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Endometrial cancer (EC) is one of the most common female reproductive system
tumors, with close to 200,000 new cases each year. It accounts for approximately 7%
of the total number of female cancers, but until now the cause of EC has remained
unclear. Ferroptosis is regulated cell death that distinguishes apoptosis and caused
by oxidative damage. The process has unique biological effects on metabolism and
redox biology. In this study, we analyzed the relationship between EC and ferroptosis.
According to the different expression levels of related genes, we first divided 544 EC
samples into four clusters and found that most of the infiltrating immune cells were
significantly different among the four groups. A differential gene expression analysis
between Fe.cluster groups was performed, and the samples were again divided into
three Fe.gene.cluster groups. The molecular characteristics and clinical characteristics
of the groups were significantly different. Finally, 13 characteristic genes were selected
as ferroptosis gene signatures, and the Fe.score was obtained by calculation. The
Fe.score is closely related to the clinical and molecular characteristics of EC, and
a low Fe.score has a significant survival advantage. The GDSC predicts that the
IC50 of multiple chemotherapeutic drugs is also significantly different between the
two groups. In conclusion, our research has explored the relationship between EC
and ferroptosis in detail, provides comprehensive insights for ferroptosis-mediated EC
mechanism research, and emphasizes the clinical application potential of Fe.score-
based immunotherapy strategies.

Keywords: ferroptosis, prognostic model, endometrial cancer, molecular characteristics, clinical characteristics

INTRODUCTION

Endometrial cancer (EC) is one of the most common types of gynecological malignancies, and it
affects the health of many women around the world. As the eighth leading cause of cancer-related
deaths in women, the morbidity and mortality of EC are increasing rapidly (Makker and Goel,
2016; Henley et al., 2020). For patients with metastasis or recurrence, the prognosis is unfavorable.
These patients have a significantly higher risk of death and always have a low quality of life (Lu
and Broaddus, 2020). Obesity is one of the most important risk factors for this disease, and other
recognized risk factors for EC include long-term exposure to endogenous or exogenous estrogen,
age at menopause, age at menarche, history of infertility, polycystic ovary syndrome, diabetes, and
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GRAPHICAL ABSTRACT 1 | Analysis workflow chart.

previous pelvic radiotherapy. In the past few years, the surgical
treatment of EC has improved significantly. Now, in addition
to minimally invasive removal of the uterus, ovarian tube, and
fallopian tube, sentinel lymph node mapping is performed.
Data from The Cancer Genome Atlas (TCGA) project have
advanced our understanding of the biological heterogeneity
of EC (Liu et al., 2014; Cherniack et al., 2017). Recently,
a study integrated the sequencing of eight omics approaches
among the four genomic subtypes of EC, providing valuable
resources for researchers and clinicians to identify new molecules
with potential diagnostic and therapeutic significance in the
development of EC (Dou et al., 2020). Although we have gained
a great understanding of the molecular characteristics of EC, at
present, it is still difficult to predict the prognosis of EC patients
and seek convenient and effective biomarkers.

Ferroptosis is a newly discovered iron-dependent cell
death that is different from other forms of cell death,
including apoptosis and necrosis. Ferroptosis involves three main
metabolites, thiol, lipid, and iron, leading to iron-dependent
lipid peroxidation and ultimately cell death (Yan et al., 2021).
Ferroptotic cell death is accompanied by a series of changes in
cell morphology, metabolism, and protein expression, which can
be distinguished from other forms of cell death. At the cellular
and subcellular levels, cells undergoing ferroptotic action have
a characteristic round shape before death, similar to necrotic
cells, but without swelling of the cytoplasm and organelles or

plasma membrane rupture (Yagoda et al., 2007). The nucleus
of ferroptotic cells maintains its structural integrity without
condensation, marginalization of chromatin, plasma membrane
blistering, or apoptotic body formation (Dixon et al., 2012),
which is a characteristic feature of apoptosis. The only unique
morphological feature is mitochondria, which appear to be
smaller than normal and have an increased membrane density
(Dixon et al., 2012).

Ferroptosis is involved in the occurrence and development
of many diseases, including neurodegenerative diseases, such as
Alzheimer’s disease, Parkinson’s disease (PD) (Belaidi and Bush,
2016), and ischemia/reperfusion (Scindia et al., 2015; Bulluck
et al., 2016), and most importantly, it is closely related to
various types of tumors. Compared with normal cells, cancer
cells have a higher iron content (Spangler et al., 2016). Current
studies have found abnormalities in iron homeostasis in a variety
of cancers, including breast cancer, ovarian cancer, and lung
cancer (Spangler et al., 2016). Ferroptosis is involved in many
important pathways in tumors. P53 is one of the most important
suppressor genes in the human body and is biallelically mutated
or deleted in approximately 50% of all human cancers (Joerger
and Fersht, 2016). P53-mediated transcriptional suppression
of SLC7A11 promotes ferroptosis in cancer cells (Joerger and
Fersht, 2016). P53 3KR (K117R, K161R, and K162R) acetylation-
deficient mutants cannot induce apoptosis but completely retain
the ability to induce ferroptosis in lung cancer cell lines (Jiang
et al., 2015). In addition, oncogenes of the RAS family (HRAS,
NRAS, and KRAS) are the most commonly mutated in all
human cancers (Ryan and Corcoran, 2018). The ferroptosis-
inducer erastin has shown selective lethality against engineered
RAS-mutant tumor cells (Dolma et al., 2003). KRAS-mutant
lung adenocarcinoma cells are susceptible to SLC7A11 inhibitor-
induced ferroptosis (Hu et al., 2020); in addition, NSCLC-
derived cells with upstream mutations in EGFR are sensitive
to ferroptosis (Poursaitidis et al., 2017). Ferroptosis is also
closely related to the expression of nuclear factor, erythroid 2
like 2 (Sun et al., 2016), hypoxia-inducible factor (HIF) (Cho
et al., 2013; Ivan and Kaelin, 2017), and important processes
such as epithelial–mesenchymal transition (EMT) in tumors
(Viswanathan et al., 2017)

