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SUMMARY
While the association between colorectal cancer (CRC) features and Fusobacterium has been extensively
studied, less is known of other intratumoral bacteria. Here, we leverage whole transcriptomes from 807
CRC samples to dually characterize tumor gene expression and 74 intratumoral bacteria. Seventeen of these
species, including 4 Fusobacterium spp., are classified as orally derived and are enriched among right-sided,
microsatellite instability-high (MSI-H), and BRAF-mutant tumors. Across consensus molecular subtypes
(CMSs), integration of Fusobacterium animalis (Fa) presence and tumor expression reveals that Fa has the
most significant associations in mesenchymal CMS4 tumors despite a lower prevalence than in immune
CMS1. Within CMS4, the prevalence of Fa is uniquely associated with collagen- and immune-related path-
ways. Additional Fa pangenome analysis reveals that stress response genes and the adhesion FadA are
commonly expressed intratumorally. Overall, this study identifies oral-derived bacteria as enriched in in-
flamed tumors, and the associations of bacteria and tumor expression are context and species specific.
INTRODUCTION

Among solid tumors, colorectal cancer (CRC) is predicted to be

the third leading cause of death, with rising incidence in younger

individuals.1,2 CRC is a heterogeneous disease with tumors vary-

ing based on topography, i.e., location along the gastrointestinal

(GI) tract, and mutation status, e.g., alterations in the BRAF

oncogene gene, as well as molecular subtype, as determined by

transcriptional profiles.3 In prior analyses, each of these variables

was identified as a prognostic and/or predictive biomarker of

CRC. For example, right-sided tumors respond less well to anti-

epidermal growth factor receptor (EGFR) therapy,4 and tumors

classified as the mesenchymal subtype have lower survival.3

Beyond traditional biomarkers, the microbiota, including both

bacteria in the GI tract and within the tumor, is a growing area

of interest in regard to CRC. More specifically, recent meta-ana-

lyses identified conserved differences in the gut microbiomes of

patients with CRC compared with healthy controls.5–7 Several

bacterial species, most notably Fusobacterium nucleatum, have

elevated abundance in CRC tumors compared with adjacent

normal or GI tissue from non-cancerous patients.8–10 This

tumor/normal discrepancy and preclinical data suggest that
Cell Rep
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Fusobacterium may play a causative role in CRC pathogenesis,

progression, and response.11–16 Notably, Fusobacterium is

present in only a subset of tumors and often coexists with other

bacterial species includingBacteroides fragilis,Gemellamorbillo-

rum, Peptostreptococcus stomatis, and Selenomonas sputi-

gena.8,17,18 The nature of these coexisting species remains

poorly understood.

In this study, we generated whole-transcriptome RNA

sequencing of 807 tumor tissues from patients with CRC to

simultaneously characterize gene expression of both the tumor

and microbes residing therein. To contextualize these microbial

profiles, we compared our results with those of two meta-

analyses that examined microbes in 208 saliva and 852 stool

samples from patients with CRC and healthy controls.6,19

Additionally, we benchmarked our findings against 587 samples

from The Cancer Genome Atlas (TCGA), which has previously

been utilized for tumor/microbial associations.11,18,20,21 Using

our bacterial profiles, we detailed links between community

composition of oral bacteria and tumor location, mutation status,

and molecular subtype. Notably, multiple species, including four

F. nucleatum subspecies, were associated with clinical variables

at a scale of hundreds of patients, exceeding prior studies
orts Medicine 4, 100920, February 21, 2023 ª 2023 The Authors. 1
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(Figure S1A; Table S1A). We revealed that a microbe’s associa-

tion with tumor gene expression varies depending on the CRC

subtype. Finally, we identified which Fusobacterium animalis

(Fa) genes are actively expressed in a pangenome analysis.

Overall, this increased understanding of tumor microbes could

lead to improved subtype stratification and novel prognostic

biomarkers.

RESULTS

To investigate both host and microbial transcriptomes that are

poorly captured by widely used poly-(A) enrichment or exome

capture approaches, we utilized whole-transcriptome RNA

sequencing with rRNA depletion to detect microbial species

that are metabolically active in tumor biopsies. Patient samples

for this study were collected from AVANT,22 a randomized phase

3 trial that enrolled patients with resected stage III or high-risk

stage II colon carcinomas and aimed to compare oxaliplatin-

based chemotherapy with or without the anti-angiogenesis

agent bevacizumab as adjuvant treatment post-surgery. Clinical

characteristics of the 807 patients in the biomarker evaluable

population were similar to the overall intent-to-treat population

(Table S1B). Consistent with these non-metastatic patients

being putatively cured by surgery, the number of recurrence

events was low, and the AVANT trial did not meet its primary

endpoint of improved disease-free survival (Figure S1B). There-

fore, we deprioritized response-based analyses and focused

on associating diverse microbes with tumor characteristics,

including gene expression.

Gut and oral bacterial species are prevalent in the tumor
To identify themicrobial content of the 807whole transcriptomes,

we mapped non-human reads against a bacterial and archaeal

Genome Taxonomy Database (GTDB) with Kraken and Bracken

(see STAR Methods, Figure S1C, and Table S1C).23–25 Across all

samples, 882 M reads mapped to 2,043 unique species, with a

median of 0.47M (interquartile range [IQR], 0.27–0.99M) per sam-

ple (Figures S1D and S1E). After implementing strict

quality-control filters, 75 species remained (see STAR Methods,

Figure S1C, and Table S1D). These species spanned common

phyla including Bacteriodota, Firmicutes, and Fusobacteriota. Of

the 75, all but the Cyanobacterium Aliterella sp000332075 were

identified in at least one of 1,060 previously published oral and/

or gut microbiome samples from healthy donors and patients
Figure 1. 74 bacteria, 54 gut and 20 oral species, were detected in the

(A) Percentage of prevalence of 74 bacteria in AVANT. Bars colored by phyla.

(B) Dark gray bars (left) indicate prevalence across 852 stool samples from he

samples.19 Blue dots indicate the prevalence in control samples (stool, n = 568;

(C) Each dot corresponds to 43 species overlapping between Kraken and Pathse

plus coverage cutoff of 0.5%. Pathseq prevalences are based on a score excee

(D) For species in (A), the mean (excluding zeros) Kraken-assigned reads (prior

samples that exceeded 250 Kraken-assigned reads for a given species.

(E) For 43 species in (C), themean Pathseq score (excluding zeros) is shown. Point

species.

(C–E) Color of the point corresponds to the phyla and the shape to the gut or ora

(F) Tile color reflects the log(OR), and shades of red indicate a taxa was more pre

versus left, while blue shades indicate the opposite. Fisher’s exact test significan

See also Figures S1–S3 and Tables S1D–S1Q.
with CRC6,19 reanalyzed with the same methods (Tables S1E–

S1G).While themajority of these 74 specieswere highly prevalent

in gut microbiome samples, 20 species were more prevalent in

oral samples than stool (Figures 1A and 1B). Henceforward,

those 20 species are designated as ‘‘oral’’ and the remaining

54 are ‘‘gut.’’ The oral taxa included several Fusobacterium

species suchasFa,Fusobacteriumpolymorphum,Fusobacterium

vincentii, and F. nucleatum (Fn). Prior to the GTDB, these four

Fusobacterium species were grouped as Fn and delineated as

separate subspecies, e.g., Fn subsp. animalis.

Strikingly, prevalences of the gut species were consistently

higher in stool samples from patients with CRC (n = 284)

compared with healthy donors (n = 568; Figure 1B; Table S1E).6

Similarly, the oral taxa were more prevalent in saliva samples

from patients with CRC (n = 24) compared with healthy controls

(n = 184; Table S1F).19 While the presence of Fusobacterium in

CRC tumors is widely appreciated,9,10 we detected an additional

15 oral bacterial species. Several of these oral taxa, including

G. morbillorum, Parvimonas micra, and P. stomatis, were

previously identified as predictive of CRC in samples of the gut

microbiome.5–7,26 Overall, this indicates that the presence of a

colorectal tumor may increase the overall permissiveness of the

GI tract to oral bacteria.27–31

To verify our findings, we utilized Pathseq,32 an alternative

program. Of our 74 taxa, 43 had an equivalent in the Pathseq

database (Table S1H). Promisingly, prevalences for all 43 were

strongly concordant across Kraken and Pathseq (Spearman’s

Rho = 0.86, p = 2.2e�13; Figures 1C and S2A). As an additional

benchmark, we queried 587 colon and rectal TCGA samples

generated with poly-(A) enrichment (Table S1I). When applying

the 250 read cutoff used for AVANT, only 20 species were

detected in TCGA (Figures 1D, S2B, and S2C; Table S1J).

Lowering the cutoff to 5 reads recovered all 74 species; however,

at this threshold, an additional 1,030 species, including many

known contaminants, were identified across the samples

(Table S1K). This is a consequence of Kraken mapping 1,289 ±

19,659 (mean ± SD) reads per species in AVANT and only

15 ± 183 in TCGA, thus making it challenging to reliably differen-

tiate signal from noise. Notably, we also observed this discrep-

ancy with Pathseq32 (Figures 1E, S2D, and S2E; Table S1L).

