
REVIEW

Using measures of single-cell physiology and physiological state
to understand organismic aging

AlexanderMendenhall,1* Monica Driscoll2* and Roger Brent1*

1Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle,

WA, USA
2Department of Molecular Biology and Biochemistry, Rutgers, The State

University of New Jersey, Piscataway, NJ, USA

Summary

Genetically identical organisms in homogeneous environments

have different lifespans and healthspans. These differences are

often attributed to stochastic events, such as mutations and

‘epimutations’, changes in DNA methylation and chromatin that

change gene function and expression. But work in the last

10 years has revealed differences in lifespan- and health-related

phenotypes that are not caused by lasting changes in DNA or

identified by modifications to DNA or chromatin. This work has

demonstrated persistent differences in single-cell and whole-

organism physiological states operationally defined by values of

reporter gene signals in living cells. While some single-cell states,

for example, responses to oxygen deprivation, were defined

previously, others, such as a generally heightened ability to make

proteins, were, revealed by direct experiment only recently, and

are not well understood. Here, we review technical progress that

promises to greatly increase the number of these measurable

single-cell physiological variables and measureable states. We

discuss concepts that facilitate use of single-cell measurements to

provide insight into physiological states and state transitions. We

assert that researchers will use this information to relate cell level

physiological readouts to whole-organism outcomes, to stratify

aging populations into groups based on different physiologies,

to define biomarkers predictive of outcomes, and to shed light on

the molecular processes that bring about different individual

physiologies. For these reasons, quantitative study of single-cell

physiological variables and state transitions should provide a

valuable complement to genetic and molecular explanations of

how organisms age.
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Background: stochastic events and biological
outcomes

Lifespan and its newer (and obscurely begotten; Rivlin, 1992) cousin,

healthspan, measurable in units of time (or even Quality Adjusted Life

Years; Kaplan, 1993) are prime examples of complex quantitative

phenotypes not simply determined by genotype and environment.

Genetically identical Saccharomyces cerevisiae and Caenorhabditis

elegans raised in homogeneous environments have different lifespans

(Mortimer & Johnston, 1959; Klass, 1977; Kirkwood & Finch, 2002); in

both organisms, the difference in the age between the first and last

deaths in small populations can be more than fivefold. Similarly, human

monozygotic twins, raised in similar environments, have different

lifespans (Herskind et al., 1996). Genetically identical organisms also

show different healthspans. For example, human twins of the same age

show differences in various tests of strength (Arden & Spector, 1997;

Silventoinen et al., 2008). In middle adulthood, some isogenic worms in

homogenous environments are immobile, whereas others move around

youthfully (Hosono et al., 1980; Herndon et al., 2002). Moreover, in

isogenic populations, interindividual differences in other quantitative

phenotypes that measure healthspan increase with age (Kirkwood &

Finch, 2000; Herndon et al., 2002).

Broadly speaking, the observed variation in lifespan and increased

variation in health over time is consistent with the idea that decline in

health after maturity and eventual death by old age are the consequence

of random events (Kirkwood & Finch, 2000; Hayflick, 2007). In this view,

cell and organismic death the end result of the progressive loss of

function caused by chains of these events, and the fact that these the

multiple events occur randomly causes cells and animals to become more

physiologically distinct with age (Martin, 2009). In this review, we

emphasize this view in contrast to the idea that events during decline

and aging are the result of the workings of an explicit genetic program

such that which governs metazoan development.

For lifespan, healthspan, and other complex quantitative phenotypes,

researchers normally deploy the word ‘stochastic’ to denote nonenvi-

ronmental, nongenetic causes of differences (Kliebenstein, 2011) that

they do not otherwise understand. When researchers in the aging field

have studied stochastic differences in lifespan and healthspan, they have

frequently examined lasting changes caused by mutations (Strehler,

1986; Melov et al., 1995, 1999; Dolle & Vijg, 2002; Dolle et al., 2002;