Ferroptosis is currently involved in many antitumor therapies,
including immune and radiation therapy. Cytotoxic T cell-
driven immunity can induce ferroptosis in cancer cells. Anti-
PD-L1 antibodies can promote hypertrophy in tumor cells,
and the hypertrophy inhibitor liproxstatin 1 reduces the
anticancer activity of these drugs (Wang et al., 2019). In
addition, anti-PD-L1 antibodies and ferritin activators (such
as erastin and RSL3) synergistically induce tumor growth
inhibition (Wang et al., 2019). The antitumor effect of
radiation is attributed to the particles released by the irradiated
cells, which have been shown to induce immunogenic death
mainly through ferroptosis (Wan et al., 2020). Treatment
with erastin in HeLa and NCI-H1975 adenocarcinoma cell
lines aggravates radiation-induced cell death (Shibata et al.,
2019). Ferroptosis inducers combined with temozolomide
and haloperidol can enhance the chemotherapeutic effects
of these drugs in tumor treatment (Chen et al., 2015;
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Bai et al., 2017). In addition, some new ideas and technologies,
such as nanotechnology, can be combined with ferroptosis
to treat tumors. A new kind of nanoparticle has been used
to treat brain tumors in situ by delivering Fe2+ and Fe3+

(Shen et al., 2018). Upconversion nanoparticles, which induce
ferroptosis, were invented and tested in 4T1 xenograft mice
(Bao et al., 2019).

However, at present, there is very little research on the role
of ferroptosis in EC. In this study, we analyzed the different
molecules related to ferroptosis in EC, reveal the correlations
between ferroptosis and EC, and explore whether there are
potential diagnostic and therapeutic target molecules.

MATERIALS AND METHODS

Data Download and Preprocessing
The somatic mutation, transcriptome, CNV, and sample
phenotype data of EC were downloaded from the TCGA
xena database. Among them, there were 530 samples with
somatic mutation data; there were two sets of CNV data,
one of which consisted of the CNV results compiled by
xena, showing CNV at the gene level, and the other was the
sample DNA copy file downloaded from http://portal.gdc.cancer.
gov/, which is convenient for grouping and performing later
gistic2 analysis. One set of RNA-Seq data, labeled TCGA-EC,
consists of a total of 583 samples. After removing four samples
without survival information, the expression data of 579 samples
were finally obtained, including 544 tumor tissues (clinical
information shown in Table 1) and 35 normal tissues. The
downloaded expression profile data format was log2(FPKM + 1).
The expression value was restored to FPKM by the formula
FPKM = 2original expression value

−1 and then converted to TPM by
the following formula:

TPMi =
FPKMi × 1000000∑n

i = 1 FPKMi

and finally, log2(TPM + 1) conversion was performed. This
data was used for subsequent analysis.

The gene sets of 23 infiltrating cells were obtained from a
reference (Zhang B. et al., 2020). The gene sets of angiogenesis,
CD8 T effector, EMT1, EMT2, EMT3, and panfibroblast TGFb
were downloaded from another reference (Mariathasan et al.,
2018). From an additional reference (Liang et al., 2020), 60
ferroptosis genes were obtained (see Supplementary Table 1).
The c2.cp.kegg.v7.1.symbols with a total of 186 gene sets were
downloaded from MsigDB.

Overall Display of Ferroptosis Genes
Using TCGA-EC RNA-Seq data, the expression values of 60
ferroptosis genes were extracted, and the R package ggpubr was
used to draw box plots to show the differences in the expression
of these genes between tumor tissues and normal tissues. The
CNV results of ferroptosis genes were extracted, the frequency
of amplification and deletion was counted, and a dot plot was
drawn. The R package maftools was used to import the maf files

TABLE 1 | TCGA-EC samples’ clinical information.

TCGA-UCEC

Number of sample 544

Age (median, range) 64 (31–90)

Stage (%)

I 338 (62.1%)

II 51 (9.4%)

III 126 (23.2%)

IV 29 (5.3%)

Grade (%)

G1 98 (18.0%)

G2 119 (21.9%)

G3 316 (58.1%)

High grade 11 (2.0%)

Survival status

OS (sample) 544

OS (median) 909.5

Censored (%) 452 (83.1%)

Diabetes (%)

YES 100 (18.4%)

NO 267 (49.1%)

Not reported 177 (32.5%)

Hypertension (%)

YES 232 (42.6%)

NO 161 (29.6%)

Not reported 151 (27.8%)

Pregnancies (%)

0 65 (11.9%)

1 51 (9.4%)

2 116 (21.3%)

3 67 (12.3%)

4+ 74 (13.6%)

Not reported 171 (31.4%)

Radiation therapy (%)

YES 224 (41.2%)

NO 286 (52.6%)

Not reported 34 (6.2%)

BMI (median, range) 32.21 (17.36–213.5)

of somatic mutations in 530 EC samples and draw the somatic
mutation spectrum. The R package RCircos was used to draw
a circos map of 60 ferroptosis genes, showing the positions of
the genes on the reference genome. The R package pca3d was
used to perform principal component analysis (PCA) on the
expression matrix of 60 ferroptosis genes and draw a three-
dimensional PCA map.

