50% of the genes contained in the net-
work. These NRs are involved in the regulation of a wide range of functions, including
cellular differentiation, development, and carbohydrate, lipid, and protein metabolism.
Four additional transcriptional activator clusters included non-NR Zn finger transcription
factors with the ZBTB and ZFP family proteins indicated as the most connected regulators
in the network. This network derived from empirical data suggests a global targeting of
Zn-finger transcriptional activators as a result of Cu excess. Therefore, much of the Cu
toxicity observed in WD may be due to the disruption of numerous Zn-dependent and
Zn-responsive proteins, including transcription factors. The transcriptional network also
included metal-responsive transcription factor-1 (MTF-1) as a specific node. Zn is a direct
activator of MTF-1, with recent data indicating MTF-1 functions as a Zn sensor [76]. MTF-1
activates the transcription of metal-binding metallotioneins (MTs) by binding to metal-
responsive elements (MREs). MTs perform several functions including the modulation of
intracellular essential metal homeostasis and distribution, as well as protection against
the accumulation of excessive amounts of both harmful and essential metals [123]. They
accomplish these functions through the binding of metals within two cysteine-rich protein
domains to create metal-thiolate clusters. Considered with the established therapeutic
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benefit of Zn in WD, this analysis suggests a selective impact on Zn-specific machinery in
cells that feature NRs and MTs but may also include other Zn-dependent proteins.

3.3. Zinc

In proposing that Zn machinery may be selectively targeted by excess cellular Cu, it is
important to emphasize the physiological importance of Zn and its basic homeostasis. Zn
is an essential trace element utilized in diverse cellular processes throughout the body, with
well understood roles in both protein regulation and structure [124]. Zn is proposed as an
intracellular second messenger (for reviews, see: [124,125]). Zn is a direct caspase cofactor
in the regulation of the apoptotic cascade [126], and has been implicated in neurotransmitter
regulation [127–129] and in cardiomyocyte function through the regulation of ryanodine
receptor 2 (RyR2) [130,131]. A crucial cofactor, Zn is integral to the function of over
300 enzymes throughout all six classes (i.e., oxidoreductases, transferases, hydrolases,
lyases, isomerases and ligases) [132]. The cellular concentration of Zn is tightly regulated
by the orchestrated function of Zn-specific importers, exporters, and storage proteins [133].

Zn handling proteins are made up of two families: ZnT (SLC30) and ZIP (SLC39). The
ZnT family functions to lower cytoplasmic Zn concentrations by transporting metal ions out
of the intracellular space, acting as exporters. Inversely, the importing ZIP family functions
to raise cytoplasmic Zn concentrations by trafficking metal ions into the intracellular space.
MTs play a crucial role in the storage and buffering of Zn, with four distinct members of
the family able to bind Zn ions (MT1, MT2, MT3, MT4) [134].

3.4. Toxic Copper and Zinc Deficiency

Systems biology approaches build evidence that Zn-dependent transcriptional regula-
tion is likely impacted by excess Cu, though there is also evidence in WD mouse models
that Zn-dependent enzymes are also impacted by excess Cu. These observations share
intriguing similarities with a Zn-deficient mouse model where the Zn importer Zip14
is eliminated [135]. The Zip14 knockout (KO) (Slc39A14-/-) mouse has a phenotype of
Zn deficiency that is mitigated by Zn supplementation in the diet [135]. Comparison
of the Atp7b-/- mouse (on C57Bl/6J background [136]) and the Zip14 KO mouse [135]
reveals overlapping metabolite phenotypes with impacts on hepatic glucose metabolism
and impaired gluconeogenesis in both models. Endosomes in Zip14 KO animals are Zn
deficient with Zn-dependent insulin-degrading proteases, insulin-degrading enzymes and
impaired cathepsin D, thus insulin receptor activity is increased. The Atp7b-/- mouse has
improved glucose tolerance and insulin sensitivity compared to wild type in a diet-induced
obesity (DIO) model [136]. Cu excess in Atp7b-/- animals promotes decreased steatosis,
hepatic AMP-activated protein kinase (AMPK) activation, and decreased gluconeogenesis
and lipogenesis with associated decreased levels of phosphoenolpyruvate carboxykinase-
1 (PEPCK1), pyruvate carboxylase (PCX), fructose-bisphosphatase-1 (FBP1), fatty-acid
synthase (FASN), acetyl-CoA carboxylase (ACC1) and SREBP-1c transcription. The mito-
chondrial form of phosphoenolpyruvate kinase, PEPCK2, and its mRNA levels increased
in the Atp7b-/- mouse. Zip14 KO mice also had decreased glucose, pyruvate, and lactate
with the accumulation of TCA intermediates oxaloacetate, citrate, fumarate, and malate.
These observations are also consistent with non-DIO Atp7b-/-: e.g., increased citrate [115]
and decreased SREBP-1c transcripts [16].

