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Abstract
Introduction  Pneumonic plague is caused by the aerosolized form of Yersinia pestis and is a highly virulent infection with 
complex clinical consequences, and without treatment, the fatality rate approaches 100%. The exact mechanisms of disease 
progression are unclear, with limited work done using metabolite profiling to study disease progression.
Objective  The aim of this pilot study was to profile the plasma metabolomics in an animal model of Y. pestis infection.
Methods  In this study, African Green monkeys were challenged with the highly virulent, aerosolized Y. pestis strain 
CO92, and untargeted metabolomics profiling of plasma was performed using liquid and gas chromatography with mass 
spectrometry.
Results  At early time points post-exposure, we found significant increases in polyunsaturated, long chain fatty acid metabo-
lites with p values ranging from as low as 0.000001 (ratio = 1.94) for the metabolite eicosapentaenoate to 0.04 (ratio = 1.36) 
for the metabolite adrenate when compared to time-matched controls. Multiple acyl carnitines metabolites were increased 
at earlier time points and could be a result of fatty acid oxidation defects with p values ranging from as low as 0.00001 
(ratio = 2.95) for the metabolite octanoylcarnitine to 0.04 (ratio = 1.33) for metabolite deoxycarnitine when compared to time-
matched controls. Dicarboxylic acids are important metabolic products of fatty acids oxidation, and when compared to time 
matched controls, were higher at earlier time points where metabolite tetradecanedioate has a ratio of 4.09 with significant 
p value of 0.000002 and adipate with a ratio of 1.12 and p value of 0.004. The metabolites from lysolipids (with significant 
p values ranging from 0.00006 for 1-oleoylglycerophosphoethanolamine to 0.04 for 1-stearoylglycerophosphoethanolamine 
and a ratio of 0.47 and 0.78, respectively) and bile acid metabolism (with significant p values ranging from 0.02 for cholate 
to 0.04 for deoxycholate and a ratio of 0.39 and 0.66, respectively) pathways were significantly lower compared to their 
time-matched controls during the entire course of infection. Metabolite levels from amino acid pathways were disrupted, 
and a few from the leucine, isoleucine and valine pathway were significantly higher (p values ranging from 0.002 to 0.04 
and ratios ranging from 1.3 to 1.5, respectively), whereas metabolites from the urea cycle, arginine and proline pathways 
were significantly lower (p values ranging from 0.00008 to 0.02 and ratios ranging from 0.5 to 0.7, respectively) during the 
course of infection.
Conclusions  The involvement of several lipid pathways post-infection suggested activation of pathways linked to inflam-
mation and oxidative stress. Metabolite data further showed increased energy demand, and multiple metabolites indicated 
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potential hepatic dysfunction. Integration of blood metabolomics and transcriptomics data identified linoleate as a core 
metabolite with cross-talk with multiple genes from various time points. Collectively, the data from this study provided new 
insights into the mechanisms of Y. pestis pathogenesis that may aid in development of therapeutics.

Keywords  Yersinia pestis · Metabolomics · Non-human primate · Pneumonic plague · Animal model

1  Introduction

Plague is an infectious disease caused by Yersinia pestis, 
a naturally occurring bacterium, primarily infecting wild 
rodents and transmitted by fleas. The majority of cases of 
human plague also result from flea bites, and are of the 
bubonic form (Perry and Fetherston 1997). Primary pneu-
monic plague, resulting from inhalation of plague bacte-
ria, rarely occurs under natural conditions (Pechous et al. 
2016), but the virulence and ease of aerosolization of Y. 
pestis makes it a potential bioweapon (Krishna and Chitkara 
2003), with pneumonic plague being the expected form of 
disease following an aerosol attack (Pechous et al. 2016; 
Rollins et al. 2003; Verma and Tuteja 2016).

Humans with primary pneumonic plague initially expe-
rience a febrile illness with headaches and chills, followed 
by a rapid progression to fulminant pneumonia, which, if 
left untreated, results in death within 72 h post-infection 
(p.i.) (Inglesby et al. 2000; Perry and Fetherston 1997; 
Riedel 2005; Smiley 2008). Pneumonic plague is nearly 
always fatal unless treated with antibiotics within 20 h 
of onset (Butler 2012). The exceptionally rapid course of 
pneumonic plague suggests that the virulence of Y. pestis 
in a mammalian host results from inadequate adaptive and 
innate immune responses (Yang et al. 2017). Many studies 
support this concept, but few have validated the specific 
impairment of the host defense in vivo. The information 
available to date indicates that rodents and non-human 
primate (NHP) models of pneumonic plague mimic the 
human disease (Coate et al. 2014; Eddy et al. 2015; Fine-
gold et al. 1968; Hammamieh et al. 2016; Koster et al. 
2010; Lathem et al. 2005; Peters et al. 2013; Warren et al. 
2011). In NHP models, the robust cellular responses that 
typically characterize other bacterial pneumonias are 
delayed and ineffective during pneumonic plague (Fine-
gold 1969; Smiley 2008). Similarly, mouse models reveal 
steadily progressive bacterial growth in pulmonary tissues, 
with dissemination to other organs by 36 h p.i. (Bubeck 
et al. 2007; Lathem et al. 2007). As compared to other 
Gram-negative bacterial diseases, pulmonary infection 
that is caused by Y. pestis elicits a delayed inflammatory 
response (Cantwell et al. 2010) that may be attributed to 
the route of exposure.

Several studies have been carried out in the past to elu-
cidate the host responses to Y. pestis infection in the animal 
model, mainly by transcriptomic and proteomic approaches 

(Chromy et al. 2005, 2004; Comer et al. 2010; Du et al. 
2014; Yang et al. 2017; Zhang et al. 2005). The missing 
in-depth knowledge of the host metabolic response is due 
to the fact that this response is a complex phenomenon 
comprised of multiple steps (Eisenreich et al. 2013). The 
main focus of the current study is to correlate the Yersinia-
triggered immune and inflammatory responses with the 
metabolites identified in plasma. Metabolic profiling can 
provide a window into instantaneous, as well as long term, 
physiological or pathological changes as a complement to 
transcriptomic and proteomic profiling in the systemic and 
functional studies of living organisms (Mangalam et al. 
2013; Tebani et al. 2016). Metabolomics has contributed 
greatly to our understanding of the actions of pharmaceuti-
cal agents (Beger et al. 2016) and to the diagnosis of chronic 
and infectious diseases (Banoei et al. 2017; Shommu et al. 
2015; Voge et al. 2016). This can help us to advance the 
understanding of disease mechanisms and to improve dis-
ease diagnostics, as indicated recently for ionizing radiation 
response (Johnson et al. 2012), and to further interpret the 
metabolic pathways of lung injury in mice (Cui et al. 2016). 
The current study characterized the longitudinal profiling of 
plasma metabolites in an NHP model of Yersinia infection 
and is a follow-up to the previous study where we investi-
gated the transcriptome profile of the blood collected from 
this animal model (Hammamieh et al. 2016). This study 
displays the usefulness of metabolomics to track the pro-
gression of metabolic changes over time in NHPs infected 
with Y. pestis.