Ferroptosis Cluster
Using the expression matrix of ferroptosis genes in 544 EC
samples as input files, the R package ConsensusClusterPlus was
used to perform unsupervised clustering with the following
parameters: m (maximum number of categories) = 6, reps
(repeated sampling) = 1,000, pItem (proportion of items selected
each time) = 0.8, pFeature (the proportion of features selected
each time) = 1, the clusterAlg (clustering algorithm) = “pam”,
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distance (calculation distance) = “spearman.” The output results
were synthesized, the K values were filtered, and the classification
of each sample was obtained.

Gene Set Variation Analysis Enrichment
Function Analysis
For Fe.cluster, grouped two by two, the expression
matrix of all genes of the two samples was extracted, the
c2.cp.kegg.v7.1.symbols gene set was combined as the input file,
gene set variation analysis [GSVA; a GSE method that estimates
the variation of pathway activity over a sample population
in an unsupervised manner (Hänzelmann et al., 2013)] was
performed, and the enrichment score of each sample for each
gene set was obtained. Then, the R package limma was used
to analyze the differences in the gene sets, and the threshold
was a BH-corrected p-value < 0.05. The top 20 differential
gene sets were extracted, the R package ComplexHeatmap was
used to draw the differential gene set heat map, and group
labels were added.

Assessment of 23 Types of Infiltrating
Immune Cell Ratios and Differences by
Single-Sample GSEA
The gene expression matrix of 544 tumor samples and the gene
set of 23 infiltrating cells were used as the input files of the
R package GSVA for single-sample GSEA (ssGSEA). Using the
enrichment score as the content of each cell, a box plot was drawn
using the R package ggpubr, and the Kruskal–Wallis rank sum
test was performed to show the differences in the content of 23
infiltrating cells between the Fe.cluster groups. Differential cells
were selected, the R package survival was used to perform single-
factor Cox risk regression analysis to obtain the hazard ratio (HR)
and p-values of differential cells, and then the R package forestplot
was used to draw forest plots to visually display the prognostic
effects of differential cells.

The display of angiogenesis, CD8 T effectors, EMT1, EMT2,
EMT3, and panfibroblast TGFb enrichment scores between
different Fe.cluster groups was also performed for ssGSEA
following the method described above; the enrichment score of
each sample was obtained for these six biological functions, the
R package ggpubr was used to draw box plots, and the Kruskal–
Wallis rank sum test was performed.

Differential Gene Screening and
Enrichment Analysis
The Fe.clusters were grouped in pairs, the expression matrix
was extracted, and the R package limma was used for
differential gene analysis, with a differential gene screening
threshold of abs[log2(fold change)] > log2(1.25) and BH
correction p-value < 0.05. Multiple sets of differential
genes were obtained, and the intersection was taken as the
final differential gene. The R package clusterProfiler was
used for Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis, and the
screening threshold was BH correction p-value < 0.05 and
Q-value < 0.05. The top 20 enrichment items of biological

processes (BP), cell components (CC), molecular function (MF),
and KEGG were selected, and a bubble chart was drawn to
display the results.

Ferroptosis.Gene.cluster
The differential gene expression matrix of 544 tumor
samples was extracted as the input file, and the R package
ConsensusClusterPlus was used to perform unsupervised
clustering. The parameters were set as follows: m = 6,
reps = 1,000, pItem = 0.8, pFeature = 1, clusterAlg = “pam,” and
distance = “spearman.” The output results were synthesized, the
K values were filtered, and the classification of each sample was
obtained. Sample clinical data were integrated, survival analysis
was performed on Fe.gene.cluster, and Kaplan–Meier curves
were drawn. The expression matrix of 60 ferroptosis genes was
extracted, and the R package ggpubr was used to draw a box plot
to show the expression in different Fe.gene.clusters and perform
the Kruskal–Wallis rank sum test.

Ferroptosis Gene Signature Screening
For differentially expressed genes, the R package survival was
used to perform single-factor Cox risk regression analysis, and
genes were screened according to a p-value < 0.05. For the
retained genes, the R package randomForestSRC was used to
construct a random forest model, and then important feature
variables were screened as ferroptosis gene signatures.

Ferroptosis Score Calculation
The expression matrix of ferroptosis gene signatures was selected,
PCA was performed, the two principal components were selected
as PC1 and PC2, and the ferroptosis score (Fe.score) was
calculated according to the following formula:

Fe.score =
∑

(PC1i + PC2i)

Sample clinical data were integrated and divided into high
Fe.score and low Fe.score according to the median Fe.score.
The R package survival was used to analyze the survival of the
Fe.score, and the R package survivalROC was used to draw a
5-year ROC curve to evaluate the Fe.score survival model.

Analysis of the Correlation Between
Fe.score and Pathway Function
The ferroptosis gene and the top 10 differential gene sets
of the three groups of GSVA were integrated to perform
ssGSEA, and then the enrichment score was combined with
the Fe.score to calculate the Pearson correlation coefficient
matrix and calculate the p-value. The R package corrplot was
used to draw the correlation diagram, and a p-value < 0.01
was considered to be extremely significant. Dots of the
corresponding colors were drawn in the figure according to the
correlation coefficient.