Altogether, this comparison highlights the utility of the AVANT

dataset and the advantage of using rRNA depletion for identifica-

tion of a high diversity of species, including taxa at lower

abundances, at levels distinguishable from noise.
AVANT CRC samples

althy and CRC donors6,19; light gray bars indicate prevalence in 208 saliva

saliva, n = 184), while red dots indicate CRC (stool, n = 284; saliva, n = 24).

q (Table S1H). Kraken prevalences are based on Bracken cutoff of 250 reads

ding 250 plus coverage cutoff of 0.5%.

to any Bracken reassignment) is shown. Point size reflects the percentage of

size reflects the percentage of samples that exceeded a score of 250 for a given

l designation.

valent in BRAF-mutant versus wild type, MSI high (MSI-H) versus MSS, or right

ce, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.
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Figure 2. The association of Fa and tumor gene expression varies by CMS

(A) Bars indication percentage of AVANT samples in each CMS. Values indicate the number of samples.

(B) Bars indicate the proportion of samples by location.

(C) Bars indicate the proportion of samples by MSI status.

(legend continued on next page)
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Right-sided, MSI-H, and BRAF-mutant tumors have
greater prevalences of oral bacterial species
Having identified 74 diverse intratumoral bacteria across individ-

uals, we investigated the association between their presence

and 21 metadata variables (Table S1B), including demographic

factors, such as sex, age, and race, as well as tumor character-

istics, e.g., disease stage, tumor classification, location, and

mutation status. Of these, 7 variables were associated with at

least one intratumoral species (chi-squared test, false discovery

rate [FDR] < 0.05; Figure S3A; Table S1M). The top three

included microsatellite instability (MSI) status, tumor location,

and BRAF-mutation status with 23, 21, and 8 species associa-

tions, respectively. MSI status indicates whether an individual

had a mismatch repair deficiency in their tumor.33 Here, tumor

location was based on the annotated surgical procedure

performed (Figure S3B). Notably, these three traits were highly

correlated such that 66% of MSI-high and 62% of BRAF-mutant

tumors were right-sided, while 44% of BRAF-mutant tumors

were MSI high (Figures S3C and S3D).

Across those 3 variables, 31 bacterial species, including 13 oral

species, were consistently more prevalent in right- versus left-

sided, MSI-high versus microsatellite stable (MSS), and/or

BRAF-mutant versus wild-type (WT) tumors (Fisher’s exact test,

FDR < 0.05, mean odds ratio [OR] 3.94 [3.48, 4.4]; Figure 1F;

Tables S1N andS1O). This is consistentwith these tumors having

more reads mapping to microbes, despite equivalent starting

reads, and a greater portion having any detectable microbial

signal (Figures S3E–S3G). It is also consistent with previous

studies that identified right-sided tumors as having a greater

incidence of biofilms and hence greater microbial burden.8,17

These multitaxa results expand on the prior finding that

Fusobacterium is consistently enriched in these tumors20,34–38

(Figure S1A). To account for intercorrelation between these

variables (Figures S3C and S3D), we performed multivariate

analysis and found that the majority of associations remained

significant (Table S1P; Figure S3H).

The impact of F. animalis on tumor gene expression
varies by consensus molecular subtype
As the aforementioned variables are hallmarks of CRC subtypes,

we binned samples into consensusmolecular subtypes based on

tumor gene expression (Figure 2A).39 As expected, consensus

molecular subtype 1 (CMS1) tumors, known as immune high,

were more likely to be right-sided, MSI-high, and BRAF-mutant
(D) Bars indicate the proportion of samples that were BRAF-wild type (WT) and m

(E) For species differentially present between CMSs (chi-squared FDR < 0.05), to

reflects the log(OR) of CMS1 versus the other CMSs. Fisher’s exact test significa

species’ phyla.

(F) Volcano plot of differentially abundant genes between samples with or without

the right. Blue dots indicate genes with FDR <0.05 and log2(fold change) <0; red

many genes were statistically significantly up or down.

(G) Balloon plot shows 24 genes with FDR <0.05 and log2(fold change) >1 in (F). C

The bottom row represents the differential expression values for all samples with

represents the differential expression values for all CMS1 samples versus the C

samples versus the CMS1, -3, -4, etc., samples.

(H) Bars indicate percentage of Fa positivity by subtype. Values indicate the num

(I) Volcano plot of differentially abundant genes between samples with or withou

See also Figures S4 and S5 and Tables S1M, S1N, and S1Q–S1S.
compared with CMS2-4 tumors (Figures 2B–2D).3 Consistent

with this and our meta-data results, 25 of the species, including

17 oral species, were most prevalent in CMS1 tumors (chi-

squared test, FDR < 0.05; Figure 2E; Table S1Q). Overall, these

associations highlight that many oral species beyond Fusobacte-

rium display strong specificity for the inflamed CRC subtype.

Next, we identified host genes associated with intratumoral

bacteria and the effect of CMS status on those associations. To

address this, we initially focused on the most prevalent Fusobac-

terium species, Fa. Based on differential expression analysis, Fa

presence was associated with changes in 5,995 genes

(FDR < 0.05), including 24 with greater than a 2-fold increase in

expression (Figure 2F). These included several immune-related

genes, e.g., CXCL8 (IL8), IL1B, IL6, OSM, CXCL5, MMP1, and

PTGS2 (COX-2) (Table S1R), many of which were previously

identified as increased in TCGA samples with detectable

Fusobacterium.11,20 To understand if these associations were

artifacts of Fa’s strong association with CMS1 (Figure 2E), we

included CMS as a covariate in the statistical model. While doing

so lowered the number of differentially expressed genes to 3,421,

all but 1 of the top 24 genes retained statistical significance, indi-

cating that at least some of these associations were independent

of Fa’s enrichment in CMS1 (Figures 2F and 2G; Table S1R).

To determine whether these genes were specific to Fa or a

more broadly observed response to intratumoral microbes, we

conducted identical analysis, controlling for CMS, on the three

gut taxa with prevalences greater than 20% (B. fragilis, Phocaei-

cola dorei [formerly Bacteroides dorei], and Ruminococcus_C

sp000433635) and the second most prevalent oral taxon

(S. sputigena) (Figure 1A; Table S1S). Even after false discovery

correction, all species were associated with more than 2,000

differentially expressed genes (FDR < 0.05; Figure S4A). Among

the top overexpressed genes (log fold change [logFC] > 0.75;

Figure S4B), there was strong overlap between the oral species

Fa and S. sputigena and, to a lesser extent, R. sp000433635.

Interestingly, hydroxycarboxylic acid receptors 2 and 3 (HCAR2

and HCAR3) were the only genes strongly changed across all

five species. Altogether, these results reflect that some tumor

gene associations are conserved, while others are taxa specific.

To understand if the effect of Fa was variable across CRC

subtypes, we analyzed each CMS independently (see STAR

Methods, Figures 2H and 2I, and Table S1R). Notably, in the

CMS2 and CMS3 tumors, Fa presence was associated with

only 5 and 6 differentially expressed genes, respectively. By
utant (MUT).

p heatmap shows the species prevalence by subtype. In the middle, tile color

nce, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001. The bottom row indicates the

Fa based on Voom-Limma. CMS was included as a covariate for the results on

dots are genes with FDR <0.05 and log2(fold change) >0. Labels indicate how

ircle size corresponds to the �log10(FDR), while color is the log2(fold change).

or without Fa. The next row includes CMS as a covariate. The CMS1 column

MS2, -3, and -4 samples. Similarly, the CMS2 column represents the CMS2

ber of samples.

t Fa stratified by CMS. Colors and labels are the same as (F).

Cell Reports Medicine 4, 100920, February 21, 2023 5



(legend on next page)

6 Cell Reports Medicine 4, 100920, February 21, 2023

Report
ll

OPEN ACCESS



Report
ll

OPEN ACCESS
contrast, 377 genes were differentially expressed in CMS1

tumors, which had the greatest Fa prevalence at 48%. Despite

a prevalence of only 22% in CMS4 tumors, Fa presence was

associated with 786 differentially expressed genes, of which

116 overlapped with CMS1. The heightened alteration of gene

expression by Fa in CMS4 CRC tumors is of particular interest

as CMS4 mesenchymal tumors are associated with worse

prognosis than other CMS subtypes in this (Figure S4C) and

other cohorts.3,20 Additionally, because high Fusobacterium

levels have been associated with further reduced survival in

patients with CMS4 tumors,20 we were compelled to understand

how Fa uniquely impacts this subtype.

Fa is associated with upregulation of collagen and
immune pathways in CMS4 tumors
Gene set enrichment analysis (GSEA) revealed 69 REACTOME40

pathways that were differentially expressed based on Fa

presence in CMS4 tumors (Table S1T). Of the top pathways, five

related to collagen degradation and formation as well as many

immune-related pathways, including signaling of the cytokines

interleukin-6 (IL-6), IL-12, IL-1, IL-4, and IL-13, were increased

(Figures 3A–3C). Within these pathways, IL1B, IL1RN, CXCL8,

matrix metallopeptidase 1 (MMP1), and oncostatin M (OSM)

were the most highly upregulated in CMS4 tumors (Figure 3D).

Notably, increased levels of IL-8, encoded by the gene CXCL8,

have been associated with CRC growth, progression, and recur-

rence in patients.41 Additionally, OSM, a member of the IL-6

cytokine family, IL-1, and MMP1 have each been associated

with decreased survival in patients with CRC.42–45 Altogether,

each of these alterations represent multiple means by which

tumor-resident Famay associate with worse CRC outcomes.20

To verify whether these pathways were specific to Fa, we

conducted GSEA on the same four taxa as before (Figure S4A;

Table S1T). When stratified by CMS status, only P. dorei was

associated with any collagen pathways. Importantly, these

P. dorei associations were significant only in canonical CMS2

tumors, characterized by WNT and MYC activation, not CMS4.

