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*e F-index of a graph Q is defined as F(Q) � 􏽐t∈V(Q)(dt)
3. In this paper, we use edge swapping transformations to find the

extremal value of the F-index among the class of trees with given order, pendent vertices, and diameter. We determine the trees
with given order, pendent vertices, and diameter having the greatest F-index value. Also, the first five maximum values of F index
among the class of trees with given diameter are determined.

1. Introduction

Mathematical chemistry is providing effective and time-
saving methods for evaluating the properties of chemical
compounds without having to go through tedious laboratory
experimentations. Topological indices are function maps
that identify key computational and topological aspects of a
structure and evaluate chemical compound properties
without using quantum mechanics as final production [1].
*e total π-electron energy (E) [2] of a molecule was found
to be related to its thermodynamic stability that depends on
the structure of a molecule that is its topology. Relationship
between (E) and topology of a molecule was determined by
its graphical structure [3]. Comparison was made between

the original vertex degree-based indices and lately defined
edge degree-dependent indices (termed as reformulated
Zagreb indices), while relating the two versions of indices,
the relation existing between the graph and its line graph was
utilized. Yang et.al. [4] brought into consideration to re-
searchers the relation between the subtree number index and
the Weiner index in the class of spiro chains and polyphenyl
hexagonal chains.

In this paper, we consider only simple finite and connected
graphs. In a graph Q, we denote its vertex set and edge set by
V(Q) and E(Q), respectively. Let dQ(p) denotes the degree of
a vertex p. *e distance between two vertices p, t ∈ V(Q) is
denoted by d(p, t) and is defined as the length of the shortest
path joining them. For more undefined terminologies related
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to graph theory, we refer [5].*e first topological index were
proposed by Weiner [6] (namely, the Weiner index), while he
was working on the boiling point of paraffin.*eWeiner index
is denoted by W(Q) and is defined as

W(Q) � 􏽘

p,t{ }⊆V(Q)

dQ(p, t).
(1)

Zagreb indices were introduced by Gutman et al. [2] that
depend on degrees of nodes and are defined as

M1(Q) � 􏽘
p∈V(Q)

dp􏼐 􏼑
2

M2(Q) � 􏽘
pt∈E(Q)

dpdt.
(2)

*ese terms were recognized to be a measure of the
extent of branching of the carbon atom skeleton of the
underlying molecule. Later, its additive version was brought
into kind attention to researchers in [7], which as expected,
revealed more hidden chemical properties of chemical
compounds. *is index is named as the general sum con-
nectivity index, given as

χα(Q) � 􏽘
pt∈E(Q)

dp + dt􏼐 􏼑
α
. (3)

Furtula et.al. [8] in 2015 introduced the F-index, also
referred as the forgotten topological index, which is defined
as

F(Q) � 􏽘
t∈V(Q)

dt( 􏼁
3
. (4)

*is index is also a measure of branching and has
same measure of predictability as that of the first Zagreb
index. In case of the acentric factor and entropy, both
M1(Q) and F(Q) have a correlation coefficient greater
than 0.95 [8].

Ali et al. [9] put forward the survey of work done on the
Randic index for certain values of α. Azari et al. [10] con-
sidered the forgotten topological index in detail and de-
termined the bounds of this index in terms of other graphical
parameters.*ey analyzed the relationship of this index with
already exiting versions of Zagreb indices. Z. Che et al. [11]
determined new bounds for the forgotten index in terms of
graph irregularity, Zagreb indices, and many other existing
graph invariants. Further they characterized the graphs
attaining these bounds and proved that these newly attained
bounds are sharper than the existing ones. Another version
of the forgotten index namely the forgotten co-index was
brought into attention by Ghalavand et al. [12]. *e authors
found bounds for this index and provided an ordering of
graphs with respect to this index. Gutman et al. [13] pro-
vided a finite ascending sequence of the forgotten index for
trees and moreover for graphs having some particular values

of the cyclomatic number c. Gutman et al. [14] proved two
weighted inequalities of real nonnegative sequences and
then used them to determine lower bounds of certain degree
dependent indices.