Immunotherapy Outcome Prediction
The R package pRRophetic was used to perform GDSC drug
IC50 prediction, and a box plot was drawn to show the IC50
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difference between Fe.score groups. The bladder cancer data set
(IMvigor210) (Geeleher et al., 2014) was used to calculate the
Fe.score, and the differences in immunotherapy results between
groups were analyzed. The model in this paper was compared
with another model (Deng et al., 2020), and the R package
survivalROC was used to draw a 5-year ROC curve to evaluate
the Fe.score survival model.

Statistics and Drawing Methods
The comparison of the two groups in the box plot in this
paper uses the nonparametric Wilcox rank sum test; the
comparison of multiple groups uses the Kruskal–Wallis rank
sum test. The R package ggalluvial was used to draw the
Fe.cluster, Fe.gene.cluster, and Fe.score grouping of 544 samples
and survival status mulberry charts. The R package maftools
was used to draw the somatic mutation map and CNV peak
map, and the Gistic2 analysis result file of the sample was
required when drawing CNV. However, there was no complete
Gistic2 result in the TCGA database, so DNA copy was
used to perform Gistic2 analysis first. For analysis methods
and parameter settings, refer to http://docs.gdc.cancer.gov/
Data/Bioinformatics_Pipelines/CNV_Pipeline/. The R package
ComplexHeatmap was used to draw heat maps. The Spearman
correlation coefficient between ferroptosis genes was calculated,
and screening was performed according to a p-value < 0.001
and an absolute value of the correlation coefficient greater
than 0.2. Using consensus clustering to cluster genes, single-
factor Cox risk regression was used to determine the prognostic
effects of genes, and the results were sorted into tables and
imported into Cytoscape (3.7.2) to draw gene interaction
network diagrams.

RESULTS

Using TCGA Data to Comprehensively
Display Ferroptosis Genes
We first screened 60 ferroptosis genes, and the positions of 60
ferroptosis genes in the reference genome hg38 are shown in
Figure 1A. Then, we analyzed the expression of the genes and
found that, using the expression values of 60 ferroptosis genes for
PCA, normal tissues and EC tissues could be clearly distinguished
(Figure 1B). Figure 1C shows the detailed gene expression
differences between EC tissues and normal tissues. Except for the
differences in the expression of the ACSL4, AKR1C3, ALOX5,
CBS, EMC2, GCLM, GLS2, HSPB1, KEAP1, NOX1, and RPL8
genes, which were not significantly different between normal
tissues and cancer tissues, the expression of the other genes
was significantly different. We further studied the mutations
of ferroptosis genes and found many missense mutations in
the TP53 gene in the EC samples (Figure 1D). For the CNV
mutation frequency of the ferroptosis gene, we found that GPX4,
PGD, and CHAC1 had a higher frequency (16.8, 8.2, and 6.6%)
of fragment deletions, and TFRC, KEAP1, PHKG2, and SQLE
had a higher frequency (15.0, 8.8, 8.2, and 8.0%) of fragment
amplifications (Figure 1E).

Endometrial Cancer Samples Were
Clustered Into Four Groups by
Ferroptosis Gene Expression and the
Differences in Immune Infiltration in
Each Group Were Explored
We first performed cluster analysis of ferroptosis genes and
divided them into four clusters: regulator cluster A, regulator
cluster B, regulator cluster C, and regulator cluster D (see
Supplementary Table 1 for the detailed results of the ferroptosis
clusters). GPX4, SAT1, and TP53 in the ferroptosis gene
regulatory network were significant prognostic protective factors.
The CBS, CHAC1, and CISD1 genes were significant prognostic
risk factors (see Supplementary Table 1 for details). Then, the
correlation coefficient between ferroptosis genes was calculated,
and statistical tests were performed. When the p-value < 0.001
and the absolute value of the correlation coefficient was greater
than 0.2, the genes were considered to have an interaction
relationship. As shown in Figure 2A, the larger the correlation
coefficient, the thicker the connected line.

Then, we performed a cluster analysis of 544 EC samples
based on the expression values of 60 ferroptosis genes (see
Supplementary Table 2 for the classification results) and finally
divided the samples into four clusters. In Figure 2B, 1, 2, 3,
and 4 correspond to Fe.cluster A, Fe.cluster B, Fe.cluster C, and
Fe.cluster D, and the number of samples in each cluster are 183,
175, 153, and 33, respectively. As shown in Figure 2C, most
of the ferroptosis genes were highly expressed in Fe.cluster B.
The expression pattern of the ferroptosis gene in Fe.cluster D
was quite different from that in the other three groups, and the
expression of part of the ferroptosis gene (PGD, G6PD, AKR1C1,
AKR1C2, AKR1C3, NQO1) was particularly high in Fe.cluster D.

Then, we explored how the Fe.clusters reflect the immune
status of EC. As shown in Figure 2D, 21 kinds of immune
cells demonstrated significant differences in different Fe.clusters
except for activated CD4 T cells and type 2 T helper cells. We
also observed that activated CD8 T cells, eosinophils, CD56dim
natural killer cells, and activated B cells were good prognostic
factors for EC (Figure 2E).