2 � Materials and methods

2.1 � Ethics statement

All animal experiments were approved by the Institutional 
Animal Care and Use Committee (IACUC) at the Walter 
Reed Army Institute of Research (WRAIR), Silver Spring, 
MD, and were performed in a facility accredited by the 
Association for the Assessment and Accreditation of Labo-
ratory Animal Care International (AAALAC). The approved 
protocol was PO01-08: Systems biology studies to identify 
host indicators /therapeutic targets at early time periods 
post-exposure to Y. pestis (CO92) in African Green monkeys 
(Chlorocebus aethiops).
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2.2 � Experiment details

The detailed experimental plan is described in our previous 
publication (Hammamieh et al. 2016). Briefly, the primates 
were individually housed in 3 × 2.6 × 2-ft. squeeze cages in 
free-standing enclosures equipped with standard enrich-
ments and exposed to ambient environmental conditions 
inside an Animal Biosafety Level 3 (ABSL-3) containment 
laboratory, with a 12 h light/12 h dark cycle and tempera-
tures ranging from 25 °C to 30 °C. The primates were fed a 
standard laboratory primate chow (TekLad, Madison, WI) 
with water provided ad libitum by Lixit valve (Lixit Corp., 
Napa, CA). The initial blood draws were performed 24 h 
before Y. pestis aerosol challenge and were the baseline sam-
ples for data analysis. The animals fasted for the last 6 h pre-
challenge and were anesthetized using 4 mg/kg Telazol (Fort 
Dodge Animal Health, Fort Dodge, IA); after 15 min, they 
were aerosol challenged. All animals within each group were 
exposed on the same day at 30 min intervals, and subsequent 
blood draws were conducted at 6 h, 9 h, 12 h, 18 h, 24 h, 32 h 
and 42 h post-exposure.

2.3 � Bacterial inoculation and aerosol delivery

Detailed procedures were previously reported (Hammamieh 
et al. 2016). In short, suspension cultures of Y. pestis CO92 
strain were prepared immediately prior to administration and 
anesthetized animals were inoculated using aerosol nebuliz-
ing generator. Purity of the aerosolized sample was assessed 
by colony morphology and growth on Congo Red-containing 
media.

2.4 � Blood collection and plasma separation

The sample collection schedule pre-exposure and at each 
time point is shown in Fig. 1a. The number of animals per 
time point varies from 2 to 4 and is described in Fig. 1a 
with a total 21 animals at pre-exposure time points. Venous 
blood was collected from each animal two times from the 
femoral vein with Vacutainer® CPT tubes (BD, Baltimore, 
MD) which were centrifuged at 1800 × g for 20 min at room 
temperature. Without disturbing the white cell layer, the 
clear plasma from the uppermost layer was transferred to a 
15 mL tube and then stored at -80 °C. The plasma samples 
were filtered through a 0.2 micron filter, and an aliquot of 
each filtered sample was plated on Congo red agar plates 
in triplicate and incubated at 28 °C for 72 h to detect the 
presence of live bacteria in the samples. If no colonies were 
observed on the plates, samples were considered bacteria-
free and removed from the BSL-3 facility. The resulting 
plasma from all the samples was bacteria-free and was used 

for metabolomics analysis. The no-infection control samples 
were also filtered in a similar way as infected samples using 
the micron filter as mentioned earlier.

2.5 � Plasma metabolomics

The metabolomics assays and analyses were conducted by 
Metabolon, Inc., (Morrisville, NC) at their facility. Untar-
geted metabolomic profiles of plasma samples were obtained 
using ultra-high performance liquid chromatography/tandem 
mass spectrometry (UHPLC/MS/MS) and gas chromatogra-
phy/mass spectrometry (GC/MS) (Eckel-Mahan et al. 2012; 
Evans et al. 2009). The detailed procedure has been reported 
previously (Gautam et al. 2015).

Sample preparation was conducted using a series of 
organic and aqueous extractions to remove the protein frac-
tion while allowing maximum recovery of small molecules. 
The resulting extract was divided into two fractions; one 
for gas chromatography (GC) analysis and second for liq-
uid chromatography (LC) platforms. Samples were placed 
briefly on a TurboVap® (Zymark) to remove the organic sol-
vent. Each sample was then frozen and dried under vacuum. 
Samples were then prepared for the appropriate instrument, 
either LC/MS or GC/MS.

The LC/MS portion of the platform was based on a 
Waters ACQUITY UPLC and a Thermo-Finnigan LTQ mass 
spectrometer, which consisted of an electrospray ionization 
(ESI) source and linear ion-trap (LIT) mass analyzer. The 
sample extract was split into two aliquots, dried, then recon-
stituted in acidic or basic LC-compatible solvents, each of 
which contained 11 or more injection standards at fixed con-
centrations. One aliquot was analyzed using acidic positive 
ion optimized conditions and the other using basic negative 
ion optimized conditions in two independent injections using 
separate dedicated columns. Extracts reconstituted in acidic 
conditions were gradient eluted using water and methanol 
both containing 0.1% Formic acid, while the basic extracts, 
which also used water/methanol, contained 6.5 mM Ammo-
nium Bicarbonate.

The samples destined for GC/MS analysis were re-dried 
under vacuum desiccation for a minimum of 24 h prior to 
being derivatized under dried nitrogen using bistrimethyl-
silyl-triflouroacetamide. The GC column was 5% phenyl and 
the temperature ramp was from 40 to 300 °C in a 16 min 
period. Samples were analyzed on a Thermo-Finnigan Trace 
DSQ fast-scanning single-quadrupole mass spectrometer 
using electron impact ionization. The instrument was tuned 
and calibrated for mass resolution and mass accuracy on a 
daily basis.

The LC/MS portion of the platform was based on a 
Waters ACQUITY UPLC and a Thermo-Finnigan LTQ-
FT mass spectrometer, which had a linear ion-trap (LIT) 
front end and a Fourier transform ion cyclotron resonance 
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Fig. 1   a Experimental Plan: We studied the longitudinal dynam-
ics of plasma metabolites of the African Green monkey (Chloroce-
bus aethiops) infected by an aerosol exposure to Y. pestis. The base-
line (T0 = initial time point) of the study was defined by the plasma 
samples drawn 24 h prior to exposing the monkeys to Y. pestis; the 
post-exposure blood samples were drawn at multiple time points, 
defined as T numbers in hours. The numbers of animals at each of 
the time points are shown within parentheses below the T numbers. 
The groupings of early and late time points are also shown. b. Sum-
marized bacterial load and gene expression data: The data generated 
previously by (Hammamieh, Muhie et  al. 2016) is summarized to 
show the bacterial load (in CFU) in blood and liver as well as signifi-
cantly altered genes in blood at each of the time point post-exposure. 

c Significant Metabolites: The time points 6 h post-infection (p.i.) to 
18 h p.i. are referred to as “early”, whereas the time points from 24 h 
to 42  h are considered “late.” The plasma samples collected before 
exposure were used as baseline for data analysis. (i) The number of 
metabolites at early and late time points. The graph is grouped by sig-
nificantly elevated and reduced metabolites. (ii) The Venn diagram 
represents overlaps of significant metabolites at early and late time 
points. d Super-pathways and Proportion of Metabolites: Percentage 
of metabolites belonging to different super-pathways at early (6–18 h) 
and at late time points (24–42 h) with the proportion of metabolites 
being increased or decreased.. The trend for the lipid pathways at 
both time sets is emphasized (inset)
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(FT-ICR) mass spectrometer backend. For ions with counts 
greater than 2 million, an accurate mass measurement could 
be performed. Accurate mass measurements could be made 
on the parent ion as well as fragments. The typical mass 
error was less than 5 ppm. Ions with less than two million 
counts require a greater amount of effort to characterize. 
Fragmentation spectra (MS/MS) were typically generated 
in a data-dependent manner.

