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Background. In the last decade, population pharmacokinetic (PopPK) modeling has spread its influence in the whole process of drug
research and development. While targeting the construction of the dose-concentration of a drug based on a population of patients,
it shows great flexibility in dealing with sparse samplings and unbalanced designs. The resampling approach has been considered an
important statistical tool to assist in PopPK model validation by measuring the uncertainty of parameter estimates and evaluating
the influence of individuals. Methods. The current work describes a graphical diagnostic approach for PopPK models by visualizing
resampling statistics, such as case deletion and bootstrap. To examine resampling statistics, we adapted visual methods from
multivariate analysis, parallel coordinate plots, and multidimensional scaling. Results. Multiple models were fitted, the information
of parameter estimates and diagnostics were extracted, and the results were visualized. With careful scaling, the dependencies
between different statistics are revealed. Using typical examples, the approach proved to have great capacity to identify influential
outliers from the statistical perspective, which deserves special attention in a dosing regimen. Discussion. By combining static
graphics with interactive graphics, we are able to explore the multidimensional data from an integrated and systematic perspective.

Complementary to current approaches, our proposed method provides a new way for PopPK modeling analysis.

1. Introduction

Graphics is an important tool in data diagnostics that can be
used to detect patterns, screen outliers, and test hypotheses
[1-5]. In the field of pharmacokinetics, we can observe
many elegant graphics used to help answer various biological
questions. In his comprehensive tutorial book, Ette gave many
examples of applying statistical graphics for the problems in
pharmacokinetics and pharmacodynamics [2]. With detailed
explanations of each plot type, he systematically reviewed
their applications and pointed out that “the use of graphic
techniques in data visualization aids understanding of the
data structure that would lead to an informative data anal-
ysis” At the same time, Karlsson described, from a model
perspective, 22 assumptions for various situations during
model development and then demonstrated the advantage

of graphics in the assumption testing of the population
pharmacokinetic (PopPK) model [6]. In addition, a detailed
demonstration was given by Bonate, with real examples and
diverse plots, showing how the graphics can greatly facilitate
and impact each stage of the PopPK model-building process
[7]. Our team developed a graphic pipeline to generate a
collection of plots and statistics for PopPK model diagnostics.
By automatically generating R scripts for diverse plots, we
introduced the graphic flexibility and diagnostic efficiency for
PopPK model building [8].

Resampling techniques, based on the intensive compu-
tational capacity of computers, have been widely applied
to PopPK modeling for the assessment of uncertainty in
parameter estimations and the detection of influential obser-
vations [9-12]. Though hundreds or thousands of data sets are
produced with resampling, users generally tend to examine
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the numerical rather than the graphical summaries. However,
considering the complex algorithms used in PopPK model fit-
ting and the nonlinearity carried by the model, visualization
of resampling statistics can be an efficient and direct way to
gain a deeper understanding of the relationship between the
model and the data.

In this paper, we develop a graphic approach to visualize
resampling statistics using static and interactive graphics.
The static plots are efficiently and conveniently connected
through interactive graphics, which can help in exploring
the associations between complex statistics and making
discoveries. To our knowledge, no previous study has applied
graphics, as in our approach, to explore and analyze the
resampling data sets which are crucial in PopPK modeling.
This is the first attempt in the pharmacokinetic field to
incorporate interactive graphics in resampling data analysis.
The current paper is organized as follows. Section 2 explains
the related graphic methods. Section 3 reports the results for
this research. The discussion and conclusions are combined
in Section 4.

2. Statistical Graphics and Methods

2.1. Overview of Resampling Statistics. Resampling statistics
is a term used to describe the statistical methods that take
multiple samples from a data set and calculate quantities
based on the estimations obtained from each new set of data.
These methods include case deletion, which can be used to
detect the outliers with substantial influence on the model
fit, and the bootstrap, which helps measure the uncertainty
associated with parameter estimates.

In PopPK, the data of different subjects may have different
impacts on the modeling process. The lack in uniformity of
several patients, that is, the outliers identified statistically, can
seriously affect the model fit and parameter estimation and
thus greatly degrade the explanation of the final model to the
data. The case deletion methods remove all the observations
related to a subject and refit the model with the reduced data
set. The subject is considered to be influential if the new
estimation of the parameters changes substantially, which
are at the extremes or not within 5-95 percentiles of the
confidence interval. To obtain comprehensive results, this
process is generally repeated for each subject in the original
data set. Some methods allow the deletion of groups of
subjects, which may reveal the group effects on the final
model fit. Simultaneously, in some circumstances, single
observation may be deleted and single influential data points
can be examined in detail.