Fe.clusters Have Different Molecular and
Clinical Characteristics
We next analyzed the specific molecular characteristics of
Fe.clusters. The GSVA functional enrichment analysis results
of Fe.cluster A, Fe.cluster B, and Fe.cluster C are shown
in Figures 3A–C. It can be seen that most of the pathway
enrichment scores of Fe.cluster B are higher than Fe.cluster
A, and Fe.cluster A is higher than Fe.cluster C. We also
focused on analyzing several key BP, and we found that the
enrichment scores of angiogenesis, CD8 T effector, EMT2, and
panfibroblast TGFb (Pan-F-TBRS) were significantly different in
Fe.clusters (Figure 3D).

Then, we explored the relationship between clusters and
clinical indicators. Figure 3E survival curve shows the survival
difference between Fe.cluster groups: the log-rank test p-value
is 0.021, the difference is significant, and Fe.cluster A has a
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FIGURE 1 | Display of ferroptosis genes in endometrial cancer (EC) samples. (A) The genomic positions of 60 ferroptosis genes. (B) Principal component analysis of
60 ferroptosis genes in tumor and normal samples. Blue, EC samples; yellow, normal samples. (C) The expression differences of 60 ferroptosis genes between
tumor tissues and normal tissues. (D) Somatic mutation spectrum of ferroptosis genes in EC samples. (E) CNV mutation frequency of 60 ferroptosis genes in EC
samples. Ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

higher survival time than the other three groups. In addition,
as shown in Figures 3F–Q, for tumor stage, the proportion
of Fe.cluster A and Fe.cluster B stage I patients is higher
than the other two groups; for tumor grade, the proportions
of G1 and of G2 patients in Fe.cluster A and Fe.cluster B
are higher than in the other two groups. The proportion of
patients with diabetes, hypertension, and more pregnancies in
Fe.cluster A is lower than in the other three groups; menopausal
status, age, radiotherapy, and BMI were not significantly
different between the four groups. In Fe.cluster C, patients
with PTEN mutation, TP53 wild-type, KRAS wild-type, and
APC wild-type accounted for lower proportions than in the
other three groups.

Analysis of the Differential Genes Among
Fe.clusters, Enrichment Analysis and
Clustering to Obtain Different
Fe.gene.clusters, and Analysis of the
Characteristics
Considering that the ferroptosis gene expression pattern and
clinical features of Fe.cluster D are quite different from those of
the other three groups and the number of samples in this group
is relatively small, a difference analysis only on the samples of
Fe.cluster A, Fe.cluster B, and Fe.cluster C was performed, and

438 overlapping differential genes were obtained (see Figure 4A
and Supplementary Table 3). Then, using the expression matrix
of differential genes to perform consensus clustering, three
groups were obtained, namely, Fe.gene.cluster A, Fe.gene.cluster
B, and Fe.gene.cluster C. The sample numbers were 78, 147, and
319, respectively (see Supplementary Table 2 for the results of
the Fe.gene.cluster). The expression heat map of 438 differentially
expressed genes is shown in Figure 4A, and we can also see
the relationship between Fe.gene.clusters and clinical indicators
(stage, age, and status) from Figure 4B. Furthermore, we found
that there was a very significant difference in survival between the
Fe.gene.cluster groups, and Fe.gene.cluster A and Fe.gene.cluster
B had obvious survival advantages (Figure 4C).

We continued to analyze 438 overlapping genes, and the
GO and KEGG enrichment results are shown in Figures 4C–
F. Differentially expressed genes were mainly involved in BPs
such as organelle fission and cilium movement (Figure 4D),
CCs such as microtubule-associated complexes and spindles
(Figure 4E), MFs such as microtubule motor activity and motor
activity (Figure 4F), and KEGG enrichment pathways such as
prostate cancer and the HIF-1 signaling pathway (see Figure 4G
and Supplementary Table 4 for the detailed GO and KEGG
enrichment pathways).

Finally, we analyzed the differences in the expression
of 60 ferroptosis genes between different Fe.gene.clusters.
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FIGURE 2 | Cluster analysis of ferroptosis genes in endometrial cancer (EC) samples. (A) Ferroptosis gene interaction network diagram. Nodes of different colors
represent genes of different categories; the node size corresponds to the log-rank test p-value of Cox risk regression analysis. The more significant the prognostic
effect is, the larger the node. The green dots indicate good prognostic factors, and the black dots indicate prognostic risk factors. (B) Consensus clustering of the
expression values of 60 ferroptosis genes in 544 EC samples. (C) Expression heat map of ferroptosis genes in Fe.clusters. (D) Box plot showing the difference in the
proportion of 23 infiltrating cells in different Fe.clusters. (E) The prognostic forest plot of differentially infiltrated cells. Each row represents a type of infiltrated cell. The
third column graphically displays the distribution of hazard ratios (HRs) in the 95% confidence interval. The value of the abscissa represents the HR. Ns, p > 0.05;
*p < 0.05; **p < 0.01, ***p < 0.001; ****p < 0.0001.

The expression differences of 14 ferroptosis genes in the
Fe.gene.cluster group were not significant, and the remaining
genes were significantly different (see Figure 4H).

Screening Ferroptosis Gene Signatures
and Calculating the Ferroptosis Score
Univariate Cox hazard analysis was performed on 438
differentially expressed genes, and according to p < 0.05,
204 statistically significant prognosis-related genes were
screened. These 204 genes were used to build a random
forest model and screen out 13 characteristic genes as
ferroptosis gene signatures. PCA and calculation of the

Fe.score were performed (see Supplementary Table 2
for details).