Peaks were identified using Metabolon’s proprietary 
software. Compounds were identified by comparison to 
library entries of purified standards or recurrent unknown 
entities. Identification of known chemical entities was 
based on comparison to metabolomic library entries of 
purified standards of more than 2000 commercially avail-
able purified standard compounds. The combination of 
chromatographic properties and mass spectra gave an 
indication of a match to the specific compound or an iso-
baric entity. Additional entities could be identified by vir-
tue of their recurrent nature (both chromatographic and 
mass spectral). Metabolon data analysts used proprietary 
visualization and interpretation software to confirm the 
consistency of peak identification among the various sam-
ples. Library matches for each compound were checked for 
each sample and corrected if necessary. For all analyses, 
missing values (if any) were imputed with the observed 
minimum for that particular compound. The statistical 
analyses were performed on natural log-transformed data 
to reduce the effect of any potential outliers in the data.

Some mass and chromatographic peaks were observed 
repeatedly, but are currently unidentified. Each known 
metabolite is annotated with a superpathway correspond-
ing to its general metabolic class, and a subpathway rep-
resenting more specific metabolic pathways from infor-
mation available in public databases (e.g., KEGG (Kyoto 
Encyclopedia of Genes and Genomes), HMDB (Human 
Metabolome Database) and text books) and Metabolon’s 
internal knowledge base. These superpathways and sub-
pathways were constructed prior to the statistical analyses.

2.6 � Plasma proteins

An aliquot of each sample was shipped to Rules-Based 
Medicine, Inc. (Austin, TX) for protein analysis. All sam-
ples were stored at − 80 °C until tested and were analyzed 
for Human Discovery Map v.1.0 Antigens (Myriad-RBM) 
using Luminex technology.

2.7 � Data analysis

Data was expressed as the mean ± standard deviation (SD) 
for each group. The significance of differences between 
groups was assessed by the student’s t-test. Differences 

were considered significant at p < 0.05. Continuous vari-
ables measured at several time points were analyzed with 
traditional ANOVA (analysis of variance) methods for a 
repeated measures design, followed by one or more multi-
ple comparison procedures to compare baseline values with 
the other time points. Lastly, all confidence intervals were 
performed at the 95% level of significance and all statistical 
tests were performed at the 0.05 alpha level. The column 
statistical analysis and figures were generated using Graph-
Pad Prism v5.

2.8 � Enrichment analysis

Pathway enrichment analysis was done using Metabolync 
software (Metabolon, Inc.) for each individual pair-wise 
comparison. This pathway enrichment displayed the num-
ber of experimentally regulated compounds relative to all 
detected compounds in a pathway, and compared it to the 
total number of experimentally regulated compounds rel-
ative to all detected compounds in the study. A pathway 
enrichment value greater than one indicates that the pathway 
contains more experimentally regulated compounds relative 
to the study overall, suggesting that the pathway may be 
a target of the experimental perturbation. Enrichment was 
defined as (k/m)/(n/N), where k is the number of significant 
metabolites in a pathway, m is the total number of detected 
metabolites in the pathway, n is the total number of sig-
nificant metabolites, and N is the total number of detected 
metabolites. Enrichment analysis of the relevant pathways 
and networks was performed using MetaboAnalyst 3.0, a 
web-based tool that combines results from a powerful path-
way enrichment analysis concerning the conditions under 
study (Xia and Wishart 2016). MetaboAnalyst’s directed 
graph function uses the high-quality KEGG (http://www.
genom​e.jp/kegg/) pathway database as its backend knowl-
edge base. The analysis used fold change data following uni-
variate analysis function (hypergeometric test over-represen-
tation analysis and relative-betweenness centrality pathway 
topology analysis).

2.9 � Network analysis

To further understand the biological significance of differen-
tially expressed plasma metabolites and proteins, Ingenuity 
Pathway Analysis (IPA) (Qiagen, Inc., Hilden, Germany) 
was used to analyze canonical pathways and relationships 
in the data. Disease and functional protein networks were 
combined with upstream regulator analyses of differentially 
expressed metabolites, and a resulting Z-score of ≥ 2 or 
≤ − 2 was considered to indicate significant activation or 
inhibition, respectively.

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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2.10 � Integrative gene and metabolite analysis

NHP metabolite-gene interaction networks across time 
points (6 h–42 h) were analyzed and constructed using 
MetScape v3.1.2 (http://www.cytos​cape.org) (Karnovsky 
et al. 2012), and visualized using gephi v0.9.1 (https​://gephi​
.org/). Interaction networks were built from differentially 
regulated transcripts (Hammamieh et al. 2016) and differ-
entially altered metabolites.

2.11 � Cluster analysis

A Manhattan distance method was used to identify subpath-
way clusters in regard to whether metabolites increased or 
decreased vs. their matched baseline controls. Each metabo-
lite of a subpathway was assigned either a 0 or a 1 for having 
its mean plasma level higher or lower in each comparison. 
Here, the actual direction of regulation is not important, only 
the pattern relative to other metabolites in other pathways. 
We reason that pathways with similar patterns of metabolite 
co-regulation are likely to be physiologically related. To find 
co-regulation relationships among pathways, we computed 
the average distance of metabolites in a subpathway, and 
each metabolite of a subpathway was compared pairwise 
with every other metabolite of the pathway. Two metabolites 
with the same 1’s and 0’s in all eight comparisons (same 
pattern of regulation across experimental conditions) have a 
distance of zero. Two metabolites with different 1’s and 0’s 
in all eight comparisons have a distance of 8. The total up 
vs. down Manhattan distance across all pairs of metabolites 
within a subpathway was tested against the null distribution 
of analogous distances created by taking 10,000 random 
samplings from all the metabolites of the number in the sub-
pathway of interest. An approximate (slightly conservative) 
p value was then calculated as (b + 1)/(m + 1), where b is 
the number of sample distances greater than the actual sub-
pathway distance and m is the number of random samplings 
(10,000), as described in (Phipson and Smyth 2010).