*e main motivation behind this work is the idea
practiced in [15], in which authors introduced some edge
swapping operations on graph structures and analyzed the
behavior of generalized sum connectivity descriptor. *e
authors found the decreasing behavior of the descriptor
and provided the least five values of this descriptor for trees.
Further they also provided the trees that attain these least
values. In this work, making use of certain graph trans-
formations that involve the swapping of edges from one
node to another and contraction of edges, we have observed
the behavior of the F-index. *is enabled us to determine
the decreasing sequence of values of F-invariant and the
corresponding trees attaining these values. Novelty of work
lies behind the fact that solving a research problem that is
not solved already is always a good addition to the existing
literature. *us, this problem of determining members in a
certain family of graph with first, second up to fifth
extremal values has become good source of attraction to
researchers.

2. F-Invariant under Certain Transformations

In this section, we first observe the increasing or decreasing
behavior of F-invariant under certain graph operations
involving swapping of edges from one node to another. Our
next results show that this descriptor exhibit increasing
behavior.

α1 − transform. (5)

Let Q be the connected tree and x1, y1 ∈ V(Q). For
p≥ 0, t≥ 1, suppose N(x1) � y1, x1,1, x1,2, . . . , x1,p􏽮 􏽯 and
N(y1) � x1, y1,1, y1,2, . . . , y1,t􏽮 􏽯, where the vertices x1 and
y1 have no common neighbors in Q. Let α1(Q) be the
graph derived from Q by deleting edges
y1y1,1, y1y1,2, . . . , y1y1,t and attaching new edges
x1y1,1, x1y1,2, . . . , x1y1,t. We say that α1(Q) � Q′ is a α1 −

transform of Q (see Figure 1).

Lemma 1. Let α1(Q) � Q′ be a tree derived from Q by
α1-transform as depicted in Figure 1, then

F α1(Q)( 􏼁>F(Q). (6)

For any p> 1, t≥ 1.

Proof. Observe that dQ′(x1) � dQ(x1) + t> dQ(x1) and
dQ′(x1) + dQ′(y1) � dQ(x1) + dQ(y1) � p + t + 2.Consider
that
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F(Q′) − F(Q) � 􏽘

p

i�1
dQ′

x1,i􏼐 􏼑
2

+ dQ′
x1( 􏼁

2
􏼒 􏼓 − dQ x1,i􏼐 􏼑

2
+ dQ x1( 􏼁

2
􏼒 􏼓􏼔 􏼕

+ 􏽘
t

j�1
dQ′

y1,j􏼐 􏼑
2

+ dQ′
x1( 􏼁

2
􏼒 􏼓 − dQ y1,j􏼐 􏼑

2
+ dQ y1( 􏼁

2
􏼒 􏼓􏼔 􏼕

+ dQ′
x1( 􏼁

2
+ dQ′

y1( 􏼁
2

􏼒 􏼓 − dQ x1( 􏼁
2

+ dQ y1( 􏼁
2

􏼐 􏼑

� 􏽘

p

i�1
dQ′

x1,i􏼐 􏼑
2

+(p + t + 1)
2

􏼒 􏼓 − dQ x1,i􏼐 􏼑
2

+(p + 1)
2

􏼒 􏼓􏼔 􏼕

+ 􏽘

t

j�1
dQ′

y1,j􏼐 􏼑
2

+(p + t + 1)
2

􏼒 􏼓 − dQ y1,j􏼐 􏼑
2

+(t + 1)
2

􏼒 􏼓􏼔 􏼕

+ (p + t + 1)
2

+(1)
2

􏼐 􏼑 − (p + 1)
2

+(t + 1)
2

􏼐 􏼑

� 3pt(t + p + 2)> 0.

(7)

*e α1 − transform decreases the degree of y1 by t and
increases the degree of x1 by t, while the degrees of the nodes
x1,1, x1,2, . . . , x1,p and y1,1, y1,2, . . . , y1,t remain
unchanged. □

Lemma 2. Let α2(Q) � Q′ be a tree derived from Q as
depicted in Figure 2, where dQ(z1, u)≥ 1. :en

F α2(Q)( 􏼁>F(Q). (8)

For any p> 1 and t≥ 1.