Then, we explored the relationship between Fe.score,
Fe.gene.clusters, and Fe.clusters. Figure 5A shows that most
samples of Fe.cluster C and Fe.cluster D correspond to
Fe.gene.cluster C, and most samples of Fe.gene.cluster C belong
to the high-Fe.score group, which has a survival disadvantage.
Most samples of Fe.gene.cluster A and Fe.gene.cluster B belong
to the low-Fe.score group, which has a survival advantage.

For a more detailed analysis, among the Fe.gene.cluster
groups, the Fe.score of Fe.gene.cluster A and Fe.gene.cluster B
was significantly lower than that of Fe.gene.cluster C (Figure 5B).
Among the Fe.cluster groups, the Fe.score of Fe.cluster A and
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FIGURE 3 | Molecular and clinical characteristics of clusters. (A) The top 20 differential enrichment pathways of Fe.cluster A and Fe.cluster B. (B) The top 20
differential enrichment pathways of Fe.cluster A and Fe.cluster C. (C) The top 20 differential enrichment pathways of Fe.cluster B and Fe.cluster C. (D) The
differences in the enrichment scores of the main tumor-related biological processes in different Fe.clusters. (E) Kaplan–Meier survival curve of Fe.clusters. (F–Q) The
distribution of stage, grade, diabetes, hypertension, menopausal status, age, radiotherapy status, fertility status, BMI, PTEN, P53, and KRAS mutation status
between the Fe.cluster groups. *p < 0.05 and ***p < 0.001.

Fe.cluster B is extremely significantly lower than that of Fe.cluster
C, and the difference between Fe.cluster A and Fe.cluster D is not
significant (Figure 5C).

Significant Differences in Pathway
Functions and Molecular Characteristics
Between the High- and Low-Fe.score
Groups
We first explored the correlation between the Fe.score and
cell function enrichment pathways. Figure 6A shows that the
Fe.score is positively correlated with mismatch repair and DNA
damage repair 1 and is negatively correlated with CD8 T effectors
and immune checkpoints. Further statistical analysis shows that
the enrichment scores of antigen processing machinery, CD8 T
effector, EMT1, EMT2, and EMT3 all have extremely significant
differences in the different Fe.score groups, and the Low Fe.score
is higher than the High Fe.score (Figure 6B). In addition, for
some new molecular indicators, Fe.score is significantly positively
correlated with HRD, CNA_frac_altered, LOH_frac_altered, and
LST, and the correlation coefficient is approximately 0.5; Fe.score
is significantly negatively correlated with mutLoad_nonsilent,

mutLoad_silent, SNV_Neoantigens, and Indel_Neoantigens, and
the correlation coefficient is about−0.15 (Figures 6C–J).

Significant Differences in Gene Mutation,
CNV, and Clinical Characteristics
Between the High- and Low-FE.score
Groups
The somatic mutation spectrum of the High Fe.score group is
shown in Figure 7A, and the somatic mutation spectrum of
the Low Fe.score group is shown in Figure 7B. The mutated
genes and the types of mutations in the two groups were
significantly different. We found that PTEN mutation, TP53
wild-type, KRAS mutation, and APC mutation patients had lower
Fe.scores (Figure 7C). Figures 7D,E show the somatic mutation
spectrum of the high- and low-Fe.score groups, and the G-score
of the low-Fe.score group is significantly lower than that of the
high-Fe.score group; the CNV frequency of the low-Fe.score
group is also significantly lower than that of the high-Fe.score
group (Figure 7F).

For clinical indicators, we found that patients with stage
I, G1, premenopausal, younger age, and fewer children had
lower Fe.scores (Figure 7G). The Kaplan–Meier survival curve
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FIGURE 4 | Molecular expression and prognosis of Fe.gene.clusters. (A) Total of 438 overlapping differential genes obtained from Fe.clusters. (B) Expression heat
map of 438 overlapping differentially expressed genes among Fe.clusters. (C) Kaplan–Meier survival curve of Fe.gene.clusters. (D) The Gene Ontology (GO)
enrichment results of biological processes of overlapping differentially expressed genes in ferroptosis clusters. The color indicates a significant degree of enrichment,
the size of the bubble indicates the number of differential genes enriched in the pathway, and the abscissa indicates the proportion of genes. (E) The GO enrichment
results of cell components. (F) The GO enrichment results of molecular function. (G) The KEGG enrichment pathways. The color indicates the significant degree of
enrichment, the size of the bubble indicates the number of differential genes enriched in the pathway, and the abscissa indicates the proportion of genes. (H) The
box plot shows the expression differences of 60 ferroptosis genes among the Fe.gene.cluster groups. Ns, p > 0.05, *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001. (C) Kaplan–Meier survival curve of Fe.gene.cluster.

of the Fe.score shows that there is a very significant difference
in survival between the high-Fe.score and low-Fe.score groups,
and the low-Fe.score group has a significant survival advantage
(see Figure 7H).

Fe.score for Predicting the Effect of
Immunotherapy and Prognosis
We used GDSC to predict the difference in IC50 of the
drugs cisplatin, erlotinib, rapamycin, docetaxel, and temsirolimus
between the Fe.score groups. Through the nonparametric
Wilcoxon rank sum test, the differences reached a very significant
level (Figure 8A). We calculated and grouped the Fe.score of
the bladder cancer dataset (IMvigor210) and found that the
low-Fe.score group had a very significant survival advantage
(Figure 8B). The Fe.score difference between the CR, PR, SD,
and PD groups was not significant (Figure 8C), and CR/PR
patients accounted for a relatively high proportion. Chi-square
tests were performed on CR/PR and SD/PD between the high-
Fe.score and low-Fe.score groups, and the difference was not

significant (p-value = 0.075) (Figure 8D). Figure 8E shows that
the Fe.score is better than the previous prognostic model of
endometrial carcinoma (35), and the AUC value is higher.