3 � Results and discussion

3.1 � Changes in metabolites and superpathways

The goal of this study was to profile the metabolic changes 
in the plasma associated with the host response to Y. pestis 
infection in NHPs. We infected African Green monkeys with 
aerosolized CO92 strain of Y. pestis, and isolated plasma 
samples for metabolomics profiling at 6 h, 9 h, 12 h, 18 h, 
24 h, 32 h and 42 h after infection. We dropped the samples 
post 42 h because of animal lethality observed at later time 
points post-exposure leading to inadequate sample size. As 
reported previously (Hammamieh et al. 2016) the presence 

of bacteria in blood was reported in one of three animals as 
early as 9 h after exposure whereas liver showed an early 
and consistent bacterial load at 6 h (Fig. 1b). The significant 
number of genes from each of the times post-exposure is 
also summarized in Fig. 1b. Minimal changes in the body 
temperature were observed in these animals and most of 
the temperature differences were attributed to the individual 
variances as reported earlier (Hammamieh et al. 2016). The 
number of animals at each time point is listed in Fig. 1a. A 
total of 384 metabolites were detected, 247 of which were 
identified compounds and the remaining 137 were uniden-
tified peaks (Table S1). The transcriptome data published 
earlier grouped 45 min to 18 h as the early time point group 
and 24–42 h as the late time point group, which was justified 
by the bell-shaped transcriptome expression profile (Ham-
mamieh et al. 2016). The 45 min datapoint was missing from 
the current study and rest of the groupings were kept uni-
form across the study. The early time point samples were 
those taken from 6 h to 18 h p.i., whereas the late time point 
set consisted of the 24 h– 42 h samples which helped us to 
enhance the statistical power of the analysis. The data from 
the pre-infection time point was used as the baseline sample 
for analysis. Early time points (6 h–18 h) showed a greater 
number of significantly-changed metabolites (Fig. 1c), with 
30 metabolites at decreased levels and 59 at increased lev-
els. At the late time points (24 h–42 h), 36 metabolites were 
at lower level and 22 were at higher level (Table S2). The 
early time points had 56 unique metabolites, and the late 
time points had 25 unique metabolites. 33 metabolites were 
common among early and late time points (Fig. 1c). The 
maximum number of significant metabolites peaked at the 
12 h time point (data not shown), much earlier than the peak 
bacterial load that was observed at the 24 h time point (Ham-
mamieh et al. 2016). This was also a little earlier than the 
peak of changes in transcriptomic data observed at 18 h–24 h 
in our previous study (Hammamieh et al. 2016). Of these 
significantly altered compounds, ~ 59% belonged to the lipid 
class including lysolipids, bile acids, sterols, medium /long 
chain fatty acids, other fatty acids and inositol metabolites. 
Of the metabolites, 24% represented amino acids, 5% pep-
tides, 2% carbohydrates, 1% energy compounds, and the rest 
were other classes (Fig. 1d). The lipid superpathway had 
similar proportions of metabolites at both early and late time 
points; however, the number of elevated metabolites was 
higher at early time points (46%) as compared to late time 
points (22%). The proportion of metabolites with reduced 
levels increased from 15 to 35% from early to late time 
points (Fig. 1d). After excluding metabolites with missing 
values, 45 of 230 known metabolites were lower at late time 
points (p ≤ 0.1, mean difference of 0.2 or greater). Of these, 
30 were lipids (of a total of 108 lipids) with an enrichment 
(hypergeometric test) at p < 0.001. Using the same criteria, 
six metabolites were increased at late time points, and four 

http://www.cytoscape.org
https://gephi.org/
https://gephi.org/
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of these were amino acid metabolism (out of 58 total from 
amino acids metabolism) with an enrichment at p < 0.001. 
The cluster analysis showed that energy- and lipid-related 
metabolites were clustered close to each other at all time 
points p.i. (Fig. S1).

3.2 � Altered lipid superpathway related metabolites

We observed several classes of lipids that changed through-
out the course of infection. The long chain fatty acids, 
polyunsaturated and dicarboxylate fatty acids, and carniti-
nes were significantly higher at early time points (Fig. 2a). 
The metabolites from lysolipids and bile acids metabolism 
pathways were downregulated, and significant values were 

observed at late time points. Fatty acids and lysolipids are 
incorporated into membranes and may exert an effect on the 
membrane permeability, morphology and stability. Subse-
quent dysregulation may lead to increased barrier permeabil-
ity (Puertollano and Álvarez de Cienfuegos 2002). The fatty 
acids have also been reported to be modulators of immune 
function (Fritsche 2006; Puertollano et al. 2002). It has been 
hypothesized that these changes may alter membrane flu-
idity, lipid peroxide formation, and eicosanoid production 
(Puertollano and Álvarez de Cienfuegos 2002). Carnitines, 
which are involved in transporting long chain fatty acids 
across the mitochondrial membrane, were higher imme-
diately after exposure. Several medium and short chain 
carnitines, including octanoylcarnitine, decanoylcarnitine 

Fig. 2   a Metabolites in the lipid superpathway: Log2 fold change of 
significantly (p < 0.05) identified metabolites in lipid pathways that 
are sub-grouped. b Metabolites in the amino acid superpathway: 

Log2 fold change of significantly (p < 0.05) identified metabolites in 
amino acid pathways that are sub-grouped
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and acetylcarnitine, were significantly increased at various 
time points during the infection (Fig. 2a). These changes 
suggest increased fatty acid β-oxidation and mitochondrial 
flux. The changes in bile acid metabolism can affect lipid 
absorption (Staels and Fonseca 2009) and, therefore, may 
have led to the changes in free fatty acids and triglycerides 
that were reflected in the plasma metabolites. Bile acid 
synthesis occurs exclusively in liver, and accumulation of 
toxic bile acid metabolites may cause inflammation, apop-
tosis and cell death (Chiang 2013). The presence of bile 
acids metabolites in the plasma along with bacterial load in 
liver (Hammamieh et al. 2016) underscores the prognostic 
importance of liver dysfunction after infection. Recently, 
in vivo imaging suggested that secondary lymphoid tissues 

such as lymph nodes, liver and spleen are the main sites of 
bacterial multiplication when bacterial tracking was studied 
(Nham et al. 2012). Although, the study tracked bubonic 
plague, it gave a snapshot that bacteria have extraordinary 
capacity to disseminate, which may lead to rapid fatality of 
the host. The progression to lethal sepsis with augmented 
liver injury has been reported for pneumonic plague and is 
encoded by factors on pCD1 plasmid (Doyle et al. 2010). In 
our study, a significant increase in essential and long-chain 
fatty acids after infection with lipolysis of triglycerides, fatty 
acid mobilization, and subsequent β-oxidation of these free 
fatty acids indicated a need for increased energy.