(Figure 3C). As for the immune pathways, IL-10, IL-4, IL-13,

and IL-6 signaling were increased in CMS2 and CMS3 tumors,

while IL-4 and IL-13 signaling were increased in CMS4 tumors

with S. sputigena present (Figure 3C). As such, these results

highlight that the association of the intratumoral microbiome

with host gene expression is both species- and tumor-context-

specific.

To further understand how intratumoral bacteria influence the

tumormicroenvironment,weused immunedeconvolution to infer

cell composition from the tumor gene expression (Figure 3E).46
Figure 3. Fa is associated with upregulation of collagen- and immune-

(A) For each pathway, a gray square denotes a gene’s presence. Only genes diffe

shown.

(B) For genes differentially expressed in a particular CMS, the log2(fold change) is s

downregulated genes are in blue.

(C) The circle color indicates inwhichCMS theREACTOMEpathwaywas statistica

the �log10(FDR) value.

(D) Volcano plots from Figure 2I with addition of red dots highlighting genes of in

(E) Relative abundance plots indicate average cell-type composition in patients

(F) Percentage of neutrophils across all samples and by CMS and Fa presence/a

See also Table S1T.
Consistent with the neutrophil chemotaxis induced by CXCL8,

across all tumors, the average proportion of neutrophils was

increased in Fa-positive (Fa+) samples (34.8%, 95% confidence

interval [CI] [33.1%, 36.5%] versus 31% [30.1%, 31.8%];

Figure 3F). Across CMSs, Fa was associated with the greatest

neutrophil frequency, 37.2% [33.5%, 40.8%], in CMS4 tumors,

mirroring the high expression of CXCL8 observed in this setting

(Figure 3F). Importantly, these results are consistent with

increased neutrophils in ApcMin/+ mice exposed to Fn.11 Overall,

these data highlight how further experiments are necessary to

resolve whether Fa can shape the immune milieu as well as the

collagen architecture of the tumor microenvironment.

Pangenome analysis reveals highly expressed Fa genes
To explore how Famay be impacting the tumor, we investigated

which Fa genes are actively expressed intratumorally. This anal-

ysis builds onprior studies of theFa transcriptome in vitro.47–49 To

start, we built a Fa pangenome composed of 4,355 non-redun-

dant gene clusters (see STARMethods). There were 1,228 genes

that were core, i.e., present in all 26 strains used to build the

pangenome, while 31 novel genes were added per each

additional genome (Figures 4A and 4B; Tables S1U and S1V).

Next, we mapped reads to this pangenome database (see

STAR Methods) and found 297 ± 397 (mean ± SD) genes in

Fa+ tumors and only 31 ± 61 in the negative ones (Figure 4C).

Across the pangenome, 948 of the genes were expressed in at

least 10% of the Fa+ samples, 451 in R20%, and 79 in R50%

(Figure 4D). Using KEGG annotations, we found that ribosomal

genes were overexpressed compared with the pangenome,

i.e., genes annotated as ribosomal made up 56% of the genes

expressed in at least half of Fa+ samples but only 1.2% of the

pangenome (Figure 4E). The quorum-sensing pathway was

also overexpressed, suggesting that bacterial loads in the tumor

were sufficiently high to induce a signaling cascade. Other

overexpressed pathways include ABC transporters, glycolysis

gluconeogenesis, RNA degradation, and RNA polymerase

(Figure 4F). Further, we annotated the clusters with the Compre-

hensive Antibiotic Resistance Database (CARD)50 and Virulence

Factor Database (VFDB)51 and identified that genes in both were

overexpressed compared with the pangenome (Figure 4G).

We then interrogated the 35 most commonly expressed, non-

ribosomal genes and found that 32 were in the core of the

pangenome and that all were expressed at greater prevalences

in Fa+ versus Fa� tumors (Fisher’s exact test, FDR < 0.001;

Figure 4H), implying they were Fa specific. Among them were

several genes associated with bacterial response to stress,

e.g., elongation factor Tu, thiroredoxin, and GroEL enable
related pathways in CMS4 tumors

rentially expressed based on Fa presence in at least one of the CMS strata are

hown. Genes upregulated in the presence of Fa are shown in red shades, while

lly significantly enriched based onGSEA in a given species, while size indicates

terest in (B). Labeled genes had log2(fold change) <�1 or >1.

with or without Fa in all samples and across the different CMSs.

bsence. Wilcoxon-test FDR values are shown.
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Figure 4. Fa gene expression in pangenome analysis

(A) Gene accumulation curves for pangenome (blue) and core genome (green) as a function of genome sequences (N). Both are fit by a power law regression.

Points are means of n for 200 simulations. Error bars indicate the SDs for the 200 simulations.

(B) Accumulation of new genes (n) discovered with the addition of new genome sequences (N) fits a power law regression.

(C) Boxplots indicate the number of Fa genes identified in the Fa+ and Fa� samples. Wilcoxon p value is shown.

(D) Density plot shows the distribution of prevalence of the pangenome genes. 1,546 genes were identified in 0 of the Fa+ tumors. 948 were identified in at least

10% of the Fa+ tumors.

(legend continued on next page)
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adaptation to oxidative stress, DnaK provides resistance to

thermosensitivity, and the Clp proteases, e.g., ClpB, ClpP, and

ClpX, have been identified in many pathogens, including Staph-

ylococcus aureus, as central to stress survival and virulence.52–56

These expression patterns could be reflective of Fa attempting to

survive intracellularly against a barrage of host defenses

including antimicrobial peptides, e.g., S100A8 and S100A9,

which were increased in Fa+ tumors (Table S1R). A handful of

other proteases, including the serine protease fusolisin, were

also identified as expressed (Table S1V). These results com-

bined with the observation that fusolisin can degrade the extra-

cellular matrix protein collagen57,58 provide a probable mecha-

nism of why many collagen-related genes were upregulated in

Fa+ tumors (Figures 3A–3C). Additionally, the well-studied adhe-

sin FadA,16,59,60 which interacts with E-cadherin to mediate Fu-

sobacterium attachment and invasion into epithelial cells, was

identified in 56% of Fa+ tumors. In summary, the prevalent tumor

expression of FadA and the previous observation that blocking

Fad-A/E-cadherin binding can abolish Fad-A-induced CRC cell

growth in vivo means that blocking this interaction in patients

could be a promising therapeutic opportunity.16

DISCUSSION

CRC tumors harbor diverse microbes that are heterogeneous

across individuals. Here, we demonstrate that the prevalences of

bacterial species are strongly associated with tumor subtypes as

characterized by location, mutation status, and gene expression

(Figures 1F and 2E). Notably, oral-derived bacteria displayed a

strong association with CMS1, immune-high tumors. Evolution-

arily, this preference could imply that physiological features of

CMS1 tumors, e.g., oxygen concentration or pH, were similar to

that of dental plaques, where these oral species often aggregate

intobiofilms,61meaning that oral species arewell poised to survive

in theCMS1environment.Consistentwith thishypothesis, expres-

sion of HIF1A, indicative of tissue hypoxia, was highest in CMS1

tumors and lowest in CMS2 tumors (Figure S5A), which had the

lowest prevalence of the oral microbes (Figure 2E). Similarly,

H1F1A expression was consistently higher in tumors with any of

the17oral species thatwereenriched inCMS1 (FigureS5B). Since

the majority of these species are anaerobic, it is reasonable that

oxygen concentration would be an important factor underlying

the differential bacterial colonization across subtypes.

While strains of Fusobacterium identified in the mouth have

beenmatched to strains in the tumor,62 the method of transloca-

tion in patients is unclear. Intriguingly, in preclinical models, Fn

was shown to colonize rectal tumors more efficiently when in-

jected intravenously compared with oral gavage.63 At the same
(E) Bars indicate proportion of genes annotated as ribosomal in the whole pangen

in at least 20% (dark blue), and 50% (green). Fisher’s exact test significance, *FDR

and the three prevalence cutoffs (10, 20, and 50).

(F) Same as (E) but non-ribosomal KEGG pathways.

(G) Same as (E) but annotations to CARD and VFDB.

(H) For the 35 non-ribosomal genes expressed in more than half of the Fa+ sampl

pangenome core or mapped to something in the CARD or VFDB. Middle colum

prevalence in Fa� samples, while blue dots indicate Fa+ prevalence.

See also Tables S1U and S1V.
time, in the ApcMin/+ mouse model, oral gavage of Fn was suffi-

cient to promote colorectal tumor development, suggesting that

transmission via the GI tract was also possible.11 In both sce-

narios, Fnmay initially attach to the CRC tumors via the adhesion

Fap2, which binds Gal-GalNAc sugar residues, overexpressed

on CRC tumors.12 Notably, Fap2 was identified as being ex-

pressed in 9% of Fa+ tumors. Once in the tumor, Fn may act

as a keystone species to retain fellow oral bacteria in the tumor,

similar to oral biofilms, where Fn connects early and late colo-

nizing bacteria.14 In support of this, the adhesin RadD, known

to promote oral biofilms,64 was expressed in 10% of Fa+ tumors.