The bootstrap is another sampling strategy with replace-
ment [13]. We performed a few hundreds or thousands of
bootstrap runs to obtain some robust results. By grouping
some of these bootstrap samples and refitting the models, the
users can extensively explore the distribution of parameter
estimates. This method is typically used to add error bands
or confidence intervals for parameter estimates.

Figure 1 illustrates the data structure of the final results
of all interested pharmacokinetic parameters, which were
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FIGURE 1: Multiple simulated data sets for resampling statistics. In
the first simulation data set (siml), when the subject is absent from
the simulation, no parameter is estimated, so a missing value (NA) is
generated. One of these tables is generated for each parameter (CL,
V, and Ke). We can consider this to be a multivariate data set, which
we will use to examine the influence of each subject and assess the
variability in the parameter estimates.
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FIGURE 2: Graphic methods for visualizing resampling data.

calculated by creating multiple simulated data sets and
refitting models with resampling data.

2.2. Graphic Methods. Basic plots, such as histograms and
scatter plots, are presented to explore the sample distribution
and detect the influential objects (Figure2). To examine
the multivariate matrix, two well-known static graphical
approaches, namely, specialized parallel coordinate plots and
multidimensional scaling, were applied to the resampling
data. All the methods can be implemented in R package
PKgraph (http://cran.r-project.org/web/packages/PKgraph)
[14]. The PKgraph functions as the interface to integrate all
graphical tools for the diagnostic purpose. Specifically, the R
packages lattice [15] and ggplot2 [16] were used to produce the
static graphics and rggobi [17] for the interactive graphics.

2.2.1. Static Graphics

Parallel Coordinate Plot. Parallel coordinate plot was devel-
oped by Inselberg [18] and Wegman [19] to visualize an
orthogonal axis system (Inselberg 1985, Wegman 1986). In
this paper, this method converts a high-dimensional space to
a two-dimensional one. The analysis steps are as follows.

(1) A set of horizontal parallel axes were created from
the columns of the data matrix. Each axis represents
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one data set, matching each case deletion run in this
research.

(2) Along each parallel axis, the empirical Bayesian esti-
mates of a parameter (CL in Figure 6) were annotated
for each subject. For a fair comparison among case
deletion runs, all values were normalized by the dif-
ference between the maximum and minimum values
of this run. To facilitate the visualization, two bound-
ary lines, maximum and minimum, were set at the
boundary. As such, in Figure 6, all case deletion runs
have the same unitlength: 1.0 (global maximum) — 0.0
(global minimum) = 1, which arranges all case dele-
tion runs in the same scale.

(3) The values for each subject were connected down-
wards by lines.

The final results were a set of plots that showed how the
parameter estimates varied across all runs. If the estimate
changed substantially, the subject deleted in that run was
influential to the model fit.

Multidimensional Scaling. Multidimensional scaling (MDS) is
a well-known strategy that transforms high-dimensional data
into a low-dimensional representation, while preserving the
relative distances. The main algorithm focuses on minimizing
a loss function, which measures the difference between
the distances in the high-dimensional space and the low-
dimensional space. The final plot is generated from the low-
dimensional data. There are many possible loss functions for
MDS, including classical, metric, and nonmetric scaling. In
this project, we used “Torgerson” loss function, which is the
standard approach in R function “cmdscale”

When the Euclidean distance between the points is used,
MDS performs like principal component analysis, which has
been proven to be a valuable tool in PopPK modeling, to iden-
tify the influential cases and delineate the variability [7, 20]. In
addition, the MDS framework provides much flexibility in the
construction of low-dimensional representations. A different
distance metric and loss function can always be chosen to
allow nonlinear mapping from a high-dimensional space to
a low-dimensional one.

In this research, we used classical MDS to obtain a lin-
ear projection of the resampling statistics data and each
simulation was considered as one dimension. In this way,
MDS functions can be considered as a tool to summarize the
variability across all simulations. As a reminder, each point
corresponds to one subject in an MDS plot.

2.2.2. Interactive Graphics. Interactive graphics is based on
static graphics, and the users can make changes to the
plots conveniently by simple mouse action. By linking the
plots together, this technique enables the element changed
in one plot to propagate to all other visible plots [21-24].
In this paper, we describe a graphic approach to visualize
the resampling data by linking a histogram, a scatter plot, a
parallel coordinate plot, and an MDS plot through interactive
graphics.

2.3. Data. One data set from PKgraph [14] was utilized to
illustrate the visualization approach. This data set has 100
patients, and each individual was sampled at 0, 0.25, 0.5, 0.75,
1,15,2,2.5,3,4,6,8,12,16, 20, and 24 hours after dose. Weight
(WT) was measured as a covariate for each subject.