Fig. 2   (continued)
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3.3 � Altered amino acid superpathways

A minor fraction of branched chain amino acids (BCAA) 
are metabolized mainly in the liver and the rest are trans-
ported to sites of metabolism by the systemic circulation 
(De Simone et al. 2013). Under conditions of increased 
energy demand, the levels of branched chain amino acids 
(BCAA) and keto acids (BCKA) in the plasma are elevated 
(Harper et al. 1984). The BCAA valine, BCKAs 3-methyl-
2-oxobutyrate (alpha-ketoisocaproate) and 3-methyl-2-ox-
ovalerate (alpha-keto-beta-methylvalerate), and downstream 
metabolite 3-hydroxy-isobutyrate were elevated at various 
times during the infection (Fig. 2b). These changes, together 
with the previously described alterations in lipid metabo-
lism, indicated that an overall increased energy demand was 
placed on the host following infection. We also observed 
elevation of the ketone bodies acetoacetate and 3-hydroxy-
butyrate that could have resulted from an excess of acetyl-
CoA or from the catabolism of certain ketogenic amino acids 
(leucine, isoleucine, lysine, phenylalanine, tyrosine and 
tryptophan). The rate of ketogenesis is coupled to the sup-
ply of fatty acids and the regulation of β-oxidation (Salway 
2004), thus the production of ketone bodies in the blood has 
been used as a marker for the rate of fatty acid β-oxidation. 
3-hydroxybutyrate was significantly increased at early hours 
p.i., again indicating that there was an early increase in the 
rate of β-oxidation from the mobilization of fatty acids.

3.4 � Pathway enrichment analysis

The pathway enrichment analysis using Metabolync revealed 
significant perturbations of 11 pathways that were upregu-
lated for the entire time period of infection, including, but 
not limited to, metabolism of fatty acids (dicarboxylates); 
glycerolipids; polysaturated fatty acids; primary bile acids; 
steroids; ascorbate and aldarate; methionine, cysteine and 
taurine (Table 1). A significant accumulation of dicarboxylic 
fatty acids, in particular, tetradecanedioate, hexadecanedio-
ate and octadecanedioate, at early time points suggests there 
was increased ω-oxidation in the smooth endoplasmic reticu-
lum in addition to β-oxidation in the mitochondria of the 
infected monkeys. Under normal physiological conditions, 
ω-oxidation of fatty acids is a minor pathway that accounts 
for a small fraction of the total fatty acid oxidation in the 
liver. 5-oxoproline, an intermediate in glutathione metabo-
lism, was found to be affected after infection. Glutathione 
level is known to be altered in many inflammatory condi-
tions and known to be lower in animal models during the ini-
tial phase of septic shock, and its turnover is increased dur-
ing acute phase of sepsis in animal model (Malmezat et al. 
2000). The antioxidant potential of glutathione can play a 
role in immunity and can act as a signaling molecule (Ghezzi 
2011). It has been postulated that glutathione may not be just 

an inhibitor of inflammation, but may also regulate innate 
immunity that could be favorable to the host (Ghezzi 2011). 
However, recent evidence suggests that Y. pestis utilizes glu-
tathione in host tissues as a virulence strategy to quicken the 
plague pathogenesis (Mitchell et al. 2017). In this study, the 
cap protein of the bacterial type III secretion needles (LcrV) 
is modified by host glutathione leading to the high viru-
lence of Y. pestis in rodents in the case of bubonic plague. 
Vitamin B6 metabolism was enriched during the entire time 
course of the study groups where pyridoxate, an important 
precursor, was observed to be lower after infection. The B6 
vitamins are primarily metabolized in liver (Merrill and 
Henderson 1990), and a lower level in plasma samples have 
been reported in patients with decompensated cirrhosis or 
subacute hepatic necrosis (1977). Further, while B vitamins 
are not synthesized by humans, these can be synthesized 
by bacteria, so it is not surprising to observe vitamin B6 

Table 1   Enriched pathways during the course of infection

The analysis is done using Metabolync, where pathways unique at 
early and late time points of infection are also listed

Enriched pathways T6_18H T24_T42H

Glutathione metabolism 2.85 4.51
Polypeptide 2.85 4.51
Vitamin B6 metabolism 2.85 4.51
Fatty acid metabolism (acyl carnitine) 2.85 3.01
Polysaturated fatty acid (n3 and n6) 2.85 2.46
Glycerolipid metabolism 2.85 2.25
Fatty acid (dicarboxylate) 2.49 1.69
Methionine cysteine SAM and taurine 2.14 3.38
Primary bile acid metabolism 1.9 4.51
Steriod 1.43 1.13
Ascorbate and aldarate metabolism 1.3 2.25
Ketone bodies 2.85
Pantothenate and CoA metabolism 2.85
Long chain fatty acid 2.61
Alanine and aspartate metabolism 1.43
Creatinine metabolism 1.43
Hemoglobin and porphyrin metabolism 1.43
Oxidative phosphorylation 1.43
Urea cycle arginine and proline metabolism 1.43
Leucine, isoleucine and proline metabolism 1.04
Acetylated peptides 4.51
Phospholipid metabolism 4.51
Benzoate metabolism 3.01
Carnitine metabolism 3.01
Lysine metabolism 2.25
Gamma-glutamyl amino acid 1.93
Tocopherol metabolism 1.5
Lysolipid 1.45
Secondary bile acid metabolism 1.13
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metabolism after Y. pestis exposure. Many amino acid path-
ways, such as metabolism of ketone bodies, creatinine, and 
oxidative phosphorylation, were mainly disrupted at early 
time points. In contrast, there were some pathways found to 
be enriched only at late time points (Table 1). The changes 
in primary bile acids may have led to changes in the levels 
of secondary bile conjugates (Staels and Fonseca 2009). 
The changes in bile acid pathways can have an impact on 
the liver, and the functional analysis using genes of interest 
after infection resulted in the annotation of liver failure as 
a key pathway with the bacterial load increasing in the tis-
sues as early as 6 h after infection (Hammamieh et al. 2016). 
The most noticeable feature observed was an increase in 
plasma free-fatty acid metabolism at multiple time points. 
This increase could be a result of higher lipolysis or the 
breakdown of membrane lipids in adipose tissue and liver.

Using MetaboAnalyst to identify biologically meaningful 
patterns enriched in the data also guided us to similar results 
as observed earlier. Here, potential target metabolic path-
way analysis uses impact-value ≥ 0.10 to identify the path-
ways that are important for the host response to infection. 
These metabolites are also responsible for the metabolism 
of linoleic acid, arachidonic acid, cysteine and methionine 
(Fig. 3a and Table S3). Arginine and proline metabolism; 
the biosynthesis of aminoacyl-tRNA; pantothenate and 
CoA; fatty acids and valine, leucine and isoleucine were 
found to be disturbed at early time points. The top meta-
bolic pathways of importance at late time points were lysine 
degradation; primary bile acid biosynthesis; glycine, ser-
ine, and threonine metabolism and taurine and hypotaurine 
metabolism.