Vijg & Dolle, 2002; Vijg & Suh, 2013) and ‘epimutations’: (e.g., changes

in DNA methylation, Fraga et al., 2005; Greer et al., 2015; and/or

histone modifications, Greer et al., 2010). It seems possible that some of

this emphasis on mutations and epimutations as causal may have been

due to the very power of the methods, some general, some of which

were specifically and cleverly devised, allowing detection of aging-

related changes in DNA and chromatin. We imagine that additional

kinds of stochastic events that might contribute to aging. For example,

consider differential segregation of regulatory molecules or molecular

complexes present in small number (Delbr€uck, 1940, 1945; Spudich &

Koshland, 1976) and spontaneous or signal-triggered changes in

conformation of proteins that form aggregates affecting cell function

(Cox, 1971; Jarosz et al., 2014a,b) or causing cell toxicity (Morley et al.,

2002; Brignull et al., 2006). In that spirit, we review recent technical and

conceptual progress that should enable a complementary experimental

approach. It has now become possible to observe and quantify changes
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in physiology and in physiological state in living single cells in intact

animals over time. This newfound ability will allow ordering of events

and changes of cell state as animals age, definition of the cell- and

organism-level consequences of the changes in cell function, and

suggest testable hypotheses for the molecular mechanisms that bring

these about, without prior assumptions as to causation.

The complementary concept of physiological states

In this review, we will build on an older, premolecular picture of

biological function, one we believe may be particularly relevant to an

understanding of aging. In this view, biological systems, including cells

and organisms, exist in discrete physiological states. These states are

defined by different combinations of observable characteristics that

persist over time. Causal events, which include all of the different

stochastic events mentioned above, but whose nature does not need to

be specified, can induce the system to make a transition from one

physiological state to a different state. This new state again tends to

persist over time, until transition to another state. The temporal

progression of biological systems, during postembryonic-developmental

aging, or in response to defined events that affect function, can thus be

viewed as a set of transitions from state to state. In medicine, this view is

partly explicit in work of Cannon (Cannon 1929).

Here, we develop and use a framework and vocabulary (Box 1) for

describing these physiological states and state transitions. This roots of

the framework are work by 19th and early 20th century physicists, who

realized that changes in the values of variables representing different

properties of dynamical systems over time could define trajectories

through a high-dimensional space (Gibbs, 1902; Nolte, 2010). Subse-

quently, the use of values of variables representing properties of systems,

and the metaphor that these systems described trajectories through

high-dimensional phase spaces or state spaces over time, came to be

used in disciplines as diverse as engineering and meteorology (Lorenz,

1963). Significantly, this framework represents and first focuses on of

the states, state transitions, and trajectories, and the consequences of

these things, rather than on their causes.

One application of such thinking to whole-organism physiology came

from work in the 1970s by a group of physicians Siegel et al. (1974,

1979). They used measurable quantities (e.g., cardiac output, heart rate)

in critically ill patients after surgery, and plotted their values in high-

dimensional space. They used ranges of values of these variables to

define five prototype states (Siegel et al., 1979). For different patients,

the values of these variables over time described different, stereotyped

trajectories from cluster to cluster, or state to state, as those patients

recovered, or as they became sicker and died. Later, Rixen et al. (1996)

showed that patients in septic shock moved between seven physiological

states defined by 17 measured variables, and that different patients

followed particular ‘routes’ between these states. Figure 1 shows a

general illustration of this concept applied to human disease states. It

shows different prototypical states, in a physiological state space defined

by only three variables, and potential trajectories described by different

patients making transitions between these states. This framework thus

naturally represents changes in system function over time.

Newfound abilities to monitor physiological states
in single cells

The trigger for this review is the fact that, enabled by the development

of fluorescent proteins, it is now possible to observe and quantify

physiological variables in single cells in living organisms over time

(Mendenhall et al., 2015). Table 1 shows different classes of physiolog-

ical variables that are now quantifiable by such means. These include

variables whose values are continuous and that define ‘classical’

physiological quantities; consider, for example, pH or redox. They also

include variables whose values are integer quantities; for example,

consider the number of unrepaired double-stranded DNA ends a cell has

(quantified by punctate signal from a fluorescent derivative of the

bacteriophage Mu gamma protein; Shee et al., 2013). These variables

also include measures of quantities only defined by new discovery.