The resampling statistics were generated and fitted using
the cdd and bootstrap functions in PsN [25], and the results
were analyzed with PKgraph. In each bootstrap, 100 patients
were resampled and we repeated this process 50 times.

2.4. Model. A one compartment model of i.v. bolus admin-
istration was chosen to model the data set of drug concentra-
tions. Its mathematical description is as follows:

Dose _(cr. vt
Cij: v o~ (CL/VL;

1

@

for patients i = 1,...,n and samplings j = 1,...,k;. The
standard exponential between subject variabilities for phar-
macokinetic parameters as well as the combined proportional
and additive error model was used. All data were fitted with
NONMEM using the algorithm of first-order conditional
estimation method with interaction.

3. Results

3.1. Resampling Design. Generally the resampling design
needs to be validated. In the case deletion methods, each
subject was subsequently deleted to detect the graphical
patterns. For bootstrap, we would expect the distribution of
subjects picked for deletion to be fairly uniform.

Figure 3 shows the plots for the resampling design.
Figure 3(a) is for case deletion diagnostics, and the subjects
were not subsequently deleted according to their identifica-
tion numbers for analysis. The process was described in the
PsN documentation as a “perturb” pool. Most subjects were
deleted sequentially, but the pattern was periodically broken
by selecting one subject from the “perturb” pool.

Figure 3(b) is for the bootstrap. A dot point indicates a
subject selected for the sample. It is clear that these dot points
are uniformly distributed over the square, thus confirming
the true randomness of the samplings. If the resampling with
replacement is not random, the sample ID in the y-axis will
be shown as a horizontal black or blank line in the plot.

3.2. Distribution of Demographic Covariates in Resampling
Data. Ideally, the resampling design is independent of the
covariates used in the model fitting. To check this, we
explored the distribution of the covariate for each simulation.
Figure 4 shows the density plots for weight (kg). It reveals that
the subjects in the study were typically around 50 kg, with
some overweight subjects at around 95 kg.

Figure 4(a) is a density plot for the case deletion statistics,
where each simulation (one subject removed) is represented
by a different color. Figure 4(b) explains the weight distri-
bution for each bootstrap sample. We can observe that the
weight distribution has a similar pattern for all samples in the
former, while there is much more variation in the latter. Since
some runs only included light-weight patients, this results in
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FIGURE 3: Plots to examine the resampling designs (a) for case deletion and (b) bootstrap. In each case the run ID is plotted horizontally, and
the vertical axis displays which cases were in or out of the sample. For the case deletion design we plot the ID number of the subject deleted
for the run. Lines connect sequential runs. If the deletion was done sequentially by PsN, then we would see a straight line from (1, 1) to (100,

100). This is not the case: in the first run, the first patient was deleted; in the second run, the 10th patient was deleted; and in the third run,
the 100th patient was deleted.
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FIGURE 4: Distribution of weight for the samples: (a) case deletion statistics and (b) bootstrap. Each sample is represented using a different
color.
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FIGURE 5: Distribution of clearance (CL) in (a) case deletion statistics and (b) bootstrap samples. There is more variability in the bootstrap
samples, as expected. In the case deletion samples, one run had a noticeably higher second peak than those in other samples.

a skewed distribution. Simultaneously, a formal statistical test
for equality of distributions is suggested to be performed to
confirm this finding.

3.3. Distribution of Some Parameters in Resampling Data.
The basic properties of the model are determined by the
estimates of certain model parameters, such as clearance
(CL) and volume of distribution (V). It is of great value
to examine the density of these estimates across samples
for model diagnostics. Although population level parameters
and intersubject variability are the important parameters
too, for demonstration purpose we only chose CL and V
to explore the visual diagnostic methods. Figure 5 explores
the distribution of clearance for each sample. Interestingly,
the basic shape is bimodal, which means that there are two
groups of clearances, around 0.275 and 0.5, respectively.
Figure 5(a) shows the results from case deletion statistics, and
the distribution of clearance is clearly similar for most sam-
ples. Figure 5(b), on the other hand, shows the distribution
of clearance in the bootstrap samples. In particular, more
variability was observed than in the case deletion samples,
though no individual sample was found to be substantially
different from the others. A statistical test is suggested to
confirm this result.

3.4. Parallel Coordinate Plot and Multidimensional Scaling for
Case Deletion Diagnostics. Figure 6 is a parallel coordinate
plot for the scaled estimates of clearance from each model
fit. The values inferred from each simulation were connected
by subjects, and different colors were used to represent
subjects. Interestingly, when two samples (subjects 52 and 20)
were deleted, the estimated clearance changed substantially.