Proof. Since dQ(x1)<dα2(Q)(x1) and dα2(Q)(y1)< dQ(y1),
we have

F(Q′) − F(Q) � 􏽘

p

i�1
dQ′

x1,i􏼐 􏼑
2

+ dQ′
x1( 􏼁

2
􏼒 􏼓 − dQ x1,i􏼐 􏼑

2
+ dQ x1( 􏼁

2
􏼒 􏼓􏼔 􏼕

+ 􏽘
t

j�1
dQ′

y1,j􏼐 􏼑
2

+ dQ′
x1( 􏼁

2
􏼒 􏼓 − dQ y1,j􏼐 􏼑

2
+ dQ y1( 􏼁

2
􏼒 􏼓􏼔 􏼕

+ dQ′
x1( 􏼁

2
+ dQ′

y1( 􏼁
2

􏼒 􏼓 − dQ x1( 􏼁
2

+ dQ y1( 􏼁
2

􏼐 􏼑 + dQ′
y1( 􏼁

2
+ dQ′

z1( 􏼁
2

􏼒 􏼓 − dQ y1( 􏼁
2

+ dQ z1( 􏼁
2

􏼐 􏼑

� 􏽘

p

i�1
1 +(p + t + 1)

2
− 1 − (p + 1)

2
􏽨 􏽩

+ 􏽘
t

j�1
1 +(p + t + 1)

2
− 1 − (t + 2)

2
􏽨 􏽩 + (p + t + 1)

2
+ 22􏼐 􏼑 − (p + 1)

2
+(t + 2)

2
􏼐 􏼑􏽨 􏽩

+ (r + 1)
2

+ 22􏼐 􏼑 − (t + 2)
2

+(r + 1)
2

􏼐 􏼑􏽨 􏽩

� 3t[p(t + p + 2) − (t + 3)]> 0.

(9)

Hence, the result holds. □

. . .

.

.

.
.

.

.

.
.

.

.

.

.

x1 y1

x1, 1

x1, p

x1, 1

x1, 2

y1, 1

y1, t
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Figure 1: α1 − transform applied to Q.
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Lemma 3. Let α3(Q) � Q′ be a tree obtained from Q by
applying α3-transform (see Figure 3), where dQ(z1, u) �

dα3(Q)(z1, u)≥ 0 and dQ(x1, y1) � dα3(Q)(x1, y1)≥ 2. If t≥ 1
and s> 1 then

F α3(Q)( 􏼁>F(Q). (10)

Proof. By definition of F(Q) we get

F(Q′) − F(Q) � 􏽘

p

i�1
dQ′

x1,i􏼐 􏼑
2

+ dQ′
x1( 􏼁

2
􏼒 􏼓 − dQ x1,i􏼐 􏼑

2
+ dQ x1( 􏼁

2
􏼒 􏼓􏼔 􏼕

+ 􏽘
t

j�1
dQ′

y1,j􏼐 􏼑
2

+ dQ′
x1( 􏼁

2
􏼒 􏼓 − dQ y1,j􏼐 􏼑

2
+ dQ y1( 􏼁

2
􏼒 􏼓􏼔 􏼕

+ dQ′
x1( 􏼁

2
+ dQ′

(v)
2

􏼒 􏼓 − dQ x1( 􏼁
2

+ dQ(v)
2

􏼐 􏼑 + dQ′
y1( 􏼁

2
+ dQ′

z1( 􏼁
2

􏼒 􏼓 − dQ y1( 􏼁
2

+ dQ z1( 􏼁
2

􏼐 􏼑

+ dQ′
y1( 􏼁

2
+ dQ′

(w)
2

􏼒 􏼓 − dQ y1( 􏼁
2

+ dQ(w)
2

􏼐 􏼑 � p (p + t + 1)
2

+ 1 − (p + 1)
2

􏽨 􏽩

+ t (p + t + 1)
2

+ 1 − (t + 1)
2

􏽨 􏽩 + (p + t + 1)
2

+ 22􏽨 􏽩

− (p + 1)
2

+ 22􏽨 􏽩 + 22 + 22􏽨 􏽩 − 22 +(t + 2)
2

􏽨 􏽩 + 22 +(r + 1)
2

􏽨 􏽩 − (t + 2)
2

− (r + 1)
2

􏽨 􏽩

� 3t[p(p + t + 2) − (t + 3)]> 0.

(11)

Hence the proof is complete. □

Lemma 4. Let α4(Q) be a tree obtained fromQ after applying
α4-transform (see Figure 4). For any p, r≥ 0, we have

F α4(Q)( 􏼁>F(Q). (12)