From the perspective of host gene expression, integrating

bacterial presence and tumor gene expression revealed that

the impact on expression was variable and dependent on CMS

and the bacterial species present. For example, the oral species

S. sputigena was associated with upregulated IL-6 and IL-10

signaling pathways exclusively in canonical CMS2 and meta-

bolic CMS3 tumors. In contrast, CMS2 and CMS3 tumors had

only 5 and 6 genes, respectively, that were differentially ex-

pressed based on Fa presence, while there were 377 and 786

genes in CMS1 and CMS4 tumors, respectively. Of the top

genes, many, including CXCL8 (IL8), IL1B, IL6, MMP3, and

PTGS2 (COX-2) (Figure 2G), were previously identified as

increased in ApcMin/+ mice after being administered Fn.11 Addi-

tionally, in vitro, Fusobacterium has been shown to induce

expression of CXCL8 in colon and CXCL8 and MMP1 in oral

cancer cell lines.65,66 Notably, many of these upregulated genes

have been previously associated with metastasis and/or

poor prognosis in CRC,41–45 so while Fa was not associated

with response in CMS4 patients in this adjuvant cohort

(Figures S5C–S5E), these pathways represent possible mecha-

nisms by which Fa could negatively impact response in patients

with more advanced, including metastatic, disease.20 Therefore,

from a clinical perspective, earlier detection and resection of Fa+

tumors could be particularly prudent for patients, as those tu-

mors are more likely to progress rapidly.

In conclusion, with whole-transcriptome sequencing, we

discovered that oral-derived bacteria, in addition to Fusobacte-

rium, are prevalent in inflamed, CMS1 CRC tumors. Within the tu-

mors, theassociationofbacteriaand tumorgeneexpression,how-

ever, is highly context and species specific. Beyond the findings in

this paper, the rich metadata and 800-plus deeply sequenced

samples provided here will be a valuable resource for future hy-

pothesis generation and testing around diverse bacteria in CRC.

Limitations of the study
Our study has a number of limitations. First, the tumor samples

were collected and sequenced without considering the
ome (gray), in the part expressed in at least 10% of the Fa+ samples (light blue),

< 0.05, **FDR < 0.01, ***FDR < 0.001, between the entire pangenome (cutoff 0)

es, the far left columns indicate whether the gene was annotated as part of the

n indicates KEGG pathway annotation. On the right, gray dots indicate the
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microbiome. In the absence of recommended positive and nega-

tive controls,67 we implemented strict computational filters in an

attempt to differentiate true signal from artifact. There is a risk

that those filters may have been too strict and removed true sig-

nals or were too lenient and allowed contaminants to persist.

Second, all findings presented here are purely associations.

Future experiments to determine whether Fa and other bacterial

species are eliciting the observed alterations in tumor gene

expression are required.
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Amiot, A., Böhm, J., Brunetti, F., Habermann, N., et al. (2014). Potential of

fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst.

Biol. 10, 766. https://doi.org/10.15252/msb.20145645.

72. Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., Zhang, D.,

Xia, H., Xu, X., Jie, Z., et al. (2015). Gut microbiome development along

https://doi.org/10.1007/s12307-015-0177-7
https://doi.org/10.7150/ijbs.4614
https://doi.org/10.3390/cancers6010366
https://doi.org/10.3390/cancers6010366
https://doi.org/10.1634/theoncologist.5-2-108
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1038/s41564-021-00927-7
https://doi.org/10.1038/s41564-021-00927-7
https://doi.org/10.1016/j.bbrc.2021.11.075
https://doi.org/10.1016/j.bbrc.2021.11.075
https://doi.org/10.1099/mgen.0.000300
https://doi.org/10.1099/mgen.0.000300
https://doi.org/10.1093/nar/gkz935
https://doi.org/10.1093/nar/gki008
https://doi.org/10.1016/j.ijmm.2013.11.009
https://doi.org/10.1016/j.ijmm.2013.11.009
https://doi.org/10.1128/jb.00074-06
https://doi.org/10.1016/j.freeradbiomed.2019.03.003
https://doi.org/10.1128/jb.00824-06
https://doi.org/10.3389/fmicb.2019.02351
https://doi.org/10.3389/fmicb.2019.02351
https://doi.org/10.1111/j.0902-0055.2004.00132.x
https://doi.org/10.1111/j.0902-0055.2004.00132.x
https://doi.org/10.1371/journal.pone.0111329
https://doi.org/10.1128/jb.187.15.5330-5340.2005
https://doi.org/10.1128/jb.187.15.5330-5340.2005
https://doi.org/10.1074/jbc.m611567200
https://doi.org/10.1074/jbc.m611567200
https://doi.org/10.1016/j.chom.2020.07.009
https://doi.org/10.1136/gutjnl-2018-316661
https://doi.org/10.3389/fcimb.2020.00400
https://doi.org/10.1373/clinchem.2018.289728
https://doi.org/10.1126/scisignal.aba9157
https://doi.org/10.1080/20002297.2020.1849493
https://doi.org/10.1080/20002297.2020.1849493
https://doi.org/10.1016/j.tim.2018.11.003
https://doi.org/10.1136/gutjnl-2015-309800
https://doi.org/10.1136/gutjnl-2015-309800
https://doi.org/10.1371/journal.pone.0155362
https://doi.org/10.1371/journal.pone.0155362
https://doi.org/10.1080/20002297.2020.1723975
https://doi.org/10.15252/msb.20145645


Report
ll

OPEN ACCESS
the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528.

https://doi.org/10.1038/ncomms7528.

73. Zhang, X., Zhang, D., Jia, H., Feng, Q., Wang, D., Liang, D., Wu, X., Li, J.,

Tang, L., Li, Y., et al. (2015). The oral and gut microbiomes are perturbed

in rheumatoid arthritis and partly normalized after treatment. Nat. Med.

21, 895–905. https://doi.org/10.1038/nm.3914.

74. Brito, I.L., Yilmaz, S., Huang, K., Xu, L., Jupiter, S.D., Jenkins, A.P., Nai-

silisili, W., Tamminen, M., Smillie, C.S., Wortman, J.R., et al. (2016). Mo-

bile genes in the humanmicrobiome are structured from global to individ-

ual scales. Nature 535, 435–439. https://doi.org/10.1038/nature18927.

75. Heintz-Buschart, A., May, P., Laczny, C.C., Lebrun, L.A., Bellora, C.,

Krishna, A., Wampach, L., Schneider, J.G., Hogan, A., de Beaufort, C.,

and Wilmes, P. (2016). Integrated multi-omics of the human gut micro-

biome in a case study of familial type 1 diabetes. Nat. Microbiol. 2,

16180. https://doi.org/10.1038/nmicrobiol.2016.180.

76. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.

(2016). KEGG as a reference resource for gene and protein annotation.

Nucleic Acids Res. 44, D457–D462. https://doi.org/10.1093/nar/

gkv1070.

77. Kaminski, J., Gibson, M.K., Franzosa, E.A., Segata, N., Dantas, G., and

Huttenhower, C. (2015). High-specificity targeted functional profiling in

microbial communities with ShortBRED. PLoS Comput. Biol. 11,

e1004557. https://doi.org/10.1371/journal.pcbi.1004557.

78. Pau, G., Barr, C., Reeder, J., Lawrence,M., Degenhardt, J., Wu, T., Hunt-

ley,M., andBrauer, M. (2021). HTSeqGenie: A Software Package to Anal-

yse High-Throughput Sequencing Experiments.

79. Wu, T.D., and Nacu, S. (2010). Fast and SNP-tolerant detection of com-

plex variants and splicing in short reads. Bioinformatics 26, 873–881.

https://doi.org/10.1093/bioinformatics/btq057.

80. Wu, T.D., Reeder, J., Lawrence, M., Becker, G., and Brauer, M.J. (2016).

Statistical genomics, methods and protocols. Methods Mol. Biol. 1418,

283–334. https://doi.org/10.1007/978-1-4939-3578-9_15.

81. Chen, Y., Lun, A.T.L., and Smyth, G.K. (2016). From reads to genes to

pathways: differential expression analysis of RNA-Seq experiments us-

ing Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 5,

1438. https://doi.org/10.12688/f1000research.8987.2.

82. Liu, R., Holik, A.Z., Su, S., Jansz, N., Chen, K., Leong, H.S., Blewitt, M.E.,

Asselin-Labat, M.-L., Smyth, G.K., and Ritchie, M.E. (2015). Why weight?

Modelling sample and observational level variability improves power in

RNA-seq analyses. Nucleic Acids Res. 43, e97. https://doi.org/10.

1093/nar/gkv412.

83. Smyth, G.K. (2005). Limma: Linear Models for Microarray Data,

pp. 397–420. https://doi.org/10.1007/0-387-29362-0_23.

84. Sturm, G., Finotello, F., Petitprez, F., Zhang, J.D., Baumbach, J., Frid-

man, W.H., List, M., and Aneichyk, T. (2019). Comprehensive evaluation

of transcriptome-based cell-type quantification methods for immuno-

oncology. Bioinformatics 35, i436–i445. https://doi.org/10.1093/bioinfor-

matics/btz363.

85. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

https://doi.org/10.1093/bioinformatics/btu170.

86. Schmieder, R., and Edwards, R. (2011). Quality control and preprocess-

ing of metagenomic datasets. Bioinformatics 27, 863–864. https://doi.

org/10.1093/bioinformatics/btr026.

87. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment

with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/

nmeth.1923.

88. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities

for comparing genomic features. Bioinformatics 26, 841–842. https://

doi.org/10.1093/bioinformatics/btq033.

89. Martin, M. (2011). Cutadapt removes adapter sequences from high-

throughput sequencing reads. EMBnet. j. 17, 10–12. https://doi.org/10.

14806/ej.17.1.200.
90. Beghini, F., McIver, L.J., Blanco-Mı́guez, A., Dubois, L., Asnicar, F., Ma-

harjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A.M., et al.

(2021). Integrating taxonomic, functional, and strain-level profiling of

diverse microbial communities with bioBakery 3. Elife 10, e65088.

https://doi.org/10.7554/elife.65088.

91. Milanese, A., Mende, D.R., Paoli, L., Salazar, G., Ruscheweyh, H.-J.,

Cuenca, M., Hingamp, P., Alves, R., Costea, P.I., Coelho, L.P., et al.

(2019). Microbial abundance, activity and population genomic profiling

with mOTUs2. Nat. Commun. 10, 1014. https://doi.org/10.1038/

s41467-019-08844-4.

92. Edgar, R.C. (2010). Search and clustering orders of magnitude faster

than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bio-

informatics/btq461.

93. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J.,

Bealer, K., and Madden, T.L. (2009). BLAST+: architecture and applica-

tions. BMC Bioinf. 10, 421. https://doi.org/10.1186/1471-2105-10-421.

94. Buchfink, B., Reuter, K., and Drost, H.-G. (2021). Sensitive protein align-

ments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368.

https://doi.org/10.1038/s41592-021-01101-x.

95. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,

Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Pro-

cessing Subgroup (2009). The sequence alignment/map format and

SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioin-

formatics/btp352.

96. Team, R.C. (2020). R: A Language and Environment for Statistical

Computing.

97. Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A.,

Wickham, H., Cheng, J., Chang,W., and Iannone, R. (2021). Rmarkdown:

Dynamic Documents for R.

98. Xie, Y. (2021). Knitr: A General-Purpose Package for Dynamic Report

Generation in R.

99. Wickham, H., François, R., Henry, L., and M€uller, K. (2021). Dplyr: A

Grammar of Data Manipulation.

100. Wickham, H. (2020). reshape2: Flexibly Reshape Data: A Reboot of the

Reshape Package.

101. Lemon, J., Bolker, B., Oom, S., Klein, E., Rowlingson, B., Wickham, H.,

Tyagi, A., Eterradossi, O., Grothendieck, G., Toews, M., et al. (2021). Plo-

trix: Various Plotting Functions.

102. Warnes, G.R., Bolker, B., and Lumley, T. (2021). Gtools: Various R Pro-

gramming Tools.

103. Wickham, H., Chang, W., Henry, L., Pedersen, T.L., Takahashi, K., Wilke,

C., Woo, K., Yutani, H., and Dunnington, D. (2021). ggplot2: Create

Elegant Data Visualisations Using the Grammar of Graphics.

104. Carroll, J., Schep, A., and Sidi, J. (2021). Ggeasy: Easy Access to

Ggplot2 Commands.

105. Wickham, H., and Seidel, D. (2020). Scales: Scale Functions for Visuali-

zation.

106. Wilke, C.O. (2020). Cowplot: Streamlined Plot Theme and Plot Annota-

tions for Ggplot2.

107. Slowikowski, K. (2021). Ggrepel: Automatically Position Non-overlapping

Text Labels with Ggplot2.

108. Neuwirth, E. (2014). RColorBrewer: ColorBrewer Palettes.

109. Garnier, S. (2021). Viridis: Colorblind-Friendly Color Maps for R.

110. Schauberger, P., and Walker, A. (2021). Openxlsx: Read, Write and Edit

Xlsx Files.

111. Therneau, T., and Lumley, T. (2013). R Survival Package (R Core Team).

112. Kassambara, A., Kosinski, M., Biecek, P., and Fabian, S. (2017). Package

‘survminer.’ Drawing Survival Curves Using ‘ggplot2’(R Package

Version 03 1).

113. Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Carvalho,

B.S., Bravo, H.C., Davis, S., Gatto, L., Girke, T., et al. (2015).
Cell Reports Medicine 4, 100920, February 21, 2023 13

https://doi.org/10.1038/ncomms7528
https://doi.org/10.1038/nm.3914
https://doi.org/10.1038/nature18927
https://doi.org/10.1038/nmicrobiol.2016.180
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1371/journal.pcbi.1004557
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref68
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref68
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref68
https://doi.org/10.1093/bioinformatics/btq057
https://doi.org/10.1007/978-1-4939-3578-9_15
https://doi.org/10.12688/f1000research.8987.2
https://doi.org/10.1093/nar/gkv412
https://doi.org/10.1093/nar/gkv412
https://doi.org/10.1007/0-387-29362-0_23
https://doi.org/10.1093/bioinformatics/btz363
https://doi.org/10.1093/bioinformatics/btz363
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.7554/elife.65088
https://doi.org/10.1038/s41467-019-08844-4
https://doi.org/10.1038/s41467-019-08844-4
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref104
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref104
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref105
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref105
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref105
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref106
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref106
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref107
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref107
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref107
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref108
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref108
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref109
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref109
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref109
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref110
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref110
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref111
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref111
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref111
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref112
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref112
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref113
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref113
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref114
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref114
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref115
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref115
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref116
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref117
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref118
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref118
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref119
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref120
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref120
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref120


Report
ll

OPEN ACCESS
Orchestrating high-throughput genomic analysis with Bioconductor. Nat.

Methods 12, 115–121. https://doi.org/10.1038/nmeth.3252.

114. Byrd, A.L., Liu, M., Fujimura, K.E., Lyalina, S., Nagarkar, D.R., Charbit, B.,

Bergstedt, J., Patin, E., Harrison, O.J., Quintana-Murci, L., et al. (2021).

Gut microbiome stability and dynamics in healthy donors and patients

with non-gastrointestinal cancers. J. Exp. Med. 218, e20200606.

https://doi.org/10.1084/jem.20200606.

115. Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt,

M.F., Turner, P., Parkhill, J., Loman, N.J., and Walker, A.W. (2014). Re-

agent and laboratory contamination can critically impact sequence-

based microbiome analyses. BMC Biol. 12, 87. https://doi.org/10.1186/

s12915-014-0087-z.

116. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Ker-

nytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo,

M.A. (2010). The Genome Analysis Toolkit: a MapReduce framework for

analyzing next-generation DNA sequencing data. Genome Res. 20,

1297–1303. https://doi.org/10.1101/gr.107524.110.
14 Cell Reports Medicine 4, 100920, February 21, 2023
117. Daemen, A., Udyavar, A.R., Sandmann, T., Li, C., Bosch, L.J.W., O’Gor-

man, W., Li, Y., Au-Yeung, A., Takahashi, C., Kabbarah, O., et al.

(2021). Transcriptomic profiling of adjuvant colorectal cancer identifies

three key prognostic biological processes and a disease specific role

for granzyme B. PLoS One 16, e0262198. https://doi.org/10.1371/jour-

nal.pone.0262198.

118. Benjamini, Y., and Hochberg, Y. (1994). Controlling the false discovery

rate: a practical and powerful approach to multiple testing. J. Roy.

Stat. Soc. B.

119. Fisher, S.R.A. (1962). Confidence limits for a cross-product ratio. Aust. J.

Stat. 4, 41. https://doi.org/10.1111/j.1467-842X.1962.tb00285.x.

120. Conlan, S., Mijares, L.A., NISC Comparative Sequencing Program;

Becker, J., Blakesley, R.W., Bouffard, G.G., Brooks, S., Coleman, H.,

Gupta, J., Gurson, N., et al. (2012). Staphylococcus epidermidis pan-

genome sequence analysis reveals diversity of skin commensal and hos-

pital infection-associated isolates. GenomeBiol. 13, R64. https://doi.org/

10.1186/gb-2012-13-7-r64.

https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1084/jem.20200606
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1371/journal.pone.0262198
https://doi.org/10.1371/journal.pone.0262198
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref95
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref95
http://refhub.elsevier.com/S2666-3791(23)00005-8/sref95
https://doi.org/10.1111/j.1467-842X.1962.tb00285.x
https://doi.org/10.1186/gb-2012-13-7-r64
https://doi.org/10.1186/gb-2012-13-7-r64


Report
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw tumor and microbial RNA-

sequencing data and clinical

metadata variables

This paper EGA: EGAS00001006757

Stool metagenomic data from

controls and patients with CRC

Yu et al.68 SRA: PRJEB10878

Stool metagenomic data from

controls and patients with CRC

Vogtmann et al.69 SRA: PRJEB12449

Stool metagenomic data from

controls and patients with CRC

Wirbel et al.6 SRA: PRJEB27928

Saliva metagenomic data from

controls and patients with CRC

Belstrøm et al.70 SRA: PRJEB28422

Stool metagenomic data from

controls and patients with CRC

Zeller et al.71 SRA: PRJEB6070

Stool metagenomic data from

controls and patients with CRC

Feng et al.72 SRA: PRJEB7774

Stool and saliva metagenomic

data from controls

Zhang et al.73 SRA: PRJEB6997

Stool and saliva metagenomic

data from controls

Brito et al.74 SRA: PRJNA217052

Stool and saliva metagenomic

data from controls

Heintz-Buschart et al.75 SRA: PRJNA289586

COAD and READ RNA-seq,

Release 7.0

TCGA Portal.gdc.cancer.gov; RRID:SCR_003193

Genome Taxonomy Database:

GTDB v95

Parks et al.23 https://data.ace.uq.edu.au/public/

gtdb/data/releases/release95/95.0/;

RRID:SCR_019136

Human reference genome

NCBI build 38, GRCh38

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

KEGG 2013.10.14 Kanehisa et al.76 https://www.genome.jp/kegg/pathway.html;

RRID:SCR_012773

CARD and VFDB (mid-2017)

from ShortBRED

Kaminski et al.77 https://github.com/biobakery/shortbred

Software and algorithms

Kraken2; v2.1.1 Wood et al.24 https://github.com/DerrickWood/kraken2

Bracken v2.5 Lu et al.25 https://github.com/jenniferlu717/Bracken

HTSeqGenie; V4.2.2 Pau et al.78 https://bioconductor.org/packages/

release/bioc/html/HTSeqGenie.html

gSNAP; V2013-10-10-v2 Wu et al.79,80 https://bioinformaticshome.com/tools/

rna-seq/descriptions/GSNAP.html#gsc.tab=0;

RRID:SCR_005483

Gencode genes database (GENCODE 27) GENCODE http://www.gencodegenes.org/human/

release_27.html; RRID:SCR_014966

edgeR, v3.38.2 Chen at al.81 https://bioconductor.org/packages/

release/bioc/html/edgeR.html; RRID:SCR_012802

Limma v3.52.2 Liu et al.82

Smyth et al.83
https://bioconductor.org/packages/

release/bioc/html/limma.html; RRID:SCR_010943

REACTOME Gillespie et al.40 https://reactome.org/; RRID:SCR_003485

(Continued on next page)

Cell Reports Medicine 4, 100920, February 21, 2023 e1

https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/95.0/
https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/95.0/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://www.genome.jp/kegg/pathway.html
https://github.com/biobakery/shortbred
https://github.com/DerrickWood/kraken2
https://github.com/jenniferlu717/Bracken
https://bioconductor.org/packages/release/bioc/html/HTSeqGenie.html
https://bioconductor.org/packages/release/bioc/html/HTSeqGenie.html
https://bioinformaticshome.com/tools/rna-seq/descriptions/GSNAP.html#gsc.tab=0
https://bioinformaticshome.com/tools/rna-seq/descriptions/GSNAP.html#gsc.tab=0
http://www.gencodegenes.org/human/release_27.html
http://www.gencodegenes.org/human/release_27.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://reactome.org/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Immunedeconv, v2.0.4 Sturm et al.,84

Finotello et al.46
https://github.com/omnideconv/immunedeconv

Trimmomatic v0.39 Bolger et al.85 https://github.com/usadellab/Trimmomatic;

RRID:SCR_011848

prinseq-lite v0.20.4 Schmieder et al.86 https://github.com/uwb-linux/prinseq;

RRID: SCR_005454

Bowtie2 v2.4.1 Langmead et al.87 https://github.com/BenLangmead/bowtie2;

RRID:SCR_016368

bedtools v2.30.0 Quinlan et al.88 https://github.com/arq5x/bedtools2;

RRID: SCR_006646

Cutadapt v3.7 Martin et al.89 https://cutadapt.readthedocs.io/en/stable/;

RRID:SCR_011841

Metaphlan3, v3.0.7 Beghini et al.90 https://huttenhower.sph.harvard.edu/metaphlan/;

RRID:SCR_004915

mOTUs, v3.0.2 Milanese et al.91 https://github.com/motu-tool/mOTUs

PathSeq via GATK v4.1.4.0 Kostic et al.32 https://software.broadinstitute.org/pathseq/;

RRID:SCR_005203

CMScaller v0.99.2 Eide et al.39 https://github.com/peterawe/CMScaller

USEARCH v11.0.667_i86linux32 Edgar et al.92 https://www.drive5.com/usearch/

BLASTp v2.6.0 Camacho et al.93 https://blast.ncbi.nlm.nih.gov/Blast.cgi?

PAGE_TYPE=BlastDocs&DOC_TYPE=Download;

RRID:SCR_001010

DIAMOND v2.0.11 Buchfink et al.94 https://github.com/bbuchfink/diamond;

RRID:SCR_016071

Samtools v1.11 Li et al.95 https://github.com/samtools/samtools;

RRID:SCR_002105

R v4.1.1 96 http://www.r-project.org/; RRID: SCR_001905

rmarkdown v2.11 Allaire et al.97 https://cran.r-project.org/web/

packages/rmarkdown/index.html

knitr v1.37 Xie et al.98 https://cran.r-project.org/web/

packages/knitr/index.html; RRID:SCR_018533

dplyr v1.0.7 Wickham et al.99 https://cran.r-project.org/web/

packages/dplyr/index.html; RRID:SCR_016708

reshape2 v1.4.4 Wickham et al.100 https://cran.r-project.org/web/

packages/reshape2/index.html; RRID:SCR_018983

plotrix v3.8-2 Lemon et al.101 https://cran.r-project.org/web/

packages/plotrix/index.html

gtools v3.9.2 Warnes et al.102 https://cran.r-project.org/web/

packages/gtools/index.html

ggplot2 v3.3.5 Wickham et al.103 https://cran.r-project.org/web/

packages/ggplot2/index.html; RRID:SCR_014601

ggeasy v0.1.3 Carroll et al.104 https://cran.r-project.org/web/

packages/ggeasy/index.html

scales v1.1.1 Wickham et al.105 https://cran.r-project.org/web/

packages/scales/index.html

cowplot v1.1.1 Wilke et al.106 https://cran.r-project.org/web/

packages/cowplot/index.html; RRID:SCR_018081

ggrepel v0.9.1 Slowikowski et al.107 https://cran.r-project.org/web/

packages/ggrepel/index.html; RRID:SCR_017393

RColorBrewer v1.1-2 Neuwirth et al.108 https://cran.r-project.org/web/

packages/RColorBrewer/index.html;

RRID:SCR_016697

(Continued on next page)

e2 Cell Reports Medicine 4, 100920, February 21, 2023

Report
ll

OPEN ACCESS

https://github.com/omnideconv/immunedeconv
https://github.com/usadellab/Trimmomatic
https://github.com/uwb-linux/prinseq
https://github.com/BenLangmead/bowtie2
https://github.com/arq5x/bedtools2
https://cutadapt.readthedocs.io/en/stable/
https://huttenhower.sph.harvard.edu/metaphlan/
https://github.com/motu-tool/mOTUs
https://software.broadinstitute.org/pathseq/
https://github.com/peterawe/CMScaller
https://www.drive5.com/usearch/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&amp;DOC_TYPE=Download
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&amp;DOC_TYPE=Download
https://github.com/bbuchfink/diamond
https://github.com/samtools/samtools
http://www.r-project.org/
https://cran.r-project.org/web/packages/rmarkdown/index.html
https://cran.r-project.org/web/packages/rmarkdown/index.html
https://cran.r-project.org/web/packages/knitr/index.html
https://cran.r-project.org/web/packages/knitr/index.html
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/reshape2/index.html
https://cran.r-project.org/web/packages/reshape2/index.html
https://cran.r-project.org/web/packages/plotrix/index.html
https://cran.r-project.org/web/packages/plotrix/index.html
https://cran.r-project.org/web/packages/gtools/index.html
https://cran.r-project.org/web/packages/gtools/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggeasy/index.html
https://cran.r-project.org/web/packages/ggeasy/index.html
https://cran.r-project.org/web/packages/scales/index.html
https://cran.r-project.org/web/packages/scales/index.html
https://cran.r-project.org/web/packages/cowplot/index.html
https://cran.r-project.org/web/packages/cowplot/index.html
https://cran.r-project.org/web/packages/ggrepel/index.html
https://cran.r-project.org/web/packages/ggrepel/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

viridis v0.6.2 Garnier et al.109 https://cran.r-project.org/web/

packages/viridis/index.html; RRID:SCR_016696

Openxlsx v4.2.5 Schauberger et al.110 https://cran.r-project.org/web/packages/

openxlsx/index.html; RRID:SCR_019185

Survival v3.2-13 Therneau et al.111 https://cran.r-project.org/web/packages/

survival/index.html; RRID:SCR_021137

Survminer v0.4.9 Kassambara et al.112 https://cran.r-project.org/web/packages/

survminer/index.html; RRID:SCR_021094

Report
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Allyson Byrd (byrd.

allyson@gene.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw RNA-sequencing data, including host and microbial reads, have been deposited at European Genome-Phenome Archive

along with the clinical metadata. To request access, contact the Genentech Data Access committee at devsci-dac-d@gene.

com. Accession numbers are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical trial information
835 samples were obtained from 821 patients enrolled in the AVANT clinical trial.22 All patients provided informed consent for the

AVANT study. The AVANT protocol was approved by the Ethics Review Committee or Institutional Review Board at participating

sites. There were 14 patients that had 2 samples each, all of which were excluded for downstream analyses leaving 807 in the

biomarker-evaluable population. The trial examined differences in disease-free survival of patients with stage III or high-risk stage

II colon carcinomas in response to bevacizumab when combined with oxaliplatin-based chemotherapy in an adjuvant setting. Anal-

ysis of patient demographics, including age and sex, from the biomarker evaluable population in relation to the intent to treat pop-

ulation are included in Table S1B. Following surgical resection of tumor tissue, samples were formalin-fixed paraffin-embedded

(FFPE) prior to RNA isolation.