Consider, for example, the conceivable single-cell variables measuring

cell nutritional and growth factor status, now definable by live cell

measurement of activity of the mTORC1 complex (Table 1). Twenty five

years ago, Tor (Brown et al., 1994) and the mTORC complexes were

Box 1 Terms and concepts pertinent to the study of physiological

states

• Variables describe phenomena whose values vary and whose

values we can measure.

• Cell physiological variables are variables whose values reflect

aspects of cell function.

• Values of cell physiological variables can be continuous, or

discrete.

• Cell physiological variables can quantify states, events, and

processes.

• Physiological variables that quantify events are discrete. For

example, the value of a variable called double-stranded DNA

breaks would be an integer quantity, and value of a variable

called nuclear membrane integrity might be 0 or 1.

• Physiological variables that quantify processes are typically

continuous, or best viewed as continuous, even if integer. For

example, the number of protons exported from the cell per unit

time is a continuous variable.

• The possible range of values that a physiological variable can

assume defines a dimension in a physiological state space. A

physiological state space has as many dimensions as it has

physiological variables.

• Physiological states can be defined arbitrarily, by the researcher,

as ranges of values of physiological variables. For example, we

might define extreme acidity as state defined by a pH between

0 and 6.5.

• Physiological states can also be defined by direct experiment, as

clusters of values of different variables within a population or

over time, that are close in distance within the physiological

state space.

• When present, such clusters define basins of attraction within

the state space.

• For individual cells and organisms, changes in the values of

physiological variables over time describe trajectories in the

physiological state space.

• In some cases, over time, the trajectories of cells and organisms

described can be considered as movement from one basin of

attraction to another.

• Some physiological variables measure, and some physiological

states reflect, cellular pathologies.

• We refer to a trajectory through physiological state space that

traverses multiple states associated with cellular pathologies as a

decline path. A decline path that ends in cell death is a failure

path. A decline path that ends in organismdeath is a fatality path.
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unknown, and researchers could not have thought to measure variables

that depended on cellular mTORC1 function until the relevant molecules

nor their functions has been described. Finally, this also includes ‘systems

level’ variables (e.g., G, which measures the general ability of a cell to

express proteins; Colman-Lerner et al., 2005), which were previously

unknown (Table 1). Such variables are computed from measurements of

multiple reporters in single cells. Some of the physiological states defined

by ranges of values of these variables are consequential (see below).

The technical ability to quantify classical and new physiological

variables over time is well matched with representation and analysis via a

modest generalization and extension of the state space metaphor. We

detail this generalization in the Box 1. Five aspects of this generalization

merit mention here. First, any given physiological variable may or may

not be pertinent to the understanding of a given process, but many

quantities are easy to measure, and, once measured, their values defines

a coordinates on one axis in a higher dimensional space. Second, a

researcher can, at will, define a range of values for a single variable or set

of variables as a physiological state (e.g., the range of values of pH lower

than 6.5 can define a cellular state of extreme acidity). Third, even

without the guidance of researchers, measurements of physiological

variables can themselves define different physiological states. Such states

become apparent as clusters of values of variables within given ranges,

common to many different cells or organisms, and/or maintained by the

same cells or organisms over time. We can refer to either sort of cluster

as a basin of attraction in the state space. Fourth, changes in the values

of these variables over time define trajectories in the state space,

including (pertinent to morbidity and aging) decline paths and failure

paths (Box 1). Fifth, the state space representation says nothing about

causes (stochastic or otherwise) of the state transitions, nor about

mechanisms (molecular or otherwise) by which the values of variables

that define given states are maintained. In this representation, it is the

states, state transitions, and trajectories among the states that are the

objects of first-order study – not the particular molecular mechanisms

that bring these about.

We review below a number of ways in which this newly possible study

of cell physiological states, state transitions, and trajectories, and their

relation to whole-organism measures of physiology, has the potential to

complement existing genetic and molecular pictures of organismic

aging, and to guide new research.