Proof. If dQ(x1, z1)≥ 2, then dα4(Q)(x1) + dα4(Q)(z1) �

dQ(x1) + dQ(z1) � p + r + 2. Now by using the definition of
F index, we have

F(Q′) − F(Q) � 􏽘

p

i�1
dQ′

x1,i􏼐 􏼑
2

+ dQ′
x1( 􏼁

2
􏼒 􏼓 − dQ x1,i􏼐 􏼑

2
+ dQ x1( 􏼁

2
􏼒 􏼓􏼔 􏼕

+ 􏽘
r− 1

j�1
dQ′

z1,j􏼐 􏼑
2

+ dQ′
z1( 􏼁

2
􏼒 􏼓􏼔 􏼕 − 􏽘

r

j�1
dQ′

z1,j􏼐 􏼑
2

+ dQ′
z1( 􏼁

2
􏼒 􏼓􏼔 􏼕

+ dQ′
z1,r􏼐 􏼑

2
+ dQ′

x1( 􏼁
2

􏼒 􏼓􏼔 􏼕 + dQ′
x1( 􏼁

2
+ dQ′

(w)
2

􏼒 􏼓􏼔 􏼕 − dQ x1( 􏼁
2

+ dQ(w)
2

􏼐 􏼑􏽨 􏽩

+ dQ′
(y)

2
+ dQ′

z1( 􏼁
2

􏼒 􏼓􏼔 􏼕 − dQ(y)
2

+ dQ z1( 􏼁
2

􏼐 􏼑􏽨 􏽩

� p (p + 2)
2

+ 12 − (p + 1)
2

− 1􏽨 􏽩 +(r − 1) r
2

+ 1􏽨 􏽩 − r (r + 1)
2

+ 1􏽨 􏽩

+ 1 +(p + 2)
2

􏽨 􏽩 + (p + 2)
2

+ 2􏽨 􏽩
2

− (p + 1)
2

+ 22􏽨 􏽩 + 22 + r
2

􏽨 􏽩 − 22 +(r + 1)
2

􏽨 􏽩

� 3[p(p + 3) − r(r + 1) + 2]> 0.

(13)

□
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Figure 2: α2 − transform applied to Q.
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2.1. Greatest Value of F − Index for Trees of Given Diameter.
*e multistar graph denoted by MS(r1, r2, . . . , rd− 1), where
r1, rd− 1 ≥ 1 and for 2≤ j≤ d − 2, rj ≥ 0, is the caterpillar
involving a path a1, a2, . . . , ad− 1 of length d − 2 having rj

pendant vertices that are adjacent to aj for 1≤ j≤d − 1. *e
diameter of MS(r1, r2, . . . , rd− 1) is equal to d, and can be
derived by connecting the centers of K1,r1

, K1,r2
, . . . , K1,rd− 1

with edges. A bistar graph of order r denoted by BS(p, t),
where p + t � r − 2, is formed by connecting the central
vertices of K1,p and K1,t by an edge. A tree that has diameter
3 is also a bistar. For integers r, t with 2≤ t≤ r − 1, Sr,t is tree
derived by connecting t − 1 pendant vertices to the end node
of the path Pr− t+1, with diameter d(Sr,t) � r − t + 1.

Theorem 1. Let T be a tree on r≥ 3 vertices and diameter
d≥ 2. :en the maximum value of F(T) is attained for
T � Sr,r− d+1.

Proof. Applying α1-transform on the vertices that are not
attached on the diametral path of T, we get that the max-
imum value of F(T) is attained in the class of multistars
MS(r1, r2, . . . , rd− 1). Now applying the transformations
presented in Lemma 2–Lemma 4, it follows that the max-
imum value of F(T) is attained if and only if r1 � r − d, r2 �

r3 � · · · � 0 and rd− 1 � 1. Hence T � Sr,r− d+1. □

Corollary 1

(i) In the set of trees T on r vertices, we have

maxd(T)�iF(T)>maxd(T)�jF(T). (14)

(ii) for 2≤ i< j≤ r − 1.
(iii) In the set of trees T of order r and diameter d with

3≤ d≤ r − 2, the graphs with the greatest F(T) value
are (in this order) as follows:

MS(r − d,0, . . . ,0,1),MS(r − d − 1,0, . . . ,0,2), . . . ,

MS
r − d +1

2
􏼦 􏼧,0, . . . ,0,

r − d +1
2

􏼦 􏼧􏼠 􏼡.

(15)

Proof

(i) Let T be a tree on r vertices with diameter i. By
*eorem 1 the maximum value of F(T) is attained
for T � Sr,r− i+1 � MS(r − i, 0, . . . , 1). *e result fol-
lows by applying many times α1-transform on
MS(r − i, 0, . . . , 1).