Similarly, a transcriptomic study in a rat Zn deficiency model reveals impacted path-
ways also reported in WD mice. These include suppressed cholesterol synthesis genes (e.g.,
3-hydro-3-methylglutaryl-CoA reductase) and NR transcripts (specifically PPAR-α) [117],
suggesting that specific processes downregulated by Cu toxicity are also decreased in Zn
deficiency.

The Zn-deficient mouse and rat models support the hypothesis that WD and Zn
deficiency share some overlapping phenotypes with selective effects on metabolic processes.
Zn deficiency is, however, rarely noted as a clinical feature of WD. However, one recent case
of an early-onset WD patient with a concurrent mutation in MT1X reported Zn deficiency
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as the first presentation [137]. This patient had skin lesions similar to those in autosomal
Zn deficiency acrodermatitis enteropathica (AE), related to mutation in the Zn transporter
ZIP4 (SLC39A4). Oral Zn treatment improved symptoms in this patient, despite MT1X
pathogenic mutation. This case supports a model that the mechanism of Zn treatment in
Cu toxicity may be more complex than simply inducing an upregulation of MT.

It is possible that excess Cu, as illustrated in WD and WD models, promotes selective
Zn deficiency. Cu–Zn interaction or competition in Cu toxicity is supported by other
reports. Several studies find that specific Zn-dependent processes are disrupted by excess
Cu. Increased hepatic Zn was reported in the young tx mouse [138], as was decreased
abundance of carbonic anhydrase III (CA-III) [139], which are also phenotypes observed in
the Atp7b-/- model [122]. In both models, hepatic Cu levels exceed hepatic Zn. Increased
Zn and decreased CA-III initially appear inconsistent until one considers that complex
formation between ligands and transition metals in cells follows the Irving–Williams
Series [140], particularly when metals are in abundance and metal distribution is likely
thermodynamically driven. In this case, Cu binding to ligand sites would be preferential to
Zn binding.

Indirect readouts from metabolite analysis also find 2-fold increases in sorbitol and
xylitol levels in the livers of Atp7b-/- mice, along with a decrease in glyceraldehyde-3-
phosphate [115]. In this case, xylitol would be synthesized from glucose via sorbitol and
fructose [141]. This 2-fold change in downstream products would suggest a metabolic
consequence resulting from a key processing enzyme (sorbitol dehydrogenase (SDH)) that
is also Zn-dependent.

Under normal (healthy) conditions, cells including hepatocytes typically contain
5–10-fold excess Zn over Cu. These metals will likely be bound to specific target proteins,
resulting in kinetically-controlled Cu- and Zn-targeting through protein–protein interac-
tion [142]. It is possible that in WD, Cu is in significant excess, and despite MT induction,
Cu may be coordinated by other intracellular ligands such as glutathione. The result is
that much Cu is available and able to compete with Zn for target sites (ligands). However,
a targeted proteomics approach applied by Meacham et al. [122] indicated that in the
six-weeks-old Atp7b-/- mouse, the increase in MT1 and MT2 was sufficient to account
for all of the additional Cu and Zn in Atp7b-/- compared to wild type mouse liver. This
work supports the model where Cu excess promotes increased MT1 and MT2 synthesis
via MTF-1-induced transactivation. The increase in MTs would bind excess Cu but also
available Zn. Thus, free Zn would be less available to proteins requiring it as a cofactor.
Since some Zn-proteins including SDH and estrogen receptor (4-Cys NR) can acquire Zn
from Zn-MT [143,144], these proteins would be more likely to encounter Cu in MT than Zn
in MT, simply based on the ratio of Cu to Zn (illustrated in the schematic adapted from
Meacham et al. [122]; Figure 1).
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Figure 1. Proposed schematic of Cu interference with Zn distribution. A healthy cell is depicted on the left, with free Zn
and Zn-metallothionein (MT) available as a labile Zn pool. A cell with Cu overload is depicted on the right, with increased
MT binding available Zn as well as excess Cu. Cu in MT is in significant excess to Zn, interfering with distribution of the Zn
pool. Figure created with BioRender: https://app.biorender.com/ (accessed on 19 March 2021).