We identified arachidonic acid metabolism as a high 
impact pathway (Fig. 3a) at late time points of infection, 
and derivatives from arachidonic acid metabolism are influ-
ential mediators of inflammation. Eicosanoids are powerful 
lipid mediators derived from arachidonic acid, and they are 
known to regulate many levels of inflammation. The role of 
lipids in infection is not a widely studied area, but there have 
been reports that leukotriene generation was suppressed in 
the presence of intracellular bacteria (Gröne et al. 1992). 
Also, some eicosanoids are suspected to act as molecular 
sensors for neutrophils recruitment and others may act by 
regulating bacterial uptake (Tyrkalska et al. 2016).

The metabolite cysteine is part of a highly impacted path-
way at late time points. Cysteine is a sulfur-containing amino 
acid that plays a critical role in protein structure by forming 
disulfide bonds with other cysteine residues (Brosnan and 
Brosnan 2006). The exact mechanism whereby cysteine may 
have played a role in this study remains unclear, but this 
amino acid is known to be involved in glutathione biosyn-
thesis, which leads to changes in an important cap protein of 
the bacterial type III secretion system. Subsequently, these 
protein changes lead to the high virulence of Y. pestis in the 
mouse and rat models which manifests as bubonic plague 
(Mitchell et al. 2017). It is known that peptide-conjugated 
lipid inflammatory mediators such as cysteinyl leukotrienes 
along with glutathione or glutathione cleavage products may 
have a key role in inflammation (Fanning and Boyce 2015).

3.5 � Ingenuity pathway analysis (IPA)

Based on the number of pathways observed, molecular and 
cellular functions were significantly enhanced at early time 
points as compared to late time points. The only canonical 
pathway that passed the Benjamini-Hochberg (BH) cor-
rection was the citrulline biosynthesis pathway of which 
five of the 18 metabolites were affected. Citrulline, glu-
tamine and proline were all reduced, while phosphate and 
urea were elevated. Citrulline biosynthesis occurs mainly 
in the intestine, and citrulline released from the intestine 
is metabolized by the kidneys (Windmueller and Spaeth 
1981). It has been reported that impairment of citrulline 
metabolism is linked to kidney failure, and the citrulline 
pathway was significantly changed at an early time point 
of infection. The most significantly enriched molecular and 
cellular functions that were observed at all time points are 
shown in Table 2. Carbohydrate metabolism was the top 
category that was highly significant, and the molecules in 
this category involved at early time points were oleic acid, 
creatine, d-mannose, l-methionine, hexanoic acid, palmitic 
acid, myristic acid, glycerol, phosphate, linoleic acid, and 
stearic acid. Citrulline, choline, corticosterone, and tauro-
cholic acid were significantly enriched at late time points. 
A recent study determined that Y. pestis requires carbohy-
drate metabolism during colonization in the host (Pradel 
et al. 2014), and this has been studied in regards to bubonic 
infection. Also, since the infection is temperature-dependent, 
it has been found that different types of carbohydrates are 
metabolized after this temperature transition (Heroven and 
Dersch 2014). Energy metabolism was significantly enriched 
at early time points along with four other categories; protein 
degradation, DNA replication, recombination and repair, and 
gene expression. However, whether this finding reflects the 
high energy expenditure that is required to fight the infec-
tion or a general inhibition of carbohydrate metabolism as a 
result of the infection remains unanswered.

Fig. 3   a MetaboAnalyst analysis: Enrichment analysis showing 
metabolite map to multiple biosynthetic pathways at (i) early time 
points (6–18 h) and at (ii) late time points (24–42 h). Metabolites are 
plotted according to the Global Test p-value (vertical axis, intensity 
of color) and impact factor (horizontal axis, size of circle). b Con-
centration of fatty acids: One of the top regulated network as identi-
fied by IPA at early (6–18 h) and late time points (24–42 h). c Necro-
sis: One of the top regulated network as identified by IPA at early 
(6–18 h) and late time points (24–42 h)

◂
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Table 2   Disease and 
biofunctions for all categories 
with significant − log (BH) 
p-value

Category Early(6–18 h) late (24–42 h)

Carbohydrate metabolism 6.04E− 05–1.14E−01 9.86E− 02–1.19E−01
Energy production 6.04E−05–1.22E−01
Small molecule biochemistry 6.04E−05–1.34E−01 3.41E−02–1.3E−01
Cell cycle 8.32E−04–1.08E−01 9.86E−02–1.19E–01
Cell signaling 8.32E−04–1.08E−01 7.55E−02–9.86E−02
Molecular transport 8.32E−04–1.34E−01 3.41E− 02–1.3E− 01
Vitamin and mineral metabolism 8.32E−04–1.14E−01 1.3E−01–1.3E−01
Lipid metabolism 8.32E−04–1.34E−01 3.41E−02–1.3E−01
Developmental disorder 1.42E−03–1.14E−01 3.41E−02–1.19E−01
Gastrointestinal disease 1.42E−03–1.34E−01 3.41E−02–1.19E−01
Hepatic system disease 1.42E−03–1.34E−01 3.41E−2–1.19E−01
Organismal injury and abnormalities 1.42E−03–1.34E−01 3.41E−02–1.36E−01
Cell death and survival 3.62E−03–1.34E−01 9.86E−02–1.36E−01
Cancer 4.37E−0 3–1.34E−01 9.86E−02–1.35E−01
Cellular assembly and organization 5.07E−03–1.34E−01 9.86E−02–1.19E−01
DNA replication, recombination, and repair 8.4E−03–1.08E−01
Nucleic acid metabolism 8.4E−0 3–1.08E−01 7.55E−02–9.86E− 02
Cellular development 1E−0 2–1.34E− 01 9.86E−02–1.26E− 01
Cellular growth and proliferation 1E−02–1.34E− 01 9.86E−02–1.26E− 01
Protein synthesis 1.1E− 02–1.31E− 01
Cellular compromise 1.1E−0 2–1.14E−01 7.74E−03–1.19E−01
Organismal survival 1.1E− 02–1.1E− 02 1.19E−01–1.21E−01
Free radical scavenging 1.4E− 02–1.34E−01 7.55E−02–1.3E−01
Tumor morphology 1.4E−02–1.34E−01 9.86E−02–1.19E−01
Endocrine system development and function 1.4E−02–1.08E−01 9.86E−02–1.3E−01
Hematological system development and function 1.4E−02–1.34E−01 9.86E−02–1.36E−01
Hepatic system development and function 1.4E−02–1.08E−01 9.86E−02–9.86E−02
Humoral immune response 1.4E−02–1.4E−02
Lymphoid tissue structure and development 1.4E−0 2–1.08E−01 1.19E −01–1.19E−01
Tissue morphology 1.4E−02–1.14E−01 9.86E−02–1.19E−01
Behavior 2.67E−02–1.13E−01 9.86E−02–1.19E−01
Endocrine system disorders 2.67E−02–1.14E−01 9.86E−02–9.86E−02
Metabolic disease 2.67E−02–1.14E−01 3.41E−02–1.3E−01
Skeletal and muscular disorders 2.67E− 02–1.14E−01 9.86E−02–9.86E−02
Nervous system development and function 3.73E−02–1.13E − 01 9.86E−02–1.3E−01
Neurological disease 3.73E−02–1.22E−01 3.41E−02–1.36E−01
Cellular function and maintenance 4.21E−02–1.34E−01 9.86E−02–1.19E−01
Hematopoiesis 4.94E−02–1.14E−01 9.86E−02–1.19E−01
Tissue development 4.94E−02–1.14E−01 9.86E−02–1.19E−01
Cell morphology 5.02E−02–1.34E −01 9.86E − 02–1.19E − 01
Cell-To-Cell signaling and interaction 5.02E− 02–1.34E−01 9.86E−02–1.36E−01
Immune cell trafficking 5.02E−02–1.34E−01 9.86E−02–1.36E−01
Inflammatory response 5.02E−02–1.34E−01 9.86E−02–1.36E−01
Connective tissue development and function 5.48E−02–1.14E−01 9.86E−02–1.19E−01
Cardiovascular disease 6.44E− 02–1.22E−01 9.86E−02–1.19E−01
Drug metabolism 6.44E−02–1.08E−01 9.86E−02–1.3E−01
Organ morphology 7.07E− 02–1.22E−01 9.86E−02–9.86E−02
Skeletal and muscular system development and function 7.07E−02–1.34E −01 1.19E−01–1.19E−01
Hair and skin development and function 7.07E− 02–7.07E−02
Reproductive system development and function 7.07E−02–1.08E−01 9.86E−02–9.86E−02
Digestive system development and function 8.81E− 02–1.08E−01 9.86E−02–1.19E−01
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The significant toxicity (TOX) functions that were 
defined by IPA were significantly increased levels of ala-
nine aminotransferase (ALT) and liver necrosis at early 
time points, and liver cholestasis at late time points of 
infection. The changes in the ALT level are an integral part 
of the evaluations of patients with liver disease (Kim et al. 
2008), and our data suggested that the liver was immedi-
ately affected. With the onset of cholestasis, the disruption 
of bile flow occurs in hepatocytes, and this was exactly 
what we observed in our enrichment analysis. There were 
many fatty acids metabolites in the present dataset, where 
deoxycholate, oleic acid, palmitic acid, cholic acid, ara-
chidonic acid, stearic acid and linoleic acid were observed 
at early timepoints whereas taurodeoxycholic acid, cholic 
acid, taurocholic acid and glycocholic acid were observed 
at late time points. Y. pestis is known to utilize palmitic 
acid as a carbon and energy source (Moncla et al. 1983) 
and has enzymes for fatty acid degradation. We studied 
interaction networks among differentially expressed metab-
olites, which reveals the interactions between diseases and 