METHOD DETAILS

RNA extraction, library prep, and sequencing
Quality control (QC) of RNA samples, library construction and sequencing data generation was performed by an external service pro-

vider, Q2 Solutions. QC of RNA samples was done prior to their processing by RNA-seq. The concentration of RNA was determined

with Qubit (Thermo Fisher Scientific) and RNA integrity was measured using DV200 on a 2100 Bioanalyzer (Agilent Technologies).

Sequencing libraries were generated with the TruSeq Stranded Total RNA kit (Illumina) following rRNA depletion with the Ribo-

Zero Gold kit (Illumina). Briefly, starting with total RNA, rRNA was removed using biotinylated probes that selectively bind rRNA spe-

cies. This process preservesmRNA and other non-coding RNA species including lincRNA, snRNA and snoRNAs. The resulting rRNA-

depleted RNA was fragmented using heat in the presence of divalent cations, with fragmentation times varying based on input RNA

degradation. Fragmented RNA was converted into double-stranded cDNA with dUTP used in place of dTTP in the second strand

master mix. This facilitates the preservation of strand information as PCR amplification will stall when it encounters uracil, rendering

the first strand as the only viable amplification template. The double stranded cDNA was used for library generation according to the

manufacturer’s protocol (Illumina). The final libraries were PCR amplified, quantified, normalized and pooled in preparation for

sequencing. The libraries were sequenced on the HiSeq4000 (Illumina) with a sequencing protocol of 75 bp paired-end sequencing

and target total read depth of 60M reads per sample.
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Tumor gene expression analysis
Following sequencing, 73.3 billion reads were obtained with 90.8 ± 13.2 (mean ± SD) million reads per sample. All post-sequencing

QC steps were performed with the HTSeqGenie package (V4.2.2)78 in BioConductor.113 Reads were quality filtered with a minimum

phred quality set to 23 over 70% of the read. Any reads shorter than 18 bp were discarded. Illumina adapters were removed and any

reads detected as rRNA against the GRCh38_rRNA database were discarded. Reads remaining after quality control steps were then

aligned to the GRCh38.p10 genome with the gSNAP aligner79,80 (version: V2013-10-10-v2), allowing a maximum of two mismatches

per 75 base sequence (parameters: ‘-M 2 -n 10 -B 2 -i 1 -N 1 -w 200000 -E 1 –pairmax-rna = 200,000 –clip-overlap’). Transcript anno-

tation was based on the Gencode genes database (GENCODE 27). To quantify gene expression levels, the number of readsmapping

unambiguously to the exons of each gene was calculated.

The initial quality control and alignment steps resulted in a total of 56.3 billion reads mapping across all samples, averaging 69.8 ±

18 million reads per sample. From these alignments, reads that mapped successfully to the human genome were converted into a

count matrix with ENSEMBL gene IDs and further analyzed in the host expression pipeline, while reads that did not properly align (i.e.

nomapping bam files) were processed in the microbial pipeline.

Genes within the gene count matrix were retained with edgeR (v3.38.2)’s81 default filtering strategy, which only retains genes with

coverage above a counts per million (CPM) equivalent to a count of 10 (adjusted for differences in library size) in at least n samples,

where n is determined from the smallest group in the experimental design (parameters: ‘large.n = 0’). The retained genes were then

transformed into log CPM with trimmed mean of M-values normalization (TMM). Genes with a mean of less than 1 log CPM were

further removed from the matrix. Differential expression was performed with the voomWithQualityWeights function implemented

in Limma (v3.52.2)82,83 with quality weighting and robust empirical Bayes shrinkage to control outlier samples and genes (parameters:

lmFit() = default, eBayes() = ‘robust = TRUE’). Models were generated with clinical and microbiome data, explained below. To

examine significant groups of genes, gene set enrichment analysis (GSEA) was run with the hypergeometric test and the

REACTOME database.40 Significant gene sets had FDR corrected p values less than 0.05.

The immune cell landscape within tumors was estimated with immune deconvolution implemented in the immunedeconv package

(v2.0.4) with themethod set to quantiseq46,84 (parameters: method = ‘quantiseq’, indications =NULL, tumor = TRUE, arrays = FALSE,

column = ‘gene_symbol’, rmgenes = NULL, scale_mRNA = TRUE, expected_cell_types - NULL).

Microbial quantification
To further process the non-human reads for microbiome analysis, any remaining Illumina TruSeq adapters were trimmed with Trim-

momatic85 (v0.39, parameters: ‘PE ILLUMINACLIP:TruSeq.fa:3:30:10 MINLEN:50’), low-quality and low-complexity reads were

removed with prinseq-lite86 (v0.20.4, parameters: ‘-min_len 50 -min_qual_mean 28 -derep 4 -derep_min 50 -lc_method dust

-lc_threshold 40’), and Bowtie287 (v2.4.1, parameters: ‘–very-sensitive –un-conc’) was used to remove reads mapping to PhiX or

the PacBio human genome. Reads were then mapped to a custom database for microbial quantification.

We built the custom Kraken-GTDB microbial database as previously described.114 First the following files were downloaded:

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt, ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacte

ria/assembly_summary.txt, ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/assembly_summary.txt, ftp://ftp.ncbi.nlm.nih.gov/

genomes/genbank/archaea/assembly_summary.txt, https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/95.0/bac120

_taxonomy_r95.tsv, https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/95.0/ar122_taxonomy_r95.tsv 23 on January

22, 2021. These files were merged based on accession number, and only those genomes present in both databases were consid-

ered, i.e. RefSeq and GenBank genomes with a GTDB taxonomy. To avoid biasing the database toward those species with large

numbers of genomes, while balancing the added information provided by additional isolates per species, we selected up to five

genomes per GTDB species to include in our database. Genomes were first ordered by their assembly quality, i.e., reference

genome, representative genome, complete genome, chromosome, contig, and scaffold, and then randomly selected. Based on

these criteria, 52,052 genomes representing 29,634 unique bacterial species and 2,633 genomes representing 1,646 archaea

were downloaded and formatted into a Kraken2 database.24 To incorporate the GTDB taxonomy into the Kraken2 database, files

mimicking the NCBI-like taxonomy files from ftp://ftp.ncbi.nih.gov/pub/taxonomy/new_taxdump/new_taxdump.zip were created

for names.dmp, complete_names.dmp, nodes.dmp, and accession2taxid. A matching Bracken database was then generated

with bracken-build (parameters: ‘-k 35 -L 76’).25

Using our custom GTDB-Kraken database, Kraken224 (v2.0.8, parameters: ‘–threads 9 –use-names –confidence 0.2’) and

Bracken25 (v2.5, parameters: ‘-r 76 -L S -t 250’) were run on the 807 quality-controlled samples to generate a species bacterial count

matrix. With the Bracken cutoff of 250 reads, 8 samples had 0 species which passed. In total, 2,043 species were identified across

799 samples. The median per-sample fraction of total (including human) reads mapped to microbial species was 0.66% (IQR,

0.354-1.43%) (Figures S1D and S1E).

Filtering taxonomic profiles
To account for false positives in the original list of 2,043 taxa, we first prioritized bacterial species present in greater than 5% of

samples (n = 41/807) which resulted in 118 highly prevalent species. Next, to reduce false positives due to mismapping reads, we
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detected horizontal coverage of a genome in a given sample. To do this, taxonomy IDs were parsed from the Bracken output and

linked to microbial genomes from the GTDB database. The scaffolds from these microbial genomes were concatenated and a Bow-

tie287 database was generated. Finally, non-human reads were aligned to the bowtie2 database (parameters: ‘-p 8 –very-sensitive -k

10’) and the coverage of each genome was estimated with the genomecov program of bedtools88 (v2.30.0). When less than 0.5% of

the genome was covered by reads for a given sample, a zero was inputted into the matrix for that taxon by sample combination.

Ultimately, this step removed 15 species which did not have coverage greater than 0.5% in any sample.

Finally, acknowledging that these samples were not collected or processed with microbiome sterility in mind and that contamina-

tion issues are prevalent in low biomass samples,67 we next proceeded to remove putative contaminant organisms. Due to a lack of

recommended positive and negative controls, we could not utilize many of the standard contamination removal procedures previ-

ously recommended.67 Therefore, we used a correlation-based approach to differentiate true microbial signal from artifacts. To

accomplish this, we clustered the remaining 103 species based on spearman correlations of abundance revealing two distinct group-

ings (Table S1W). One of the clusters included several species previously identified as members of the reagentome, e.g. Ralstonia

and Burkholderia species.67,115 Therefore, out of an abundance of caution, we removed the 28 species with a positive correlation

(Spearman’s Rho >0) to Ralstonia sp001078575 from further analysis (Table S1D). Lastly, in the resultant filtered matrix, one taxon,

Aliterella sp000332075 (Cyanobacteria), was identified that did not occur in two large meta-analyses of gut and oral bacteria,6,19 nor

in an analysis of stool microbiota from a 1000-person healthy cohort.114 Therefore, this one taxon was removed, resulting in 74, high-

confidence bacterial species that were considered in downstream analyzes (Figure S1C).