Quantification of reporter outputs in living single
cells can define ‘systems level’ physiological states

Knowledge of some of the new single-cell and whole-organism

physiological states did not come from testing of previous hypothesis,

but rather directly from consideration of experimental data. One set of

insights came from our studies of a particular signal transmission

pathway in single yeast cells (Colman-Lerner et al., 2005), the S. cere-

visiae pheromone response system. These experiments depended on the

development of accurate means to quantify reporter signal from cells

with low-measurement error (Gordon et al., 2007), including accounting

for different rates of fluorophore maturation and inhibition of cell cycle

progression to eliminate that source of variability. By measuring

fluorescent signal from pheromone-inducible reporter genes and from

control reporter genes, in homogenous cultures of isogenic cells, in

which cell cycle progression had been arrested, we quantified different

sources of variation in cell signaling and in response. Importantly, only a

small proportion of total cell-to-cell variation was caused by random

fluctuations in gene transcription and translation (‘expression noise’ or

‘intrinsic noise’, c). Instead, cell-to-cell variation in signaling and response

was dominated by differences in the capacity of individual cells to

Table 1 Some types of physiological variables now quantifiable in single cells

Type of variable Example variable Example quantification methods Example state terms

Continuous variables

defining classical states

pH; glutathione redox Signal from fluorescent protein derivatives engineered to

change emission intensity or emission spectrum on change

in measured condition

‘Acidic’; ‘highly reducing’

Discrete or integer variables Double-stranded DNA breaks;

number of specific mRNAs

Signal from fluorescent protein derivative engineered to

form patches on double-stranded DNA ends (DSEs); signal

from fluorescent protein derivative that binds sites in 30

region of mRNAs transcribed from engineered genes

‘Possessing double-stranded

breaks’; ‘numerous copies of

a particular mRNA’

Continuous variables

defining

other nonclassical states

‘Growth-factor-dependent-

mTORC1 status’

Signal from fluorescent protein derivative that changes

FRET signal on phosphorylation by mTORC1

‘Highly growth factor

stimulated’, ‘rapamycin

inhibited’

Continuous variables defining

‘systems level’ states

G (gene expression capacity) Cell’s position on a correlated variation axis made by plotting

the outputs of two different promoters expressing two

different fluorescent proteins

‘High gene expression capacity’

Fig. 1 States and trajectories in physiological state space. Hypothetical plot shows

values of three physiological variables measured in different individuals at different

times. Measurements define clusters of points close in Euclidean distance in this

space, here denoted by colored circles. Identification of such clusters is a

quantitative means allowing researchers to define, operationally, qualitatively

distinct physiological states. In the example here, the different colors correspond to

states qualitatively used to describe health and sickness, and arrows indicate

transitions between different states observed in different individuals. Values of

variables from a given individual over time define a trajectory in this space.

On single cell physiological states, Mendenhall et al.6
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transmit signals through the pathway (‘pathway capacity’, P) and to

express proteins from genes (‘expression capacity’, G). We encountered

G when we found that the amount of fluorescent signal from the

pheromone-induced reporter was highly correlated with that from

control, constitutive promoters. Cell-to-cell variation in the correlated

ability of isogenic cells to express different reporters defined cell-to-cell

differences in G (Fig. 2). Cells with high G expressed proteins at a higher

rate and increased in volume more rapidly. Differences in G persisted for

many hours. G thus defined a hitherto undefined single-cell physiological

variable, and to define cells within a given range of values of G as being

in a particular, persistent physiological state.

Additional insights came from our work in C. elegans (Rea et al.,

2005; Mendenhall et al., 2012; Fig. 3). In 2005, Rea et al. studied

isogenic worms raised in the same environment that carried a reporter

gene in which the hsp-16.2 promoter drove synthesis of GFP (here,

Phsp-16.2::gfp). Young adult animals differed greatly in the amount of

green fluorescent signal they showed after a heat shock. This difference

was consequential: bright green worms lived longer and were more

resistant to subsequent stress. The authors suggested that differences in

the amount of HSP-16.2 protein itself were ‘probably not responsible for

the observed differences in survival but that the differences in fluores-

cence probably reflected a hidden, heterogeneous, but now quantifi-

able, physiological state that dictates the ability of an organism to deal

with the rigors of living.’