DISCUSSION

In this article, we first explored the expression and mutation of
ferroptosis-related genes in normal and EC tissues. According to
the different expression levels of related genes, 544 EC samples
were divided into four clusters, and most of the infiltrating
immune cells were significantly different among the four groups.
The tumor stages and grades of Fe.cluster A and Fe.cluster B were
lower, and the enrichment scores of angiogenesis, CD8 T effector,
EMT2, and panfibroblast TGFb were significantly different
among Fe.clusters. A gene expression difference analysis between
Fe.cluster groups was performed, and 438 overlap difference
genes were obtained by taking the intersection. According to
the difference genes, the samples were again divided into three
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FIGURE 5 | Correlation between Fe.scores, Fe.clusters, and Fe.gene.clusters. (A) The Sankey diagram shows the grouping of 544 EC samples. (B) The difference in
Fe.score between Fe.gene.cluster groups. (C) Fe.score difference between Fe.cluster groups.

Fe.gene.clusters. Fe.gene.cluster A and Fe.gene.cluster B have
survival advantages. Finally, 13 characteristic genes were selected
as ferroptosis gene signatures, and the Fe.score was obtained by
calculation. A low Fe.score has a significant survival advantage,
and GDSC predicts that the IC50 of multiple chemotherapeutic
drugs is also significantly different between the two groups. The
low-Fe.score group in the bladder cancer data set also had a very
significant survival advantage, and CR/PR patients accounted for
a relatively high proportion. Compared with previous prognostic
models of EC, our prognostic model based on ferroptosis genes is
more accurate and simpler (Deng et al., 2020).

Ferroptosis is regulated cell death that distinguishes apoptosis
and oxidative damage. The process is controlled by a variety of
molecular signaling pathways through epigenetic, transcription,
and posttranslational mechanisms (Chen et al., 2020). Iron has
a unique role and function in the female reproductive system,
and iron disorders are found in many gynecological diseases
(Ng et al., 2020). According to reports, iron-mediated cell
death (ferroptosis) is closely related to endometriosis, repeated
implantation failure, endometrial hyperplasia, and many other
endometrial diseases, which can be used as treatment target
(Bielfeld et al., 2019; Ng et al., 2020; Zhang et al., 2021). However,
the role of ferroptosis in EC remains unclear. In our study, we
divided the EC samples into four clusters based on the differences
in expression levels of 60 ferroptosis-related genes. These 60
related genes were all verified to be closely related to ferroptosis,
such as prostaglandin-endoperoxide synthase 2 (PTGS2/COX2),
which is the most upregulated gene among 83 oxidative stress-
related genes in BJeLR cells after treatment with erastin or
RSL3 and is used as a pharmacodynamic marker for mast cell

tissue in mice exposed to erastin or RSL3 (Yang et al., 2014);
ChaC glutathione-specific gamma-glutamylcyclotransferase 1
(CHAC1/BOTCH) is the most upregulated gene after treatment
with systemic xc− inhibitors in vitro and provides a selective
pharmacodynamic marker for ferroptosis induced by system
xc− inhibitors (Dixon et al., 2014). After we grouped the samples
with 60 ferroptosis-related genes, we were able to observe
significant differences in tumor grade, stage, functions such as
angiogenesis, and EMT between the groups, indicating that the
ferroptosis process plays an important role in the occurrence and
development of EC.

The relationship between ferroptosis and the tumor immune
microenvironment remains elusive. To carefully study the tumor
immune microenvironment of EC, we performed ssGSEA to
evaluate the abundance of immune cells in different Fe.clusters
and the relationship between immune cells and prognosis.
We found that, in different Fe.clusters, there were significant
differences in the degree of infiltration of 21 types of immune
cells. This showed that there was heterogeneity in the immune
response between tumors, and ferroptosis is likely to play an
important role in it (Dou et al., 2020). Ferroptosis releases
damage-related molecular patterns that can be sensed by immune
cells to amplify the inflammatory response. With the advent of
immunotherapy, people are increasingly aware of the impact of
the immune microenvironment on cancer behavior and clinical
outcomes (López-Janeiro et al., 2021). Furthermore, we found
that activated CD8 T cells, eosinophils, CD56dim natural killer
cells, and activated B cells are good prognostic factors for EC,
which is basically consistent with the research results of the
previous research (López-Janeiro et al., 2021). Activated CD8 T
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FIGURE 6 | Correlation between ferroptosis score and molecular characteristics. (A) Correlation diagram between Fe.score and differential enrichment pathways.
The color depth represents the degree of correlation: yellow represents a positive correlation, and blue represents a negative correlation, and white represents
irrelevance. The size of the dot indicates the degree of correlation; the greater the absolute value of the correlation, the larger the point. p-Value < 0.01.
(B) Differences in the enrichment scores of related biological processes among the Fe.score groups. (C) Correlation between Fe.score and mutLoad_nonsilent.
(D) Correlation between Fe.score and mutLoad_silent. (E) Correlation between Fe.score and HDR. (F) Correlation between Fe.score and SNV_Neoantigens.
(G) Correlation between Fe.score and Indel_Neoantigens. (H) Correlation between Fe.score and CNA_frac_altered. (I) Correlation between Fe.score and
LOH_frac_altered. (J) Correlation between Fe.score and LST. MutLoad_nonsilent and mutLoad_silent indicate TMB, SNV_Neoantigens and Indel_Neoantigens
indicate neoantigen load, and CNA_frac_altered, LOH_frac_altered, and LST indicate the level of chromosomal instability. **p < 0.01 and ****p < 0.0001.
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FIGURE 7 | Correlation between ferroptosis score and clinical characteristics. (A) Somatic mutation spectrum of the high-Fe.score group. (B) Somatic mutation
spectrum of the low-Fe.score group. (C) Correlation between PTEN, TP53, KRAS, APC mutation, and Fe.score. (D) CNV peak map of the high-Fe.score group.
(E) CNV peak map of the low-Fe.score group. The difference in Fe.score for each clinical indicator (stage, grade, menopausal status, age, and fertility status) in
endometrial cancer samples. (H) Kaplan–Meier survival curve of Fe.score. (F) Violin chart of CNV mutation frequency in High Fe.score group and Low Fe.score
group. (G) The difference of Fe.score in clinical indicators in EC samples. ***p < 0.001 and ****p < 0.0001.