functions. A thorough investigation of the TOX functions 
is summarized in Table 3. The concentration of fatty acids 
and necrosis were the top regulated functions that were 
activated, and the differences between these networks at 
early and late time points are shown in Fig. 3b, c. At early 
time points of infection, ten metabolites were involved in 
the fatty acids network and were highly activated, as com-
pared to six metabolites at late times of infection (Fig. 3b). 
The mammalian host provides a fatty acid rich environ-
ment and may be enhancing the virulence of the bacteria 
(Moncla et al. 1983). Y. pestis survives in macrophages 
during its early invasion process and develops resistance to 
phagocytosis. The release of Y. pestis from macrophages is 
associated with necrosis and/or apoptosis (Ke et al. 2013). 
In this study, we observed that metabolites were higher 
for necrosis at early times of infection, thereby indicat-
ing immediate activity as compared to the late time points 
(Fig. 3c).

Table 2   (continued) Category Early(6–18 h) late (24–42 h)

Organ development 8.81E− 02–1.08E−01 9.86E−02–1.19E−01
Amino acid metabolism 9.97E−02–1.08E−01 9.86E−02–1.19E−01
Respiratory disease 9.97E−02–1.08E−01 9.86E−02–1.19E−01
Dermatological diseases and conditions 1E−01–1.08E−01 9.86E−02–1.19E −01
Inflammatory disease 1E−01–1.08E−01 3.41E−02–1.36E−01
Renal and urological disease 1.08E−01–1.31E−01 9.86E−02–1.19E−01
Cellular movement 1.08E−01–1.14E−01 9.86E−02–1.19E−01
Embryonic development 1.08E−01–1.08E−01 9.86E−02–1.3E−01
Hematological disease 1.08E−01–1.08E−01 9.86E−02–1.3E−01
Immunological disease 1.08E−01–1.08E−01 9.86E−02–1.36E−01
Organismal development 1.08E−01–1.22E −01 9.86E−02–1.3E−01
Auditory and vestibular system development and function 1.08E−01–1.08E−01 9.86E− 02–9.86E−02
Cardiovascular system development and function 1.08E−01–1.22E−01 9.86E− 02–1.19E −01
Connective tissue disorders 1.08E−01–1.08E−01 9.86E−02–9.86E−02
Gene expression 1.08E−01–1.16E −01 9.86E − 02–1.19E−01
Hereditary disorder 1.08E− 01–1.14E −01 3.41E−02–1.19E−01
Infectious diseases 1.08E−01–1.08E −01 3.41E−02–1.19E −01
Nutritional disease 1.08E− 01–1.13E −01 4.25E−02–4.25E−02
Ophthalmic disease 1.08E− 01–1.08E −01
Organismal functions 1.08E−01–1.08E−01
Post-Translational Modification 1.08E−01–1.08E−01 1.19E−01–1.19E−01
Protein degradation 1.08E−01–1.31E−01
Protein trafficking 1.08E−01–1.08E−01 1.19E− 01–1.19E−01
Psychological disorders 1.08E− 01–1.14E−01 9.86E −02–9.86E−02
Respiratory system development and function 1.08E−01–1.08E−01 9.86E− 02–9.86E − 02
Cell-mediated immune response 1.19E− 01–1.19E− 01
Hypersensitivity response 1.19E − 01–1.19E −01
Renal and urological system development and function 1.19E− 01–1.19E−01
Reproductive system disease 9.86E−02–1.19E−01
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3.6 � Proteomics analysis

We identified 12 proteins that were significant (p 
value < 0.05) at early time point and 11 proteins that were 
significant (p value < 0.05) at late time points. Three of 
these proteins including vascular endothelial growth fac-
tor, vitamin K-dependent protein S and Alpha-1-antitrypsin 
were common for both of the time groups (Fig. 4a). Path-
way analysis using IPA showed coagulation system as top 
canonical pathway with protein S and von Willebrand fac-
tor proteins involved in the pathway. The vitamin K plasma 
protein functions as a cofactor for anti-coagulant protease, 
which activated protein C to inhibit blood coagulation. The 
von Willebrand factor is a glycoprotein involved in hemo-
stasis and is known to be involved in the adhesion of plate-
lets to sites of vascular injury and the transport of various 
proteins in the blood. The proteins significant at late time 

point showed hepatic fibrosis as the top canonical function. 
Here the proteins that were known to be involved are C-C 
motif chemokine ligand 2, TIMP metallopeptidase inhibi-
tor 1, TNF receptor superfamily member 1B, vascular cell 
adhesion molecule 1 and vascular endothelial growth factor 
A. Hepatic fibrosis is a chronic liver disease associated with 
an accumulation of extracellular proteins where excessive 
connective tissue builds up in the liver. The trigger could 
be accumulation of bile acids, glucose and free fatty acids 
and involvement of inflammatory component (Li and Apte 
2015). Thus the indications of liver damage cannot be ruled 
out with an independent set of protein data in the same ani-
mal model.