Generally, subject 52 had a very low clearance compared with
other subjects. When it was not included in the analysis,
the clearance values of some subjects increased significantly,
while the others decreased remarkably. We recognized this
subject as an influential outlier. At first glance, subject 20 was
not an outlier as it had a clearance value around the median.
However, when it was deleted from the data set, the estimated
clearance for most other subjects dropped accordingly, which
indicated that the estimates were inflated when subject 20 was
included in the previous analysis.

The MDS plot is presented in Figure 7. In this analysis,
subjects 52 and 20 were identified as the outliers suggesting
that they may be influential on the clearance estimates.

3.5. Interactive Graphics. Interactive graphics create an inte-
grated framework to link the parallel coordinate plot, the
MDS plot, and the plot of the subject concentration profiles.
This technique provides opportunities to examine the model
fit and inferred estimates from different perspectives based
on independent algorithms. The result is shown in Figure 8
using GGobi package. The two outlying observations in the
MDS plot (right) were marked in red and blue for subjects
20 and 52, respectively. All plots were linked by the sample
ID (resample ID). Furthermore, the points representing these
two samples were colored simultaneously in the parallel
coordinate plot (the left panel), which was the approach that
we used in the previous section to identify the influential
subjects. In addition, these two subjects were also highlighted
in the scatter plot of concentration time profiles of all subjects
(the middle panel).

In fact, we can only see the difference in these two subjects
from the others until the case deletion approach is performed.
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FIGURE 6: Parallel coordinate plot for diagnosing case deletion runs for the clearance estimates. Each line in the figure connects values for each
subject, across runs. The clearance estimates change substantially for two runs, suggesting there are two patients which have undue influence

on the model fit.

These two subjects were then deleted one by one to refit the
model. The linked plots allow us to compare the information
learned separately from individual plots and examine the
other information about these subjects.

Figure 9 describes a special case for examining the boot-
strap statistics through interactive graphics. The left panel
is a scatter plot of concentration versus time, and the right
panel explores the variance of clearance versus the ordered
ID. The subject having the largest variance in the clearance
estimates was brushed with blue. Furthermore, this plot was
linked to the left panel by the subject ID. Interestingly, we

found that one subject (13) had very low concentration but
had the highest variance of clearance.

4. Conclusions and Discussion

The main objective of this research was to develop effective
and powerful visualization methods for resampling statistics
that can be applied to diagnose population pharmacoki-
netic models. Two approaches were included: case deletion
diagnostics and bootstrap. Case deletion diagnostics focuses
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FIGURE 7: MDS plot for diagnosing case deletion runs for the clearance estimates. The IDs in the figure match the case deletion run ID, and
it means that the patient with this ID was deleted. The plot indicates that subjects 52 and 20 were influential on clearance estimates.
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is one subject with very large variance, which is brushed (blue). The plot is linked to the time series plot for all subjects (right).



on identifying the influential subjects, while bootstrap targets
the variability of parameters and model robustness.

In this research, we tried to incorporate, for data anal-
ysis, the technique of interactive graphics, which has been
available for several years. To our knowledge, this is the first
attempt to implement interactive graphics in the pharmacoki-
netic field. We applied this technique to resampling data and
demonstrated the feasibility and accessibility of the graphic
approach related to case deletion diagnostics and bootstrap.
With the support of interactive graphics, users can easily link
all patients in various analyses and evaluate the results from a
systematic perspective instead of some standalone parameter
or multiple separated resources. Another contribution of this
research is to provide new insight into model diagnostics with
high-dimensional visualization approaches. By combining
parallel coordinate plot and multidimensional scaling, we can
transform high-dimensional data to low-dimensional data
for visualization and clustering without losing the original
information. However, there are still some limitations in our
study. The tests were on a small data set that is publicly
available. A larger pool of data sets will definitely contribute to
the improvement of this new analysis strategy. Additionally,
the approach requires several supporting software packages,
which creates overheads before starting the analysis.

In conclusion, we developed several visualization meth-
ods to analyze multidimensional resampling data in the
framework of interactive graphics. Several visualization tech-
niques, including histogram, parallel coordinate plot, and
multidimensional scaling, were implemented to explore the
data structure and the hidden relations embedded in multiple
resources. By combining static graphics with interactive
graphics, we explored, screened, and investigated some out-
liers of these multidimensional data from an integrated and
systematic perspective. This research is complementary to
current approaches and presents a novel way to visualize and
analyze the pharmacokinetic data.
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