(ii) Applying Lemma 1–Lemma 3 to T yields the mul-
tistar MS(p, 0, . . . , 0, q) with p + q � r − d + 1. Now
using Lemma 4 to MS(p, 0, . . . , 0, q), we get the
required ordering. □

Theorem 2. For tree of order r≥ 8, the maximum value of
F-index is attained in the following order (see Figure 5).

F K1,r− 1􏼐 􏼑>F(BS(r − 3, 1))>F(BS(r − 4, 2))

>F Sr,r− 3􏼐 􏼑>F(BS(r − 5, 3)).
(16)

Proof. Let T be tree of order r≥ 8. By Corollary 1, the
maximum value of F(T) is achieved in the set of trees of
diameter 2. It follows that the trees with the maximum value
of F(T) is star K1,r− 1. *e second maximum is attained for
Sr,r− 2 � BS(r − 3, 1) in the set of trees of diameter 3.*e next
maximum is reached by BS(r − 4, 2) and BS(r − 5, 3) in trees
of diameter 3. Since BS(r − 3, 1) can be obtained from
BS(r − 4, 2) by a α4 transformation, we get
F(K1,r− 1)>F(BS(r − 3, 1))>F(BS(r − 4, 2)). In the set of
trees of diameter 4, the maximum value is attained by Sr,r− 3.
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Figure 3: α3 − transform applied to Q.
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To get the fourth maximum value we compare F(BS(r −

5, 3)) with F(Sr,r− 3). We have

F(BS(r − 5, 3)) − F Sr,r− 3􏼐 􏼑 � (r − 5) 1 +(r − 4)
2

􏽮 􏽯 + (r − 4)
2

+ 16􏽮 􏽯 + 3(17)􏽨 􏽩

− (r − 4) 1 +(r − 3)
2

􏽮 􏽯 + (r − 3)
2

+ 4􏽮 􏽯 + 8 + 5􏽨 􏽩 � − 3r
2

+ 21r + 12< 0.
(17)

Hence F(BS(r − 5, 3))<F(Sr,r− 3) for every r≥ 8. Also,

F(BS(r − 5, 3)) − F(MS(r − 5, 0, 2)) � (r − 5) 1 +(r − 4)
2

􏽮 􏽯 + (r − 4)
2

+ 16􏽮 􏽯 + 3(17)􏽨 􏽩

− (r − 5) (r − 4)
2

+ 1􏽮 􏽯 + (r − 4)
2

+ 4􏽮 􏽯 + 13 + 20􏽨 􏽩 � 30> 0.
(18)

*is shows that the second maximum value of F-index is
achieved by MS(r − 5, 0, 2) after Sr,r− 3 in the set of trees of
diameter 4. Using a α1-transform, it is easy to see that
MS(r − 5, 0, 0, 1) reaches the maximum value in the set of

trees of diameter 5 and F(MS(r − 5, 0, 0, 1))<
F(MS(r − 5, 0, 2)), which completes the proof. □

Example 1. Let T be a tree on 10 vertices, then

F K1,10− 1􏼐 􏼑 � 􏽘

uv∈E Q1,10− 1( )

d
2
(u) + d

2
(v)􏼐 􏼑 � 9 12 + 92􏼐 􏼑 � 738,

F(BS(10 − 3, 1)) � 􏽘
uv∈E(BS(10− 3,1))

d
2
(u) + d

2
(v)􏼐 􏼑 � 12 + 22􏽨 􏽩 + 22 + 82􏽨 􏽩 + 7 12 + 82􏽨 􏽩 � 528,

F(BS(10 − 4, 2)) � 􏽘
uv∈E(BS(10− 4,2))

d
2
(u) + d

2
(v)􏼐 􏼑 � 2 12 + 32􏽨 􏽩 + 32 + 72􏽨 􏽩 + 6 12 + 72􏽨 􏽩 � 378,

F S10,10− 3􏼐 􏼑 � 􏽘

uv∈E S10,10− 3( )

d
2
(u) + d

2
(v)􏼐 􏼑 � 12 + 22􏽨 􏽩 + 22 + 22􏽨 􏽩 + 22 + 72􏽨 􏽩 + 6 12 + 72􏽨 􏽩 � 366,

F(BS(10 − 5, 3)) � 􏽘
uv∈E(10− 5,3)

d
2
(u) + d

2
(v)􏼐 􏼑 � 3 12 + 42􏽨 􏽩 + 42 + 62􏽨 􏽩 + 5 12 + 62􏽨 􏽩 � 288.