Analysis of gut and oral metagenomic samples
To complement results from AVANT, the same microbial quantification pipeline described above was run on 852 stool and 208 oral

microbiome samples from patients with CRC and controls in two meta-analyses (Figure 1B, Tables S1E–S1G).6,19 Metadata for the

CRC and control samples were pulled from the supplemental tables.6,19

Paired-end samples were downloaded from PRJEB10878,68 PRJEB12449,69 PRJEB27928,6 PRJEB28422,70 PRJEB6070,71

PRJEB7774,72 PRJEB6997,73 PRJNA217052,74 and PRJNA289586.75Whenmultiple samples were available per donor, the baseline

sample was utilized and the others were excluded. A complete list and summary table of the samples utilized is in Table S1F. When a

SampleIDwas associatedwithmore than 1 SRA accession those samples weremerged (Table S1G). Cleaned,merged sampleswere

then run through the same Kraken|Bracken pipeline as above and prevalences of the 74 taxa were reported. Notably, samples from

PRJEB6070 and PRJEB28422 required additionally cleaning with Cutadapt v3.7 (default parameters) to remove lingering Illumina

universal adapter sequences.89

Microbial analysis of TCGA samples
We obtained bulk RNA-seq data, prepared with poly-(A) enrichment, from the TCGA COAD and READ indications (Release 7.0) from

portal.gdc.cancer.gov in order to compare our results from the AVANT clinical trial with the microbiome profiles and host expression

patterns in a widely-analyzed dataset. A total of 587 files consisting of non-human reads were obtained from the two indications and

processed with the same microbial quantification pipeline described above (Table S1I). A subset of samples from both indications

was sequenced with single-end Illumina technology; therefore our QC and Kraken|Bracken pipelines were updated to accommodate

both the single-end, 70 base-pair and the paired-end, 2 x 50 base-pair reads.

PathSeq, Metaphlan, and mOTUs analysis
The PathSeq functions within the Genome Analysis Toolkit (GATK v4.1.4.0)32,116 were leveraged for comparison with previous intra-

tumoral analyses of TCGA data20 and the kmer-based read mapping with Kraken2 described herein. Reference files were obtained

from the Broad’s gcp public data site for hg38 v0 (https://storage.googleapis.com/gcp-public-data–broad-references/hg38/v0/).

The PathSeqPipelineSpark function was run on bam files constructed from reads that did not map to GRCh38 from TCGA and

AVANT (parameters: ‘–min-clipped-read-length 40 –min-score-identity 0.90 –identity-margin 0.02’). Normalized scores and reads

were compiled from separate output files per sample. To compare the Pathseq results, based on NCBI taxonomy, to our Kraken|

Bracken ones, based on the GTDB, we mapped each of the 74 GTDB species to their closest match in the Pathseq reference da-

tabases using the GTDB to NCBI tool (https://gtdb.ecogenomic.org/taxon-history). When the GTDB split a species compared to

NCBI, we rolled up theGTDB results to be comparable to those of NCBI. Notably, this rollup process collapsed the original 74 species

down to 68. For example, for these comparative analyzes, within a sample the Bracken read counts from F. animalis, F. vincentii,

F. polymorphum, and F. nucleatum were summed prior to calculating prevalence for the rolluped F. nucleatum. With this strategy,

43 rolled up species were identified as overlapping between the programs (Table S1H). Notably, 18 of the Kraken species we

were unable to map had ‘‘sp’’ in their names.

As further benchmarking, we also processed the AVANT samples with Metaphlan390 (v3.0.7) and mOTUs91 (v3.0.2) with default

parameters. Using the same strategy as described above for Pathseq, we identified 44 of the 68 rolluped species in the Metaphlan

database and 42 in that of mOTUs (Table S1X). As expected, given both of these methods align reads only to marker genes, which

themselves were not selected due to their being expressed but rather due to their uniqueness (Metaphlan) or level of SNPs (mOTUs),

prevalences with mOTUs and Metaphlan were greatly reduced across all species compared to Kraken|Bracken (Table S1X,

Figures S6A–S6C). This is reflective of only the samples with the highest number of reads per species (as measured by the Bracken
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mapping) being identified as positive based on these approaches. Because thesemethods utilize only a small proportion of the avail-

able reads and are thus more prone to false negatives in RNA-seq samples, we prioritized the Kraken|Bracken and Pathseq results.

Analysis with AVANT clinical covariates
Twenty-one categorical variables were obtained from the clinical trial case report form and included in the microbiome and host

expression analysis (Table S1B). Tumor location was split into 3 categories based on the annotated surgical procedure performed,

with right and transverse colectomies as ‘‘right’’, left colectomies, sigmoidectomies, and lower anterior resections as ‘‘left’’, and total

colectomies as ‘‘other’’ (Figure S3B). BRAF and MSI status were obtained from calls made on overlapping samples from a project

analyzing the AVANT clinical trial with nanostring technology.117 Samples that did not overlap between Daemen et al. 2021 and the

project described herein (n = 112) were recorded as NAs and dropped from respective models. CMS calls were made on the host

expression matrix with ENSEMBL IDs using CMScaller39 (v0.99.2, Figure 2A).

As we chose to rely upon microbial prevalence due to the extensive filtering of putative contaminant reads in our dataset, we con-

ducted Chi-squared analyses to test for significant associations with clinical covariates. Contingency tables were constructed with

the prevalence of each microbial taxon within a clinical subgroup versus those not found in the remaining subgroups. Chi-squared

analysis was then tested on each taxon by clinical covariate combination and multiple p values were corrected with the false discov-

ery rate (FDR).118 Odds ratios were calculated on contingency tables constructed for the presence and absence of each of the 74

species in right- versus left-sided, MSI-H versus MSS, BRAF mutated versus wild-type tumors, and CMS1 versus CMS2,3,4 with

Fisher exact tests.119 Odds ratios were similarly calculated for the 43 Pathseq-identified species (Table S1O). To account for the

co-occurrence between Right-sided, MSI-H, and BRAF mutant tumors (Figures S3C and S3D), in R, we generated generalized linear

models (glm) for each species, with the formula species � MSI + SIDE + BRAF, and family = "binomial".

Testing a range of Bracken read cutoffs
To stress test our results, we also tested a range of Bracken cutoffs, including 50, 150, and 250 reads, prior to the coverage-based

filter. As expected, prevalences were on average higher at the lower Bracken cutoffs (Table S1Y, Figure S6D). To determine whether

these more permissive prevalences changed our downstream conclusions, we repeated the metadata associations with the preva-

lences determined at the 50 read cutoff. Reassuringly, at the 50 read cutoff, the broad trends held true (Table S1Z, Figure S6E). In

other words, oral species were still enriched in right-sided, MSI-H, BRAF-mutant, and CMS1 tumors. Because of this, we ultimately

selected the more conservative 250 cutoff in the manuscript.

F. animalis pangenome
To generate the F. animalis pangenome, we first compiled all protein sequences for the 26 genomes classified as F. animalis in the

v207 version of the GTDB from NCBI (Table S1U). Notably, to avoid incomplete genomes skewing the results, we did exclude 3

F animalis metagenomic assemblies (MAGs) from the analysis. The 57,220 amino acid protein sequences were then clustered

into 4,355 non-redundant orthologs with usearch92 (v11.0.667_i86linu x32, -id 0.50). Gene accumulation curves for these clusters

were generated as in Conlan et al.120 The curves showed that new genes discovered with additional genomes, the core genome,

and the pangenome all followed a power law curve (Figures 4A and 4B). These gene clusters were then annotated by BLASTp in

BLAST+93 (v2.6.0, parameters: -evalue 1e-10) against the KEGG database,76 as well as CARD50 and VFDB51 mid-2017 databases

from ShortBRED.77 To identify the F. animalis genes actively expressed in the AVANT samples, reads were mapped to gene cluster/

pangenome database using DIAMOND94 (v2.0.11, parameters: diamond blastx –evalue 0.001000 –id 0.600000 -k 25 –verbose

–outfmt 101 –max-hsps 10). Coverage of the individual genes was then determined with the samtools95 (v1.11) coverage function.

A gene was subsequently considered present only when 50% of its length was covered with reads.

Figures and table generation
All correlations and statistical tests were performed in R96 (v4.1.1), documented via rmarkdown documents97 (v2.11), and compiled

with knitr98 (v1.37). Within R, tables were manipulated with functions of the dplyr99 (v1.0.7), reshape2100 (v1.4.4), plotrix101 (v3.8-2),

and gtools102 (v3.9.2) packages. The majority of figures were rendered with ggplot2103 (v3.3.5), adjusted with ggeasy104 (v0.1.3) and

scales105 (v1.1.1), and arranged with cowplot106 (v1.1.1). Volcano plot gene labels were added with ggrepel107 (v0.9.1). Colors were

selected with the help of RColorBrewer108 (v1.1-2) and viridis109 (v0.6.2). Supplemental tables were generated with

Openxlsx110 (v4.2.5).

Kaplan-Meier curves were constructed with patient censoring, disease-free and overall survival metrics with treatment arm, CMS,

and F. animalis presence as the grouping variable. Curves were generated with the survfit function implemented in Survival111

(v3.2-13) and visualized with Survminer112 (v0.4.9). Throughout, 95%Confidence Intervals (CI) of themeanwere calculated in R using

the t-distribution. The graphical abstract and Figure S3B were created with BioRender.com.
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