The above observations suggest that Cu toxicity may be mediated by Zn deficiency
or selective impacts on Zn processes. It is notable that Zn deficiency has been associated
with liver cirrhosis [145]; additionally, Zn deficiency may manifest as a spectrum of clinical
features including cerebral and immune dysfunction, changes in taste and smell, loss
of appetite, and impaired drug elimination. Furthermore, 10% of the human proteome
includes a Zn cofactor [146]. The importance of Zn in cellular and metabolic processes
cannot be overstated.

3.5. Copper and Zinc as Factors in Non-Wilson Pathology—Are They Linked?

Although Zn is an established treatment for WD that has low potential for toxic-
ity, few studies have examined Zn-dependent systems as specific Cu targets in either
animal models or WD patients. The observation that Zn and Cu interact or may have
reciprocal regulation is not new. However, the most notable observations are where ex-
cess Zn consumption promotes Cu deficiency, including cases of induced Cu deficiency
myeloneuropathy [147–150]. Examination of published work further illustrates the linkage
between Cu and Zn in physiology.

Dietary Zn is shown to prevent Cu poisoning in sheep [151], supporting a competitive
interaction between Cu and Zn and potential therapeutic benefit beyond the context of
WD. Cu and Zn are linked as cofactors in Cu-Zn superoxide dismutase, where lack of Zn
by the mutation of Zn coordination sites is cytotoxic to motor neurons [152]. Many of
the liver associated diseases and Cu-responsive processes discussed above also implicate
Zn imbalance or crosstalk between Cu and Zn. Zn deficiency is commonly reported
in chronic liver diseases [145], while Cu deficiency is rarely reported, though possibly
overlooked [153]. Cu accumulates as Cu-MT or Cu-Zn-MT in small (but not large) HCC
tumors to a greater extent than in the surrounding non-tumor liver parenchyma [154].
Most illustrative, a retrospective study of 163 patients with cirrhosis reported that 83%
were Zn deficient, with deficiency more prevalent in more severe disease and correlated
with severity, infection and worse transplant-free survival [155]. Zn deficiency was also
correlated with chronic liver disease progression in hepatitis virus-induced HCC [156].
These studies did not report Cu levels, so it is not clear whether Cu excess was associated
with Zn deficiency in these diseases or whether both metals may be deficient. As discussed

https://app.biorender.com/
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in Section 2.2, excess Cu has been reported in PBC and Cu chelation has been tested
as a therapy [30,31,157]. Concurrently, bodily Zn may be deficient and oral Zn could
be therapeutic in this disease by supplementing the Cu–Zn balance [158,159]. These
observations are suggestive of Cu and Zn interaction in liver diseases, some of which are
characterized by transition metal imbalance. Whether Cu and Zn levels are related in these
diseases is still not clear.

4. Conclusions

WD patients as well as animal models of WD have provided substantial insight
into Cu toxicity and potential therapies. The reducing environment in cells as well as
detoxification mechanisms such as MTs likely mitigate much of the potential oxidative
damage from Cu, but may additionally result in the disruption of Zn systems. It is
plausible that oxidative damage observed with Cu toxicity is secondary to other specific
Zn related metabolic consequences that are ultimately cytotoxic. Further research may
extend these questions of Cu interaction with Zn machinery to other organ systems where
Cu accumulation is observed, including studies in neurodegenerative Alzheimer’s Disease
and Parkinson’s Disease.
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