cells and eosinophils have been widely verified to have significant
antitumor effects (Sakkal et al., 2016; Loo Yau et al., 2021; Pauken
et al., 2021). On the other hand, some reports have demonstrated
reduced CD8 expression in cytotoxic tumor-infiltrating T cells,
which could limit antigen presentation and adaptative immune
response in EC (Pascual-García et al., 2016). Our results showed
the importance of immune cells in EC, which may guide future
immunotherapy strategies in these specific tumor subtypes.

We further analyzed the differentially expressed genes in
Fe.clusters and divided the samples into different Fe.gene.clusters
based on these genes. Univariate Cox regression analysis
obtained 204 prognosis-related genes, and through the random
forest model, we finally screened 13 feature genes (TUBB4A,
TMPRSS2, STX18, LINC01224, SLC25A35, CD7, COL23A1,
ZG16B, KCNK6, NWD1, C11orf63, GZMM, and NMU) as
ferroptosis gene signatures. The current research shows that
most of these 13 genes are closely related to the occurrence
and development of tumors, like the TMPRSS2 gene, which is

abnormally expressed in approximately 50% of cases of prostate
cancer and is a key driver of prostate oncogenesis (Hong et al.,
2020); COL23A1 plays an oncogenic role in clear cell renal cell
carcinoma (Xu et al., 2017), and LINC01224 is also closely related
to hepatocellular carcinoma and ovarian cancer (Gong et al.,
2020; Xing et al., 2020). However, at present, the roles of these
genes in EC are still unclear; whether these genes are involved in
the pathogenesis of EC through ferroptosis pathways and affect
prognosis may be worth studying in the future. Finally, through
PCA calculation, we obtained the Fe.score, and we verified that
it is a simple and effective prognostic indicator, which is better
than the previous prognostic model in EC (Deng et al., 2020).
The FIGO staging system and the histological typing are the
most commonly adopted classification for the treatment and
prognosis for EC patients, but there are still limitations (Yang
et al., 2016). Remarkably, a significant association has been
observed between our model and many clinical and molecular
features. This model can be further combined with FIGO staging
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FIGURE 8 | Immunotherapy results in the high- and low-Fe.score groups. (A) GDSC predicts the IC50 difference of five drugs between Fe.score groups.
(B) Kaplan–Meier survival curve between Fe.score groups in the bladder cancer dataset (IMvigor210). (C) The proportion of CR/PR and SD/PD between Fe.score
groups. (D) The differences in Fe.score among CR, PR, SD, and PD. (E) Fe.score 5-year receiver operating characteristic curve compared with other prognostic
models of endometrial cancer.

and/or other histological classifications to have more powerful
prognostic prediction capabilities and may also be an alternative
or complementary method for the molecular classification of EC.
It may also contribute to reasonable treatment and avoid under-
or overtreatment.

There are still some flaws in this study. When Fe.cluster was
divided into four categories, the overlapping difference genes
have only single digits, so the Fe.cluster D group has to be
removed before the difference analysis is performed. Fe.cluster
D had only a few samples, the expression of some genes
(PGD, G6PD, AKR1C1, AKR1C2, AKR1C3, and NQO1) was
particularly high, and some clinical indicators, such as BMI, were

very different from the other three clusters. However, whether
Fe.cluster D truly represents a special subtype with the same
clinical or molecular characteristics still needs to be verified by
more samples. When we perform ferroptosis score calculation,
we did not consider the negative eigen values. We hope that we
can re-establish the model and reanalyze the negative eigen values
in the future. In addition, since there are no immunotherapy
results for EC, we used bladder cancer immunotherapy data
(large sample size) to evaluate whether the Fe.score can predict
the effect of immunotherapy. Although our results were validated
in the bladder cancer data set and the previous literature
has also verified that using other cancer data sets is feasible
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(Wang et al., 2020; Zhang X. et al., 2020), we hope that there will
be EC data sets in the future to verify our model.

CONCLUSION

Fe.score can not only reflect the immunological and carcinogenic
status but also predict the prognosis of patients. In addition,
Fe.score provides additional prognostic value for existing FIGO
and molecular subtypes. In conclusion, our research has explored
the relationship between EC and ferroptosis in detail, provides
comprehensive insights for ferroptosis-mediated EC mechanism
research, and emphasizes the clinical application potential of
Fe.score-based immunotherapy strategies.
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