3.7 � Integrated gene metabolite interactions

Expression profiling studies (Hammamieh et al. 2016) 
contributed significantly to the understanding of molecu-
lar mechanisms and when combined with metabolomics 
they have the potential to provide additional biological 
insight for understanding of disease pathogenesis. For 
further exploration of potential molecular connections of 
the identified metabolites with disease progression mecha-
nisms, we combined our metabolomics dataset with our 
previously published (Hammamieh et al. 2016) dataset of 
1,176 genes that were differentially expressed across time 
points. We understand that this analysis means fewer dif-
ferentially changed metabolites as compared to genes and 
is likely to overlook some of the metabolite information. 
We are able to build gene/metabolite centric maps pre-
sented as interaction networks (Fig. 4b) to represent sig-
nificant interactions among differentially expressed genes 
and altered metabolites. From these two data types, we 
identified a highly connected and integrated network of 
fatty acids and transcripts. Two key fatty acids, linoleate 
and (5Z–8Z–11Z–14Z) icosatetraenoic acid, showed regu-
latory interactions (integrated either directly or indirectly) 
with 73 upregulated and 80 downregulated transcripts 
which seemed to regulate every other metabolite in the 
network. As early as 6 h post infection, the metabolites 
icosatetraenoic acid and myo-inositol three phosphate 
along with the gene prostaglandin-endoperoxide syn-
thase 2 (ptgs2) were observed as main nodes. The ptgs2 
genes encodes a key enzyme in prostaglandin biosynthe-
sis, and is highly inducible following pro-inflammatory 
stimuli such as cytokines or endotoxins (Gagnaire et al. 
2016). The metabolite linoleate showed up as a dominant 
node at 12 h post infection. Multiple cyp genes from the 
Cytochrome P450 superfamily and pla genes from phos-
pholipase A2 family showed up as prominent nodes 18 h 

Table 3   Disease and biofunctions with activation Z score

Diseases and bio functions Early (6–18 h) Late (24–42 h)

Concentration of fatty acid 2.76 1.44
Necrosis 2.45 1.06
Non-melanoma solid tumor − 2.17 − 1.00
Quantity of Ca2+ 3.05 0.00
Organismal death − 0.71 − 2.01
Accumulation of triacylglycerol 1.61 − 1.07
Accumulation of lipid 2.25 − 0.37
Growth of tumor − 2.03 − 0.47
Production of reactive oxygen 

species
1.46 1.01

Apoptosis of tumor cell lines 2.47 0.00
Synthesis of cyclic AMP 0.00 − 2.45
Oxidation of glucose-6-phosphate − 2.45 0.00
Cell viability of tumor cell lines − 1.54 − 0.90
Cell death of tumor cell lines 2.39 0.00
Oxidation of monosaccharide − 2.35 0.00
Concentration of eicosanoid 2.33 0.00
Apoptosis of pancreatic cancer cell 

lines
2.18 0.00

Cancer − 1.62 − 0.55
Apoptosis of endothelial cells 2.17 0.00
Accumulation of acylglycerol 2.06 0.00
Quantity of reactive oxygen species 1.14 0.88
Synthesis of fatty acid 1.11 0.90
Synthesis of nitric oxide − 0.10 − 1.90
Proliferation of CD4 + T-lympho-

cytes
2.00 0.00

Apoptosis of vascular endothelial 
cells

2.00 0.00
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onwards post- infection. Linoleate and (5Z,8Z,11Z,14Z)-
icosatetraenoic acid are highly connected to the 
Cytochrome P450 superfamily, phospholipase A groups 
and arachidonate lipoxygenase proteins. These proteins 
are important in metabolism of linoleic and icosateraenoic 
acids. Notably, these pathways were centered around lipid 
derived mediators related to arachidonic acid metabolism. 
Particularly, differentially increased synthesis of the pro-
inflammatory fatty acid, linoleic acid (Burns et al. 2018), 
seems to have an important implication with regard to 
disease progression due to Y. pestis infection. Fatty acids 
are important sources of energy and the association of up 
and down regulated transcripts (which formed part of the 

network) is important information that could be responsi-
ble for accumulation of metabolites in response to Y. pestis 
infection (insults).

4 � Conclusions

Metabolomics proved to be an ideal technology to assess 
the effects of pneumonic Y. pestis infection in NHPs. An 
early inflammatory response was suggested by increases 
in arachidonic acid, omega-6 fatty acid precursors, and 
monohydroxy fatty acids (13- and/or 9-HODE). This 
study is novel because no other studies have identified 

Fig. 4   a Protein assay: Ratio of 
significantly (p < 0.05) identi-
fied proteins are sub-grouped as 
early and late groups. The com-
mon proteins between the two 
groups is shown in overlapping 
regions. b Integrative gene-
metabolite network: Significant 
genes identified from blood 
samples in previously published 
manuscript (Hammamieh et al. 
2016) and metabolites were 
combined from all of the time 
points for integrated analysis. 
The larger node size reflects the 
modularity. Interaction networks 
were constituted from differ-
entially regulated transcripts 
(blue colored nodes = down-
regulated transcripts; red 
colored nodes = up-regulated 
transcripts) and differentially 
altered metabolites (green 
nodes = decreased metabolites; 
magenta colored nodes = ele-
vated metabolites)
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metabolites that are involved in the course of infection of 
pneumonic plague. Also, in support of an early inflam-
matory response were indications of oxidative stress with 
decreases in α- and β-tocopherol and increases in biliver-
din and bilirubin.

The other major finding in this study was an increased 
energy demand on the host. A rapid mobilization of fatty 
acids and subsequent β-oxidation of these free fatty acids 
indicated a need for increased energy. The formation of 
ketone bodies and α-hydroxybutyrate revealed increased 
and potentially overwhelmed mitochondrial functions. The 
oxidation of omega fatty acids and branched chain amino 
acids also supports the hypothesis that the high energy 
demands of the host response to the infection are met 
through multiple mechanisms. These metabolic changes 
could lead to the general lack of energy that hosts display 
shortly after becoming infected with the pathogen but prior 
to expressing overt symptoms. Figure 5 shows a summary 
of the metabolically active pathways in the host, includ-
ing the fats/lipids and amino acid pathways. Based on the 
data, we hypothesize there was dysfunction in the liver 
tissue that warrants further investigation. Potential next 
steps include the examination of multiple tissues of the 
infected animals to fully characterize the molecular course 
of infection.
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