(19)
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.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

K1, r-1 Sr, r-2=BS (r-3, 1) BS (r-4, 2)

Sr, r-3 BS (r-5, 3)

Figure 5: Trees T achieving greatest F − index.
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*is shows that

F K1,10− 1􏼐 􏼑>F(BS(10 − 3, 1))>F(BS(10 − 4, 2))

>F S10,10− 3􏼐 􏼑

>F(BS(10 − 5, 3)).

(20)

Theorem 3. In the set of trees T of order r≥ 5 with t pendant
vertices, where 3≤ t≤ r − 2, we have

F(T)≤ t
3

− 7t + 8r − 8. (21)

*e above equality holds if and only if T � Sr,t.

Proof. First we prove that if x is a pendant vertex adjacent to
y, then

F(T) − F(T − x)≤ 3t
2

− 3t + 2. (22)

With equality holds if and only if T � Sr,t and d(y) � t.
Since 3≤ t≤ r − 2, it follows that there exists a vertex
z0 ∈ N(y)/ x{ }, such that dz0

≥ 2. Otherwise T is a star having
central vertex y. We obtain

F(T) − F(T − x) � d(y)
2

+ 1􏼐 􏼑 − 􏽘
z∈N(y)/ x{ }

d(z)
2

+(d(y) − 1)
2

− d(z)
2

+ d(y)
2

􏼐 􏼑􏽨 􏽩.
(23)

Since, d(z0)≥ 2 and for the remaining d(y) − 2 nodes
z ∈ N(y)/ x, z0􏼈 􏼉 , where d(z)≥ 1, we have

F(T) − F(T − x) � 3d(y)
2

− 3d(y) + 2􏼐 􏼑. (24)

We also get d(y)≤ t because T − y includes of d(y)

trees. Now 2≤d(y)≤ t gives

F(T) − F(T − x)≤ 3t
2

− 3t + 2􏼐 􏼑, (25)

with equality holds if d(y) � t, the adjacent vertex of y has
degree 2 and the remaining vertices are of degree 1. Hence
T � Sr,t and x is adjacent to one of the vertex of Sr,t of degree
t.

Now we use induction to prove the required result. If
r � 5, then t � 3 and we have a bistar BS(2, 1) (see Figure 5),
the only tree of order 5 having 3 pendant vertices. Let r≥ 6
and suppose the result is true for all trees of order r − 1 and t

pendant vertices, where 3≤ t≤ r − 3. Let x be a pendant
vertex adjacent to y, then we have two cases: (i) y has degree
2 and (ii) y is of degree at most 3.

(i) *e only vertex z adjacent to y has degree d(z)≥ 2.
*en

F(T) − F(T − x) � d(z)
2

+ 4􏼐 􏼑 + 5 − d(z)
2

+ 1􏼐 􏼑 � 8.

(26)

(ii) In this case the graph T − x has t pendant vertices.
Applying induction, for t≤ r − 3, we get
F(T − x)≤F(Sr− 1,t), with equality holds for
T − x � Sr− 1,t. It follows that

F(T) � F(T − x) + 8≤F Sr− 1,t􏼐 􏼑 + 8 � F Sr,t􏼐 􏼑, (27)

(iii) with equality holds for T − x � Sr− 1,t. *erefore, we
have T � Sr,t. If t � r − 2, then T − x is a star with
one vertex of degree 1. Hence, T � Sr,r− 2 � Sr,t.

(iv) Let T − x is of order r − 1 with s t − 1 pendant
vertices. If d(y)≥ 3, then by using induction on
T − x, we get

F(T)≤F(T − x) + 3t
2

− 3t + 2

≤F Sr− 1,t− 1􏼐 􏼑 + 3t
2

− 3t + 2 � F Sr,t􏼐 􏼑,
(28)

with equality holds for T − x � Sr− 1,t− 1 and d(y) � t.
Hence T � Sr,t. □

3. Conclusion

In this paper, our main focus is to obtain the greatest value
of F-index for trees of given order, diameter, and pendent
vertices. Also, we determine the ordering of corre-
sponding extremal trees for F-index. We make use of some
graph transformations to determine the greatest value of
F-index for trees of given order, diameter, and pendent
vertices. *ese transformations involves contraction and
swapping of pendant edges from one vertex to other
resulting in increase in the value of the forgotten index.
Using these transformations continuously on a graph lead
us to the desired extremal graph with respect to the
forgotten index. On the way of obtaining extremal graphs,
we also obtained some other members having the second,
third, fourth, and fifth maximum value of the forgotten
index.
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