Our subsequent studies showed that the bulk of the fluorescent signal

came from the 20 individual cells (Seewald et al., 2010). Subsequentwork

to develop low measurement error methods for single cells showed that

the reporter signal could be quantified in individual cells in anesthetized

live animals (Mendenhall et al., 2015; Fig. 4). This work confirmed the

correlation between the state of high GFP expression in young adulthood

and lifespan (Mendenhall et al., 2012) and identified a difference in

healthspan (Cypser et al., 2013); animals in the state defined by high GFP

expression in young adulthood showed more motility at a given age. This

work thus defined a physiological variable, Phsp-16.2-GFP-signal, whose

value in turn defined a physiological state,measurable in single cells,which

correlates with healthspan. This state of high expression was heritable

(Cypser et al., 2013) and may be due to the same organism-to-organism

differences in G observed in S. cerevisiae.

Quantification of existing fluorescent reporter
outputs allows single-cell measurement of
numerous additional physiological states

In addition to these ‘systems level’ single-cell physiological variables,

different kinds of reporters now allow quantification of numerous

additional physiological variables in living single cells. Important classes

of reporters now include:

Reporters that quantify induction of gene expression by fluorescent

protein signal. In the experiments that correlated the expression of the

Phsp-16.2::gfp reporter with lifespan, quantification of the physiological

variable depended on a reporter in which production of a particular

inducible promoter drove synthesis of the fluorescent protein. A large

number of such ‘promoter fusion’ or ‘transcriptional’ reporters for

physiological variables thought to be relevant to aging already exist;

for example, reporters for reactive oxygen species in C. elegans, in

which the sod-3 superoxide dismutase promoter drives synthesis of

GFP (Henderson et al., 2006 and now in single copy – A. M.

unpublished). Information on particular transcripts induced under

different conditions, to identify particular inducible promoters

researchers can use to make new reporters, is now widely available.

Reporters that quantify induction of gene expression by enabling

visualization of mRNAs in vivo. More recently, complementary

technology that enables direct quantification of mRNAs in single cells

without use of reporter gene products has been developing rapidly in

yeast. These methods quantify fluorescent signal from RNA bacterio-

phage coat protein – fluorescent protein fusions, which bind repeated

binding sequences engineered into the noncoding RNA of the gene

whose transcript will be counted (Larson et al., 2011; Lenstra &

Fig. 2 Quantification of a single-cell physiological variable, G, in Saccharomyces

cerevisiae. Top Panel. A cell containing two reporter genes after (Colman-Lerner

et al., 2005). Signaling System 1 activates Promoter 1, P1, which directs synthesis

of a cyan fluorescent protein. An unrelated system, Signaling System 2, activates

an unrelated promoter, Promoter 2, which directs the synthesis of yellow

fluorescent protein. Bottom Panel. Correlated output of the reporter genes in a

population of isogenic single cells (Colman-Lerner et al., 2005). Each dot shows

YFP and CFP signal from a single cell, quantified by careful light microscopy

(Gordon et al., 2007; Bush et al., 2012). Gray arrow shows correlation line.

Correlated variation defines a new single-cell physiological variable, G, a measure

of the general ability of each cell to express genes into proteins. Cells with higher

correlated expression have higher G. Red circles show two cells, one with low G,
one with high G. Cell states defined by this variable persist over many hours.

Consequences of a high G state include heightened expression of all measured

genes, and a more rapid increase in cell volume (Colman-Lerner et al., 2005).

On single cell physiological states, Mendenhall et al. 7
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Larson, 2015). We imagine that this direct RNA quantification will be

applied to measure outputs from inducible promoters in single cells of

C. elegans and other multicellular model organisms now used in aging

research.

Reporters that quantify cellular events by changes in the subcellular

localization of fluorescent protein signal. Consider a fusion protein

comprised of the C. elegans FOXO3 homolog, daf-16 (Henderson &

Johnson, 2001) and a fluorescent protein moiety. Upon stimulation

with insulin-like growth factors or whole-animal treatments that

induce insulin-like growth factor signaling, FOXO3/DAF-16 is

excluded from the nucleus (Datta et al., 1999; Henderson &

Johnson, 2001). The ratio of nuclear localized to cytoplasmic FOXO3

fusion proteins thus provides a real-time measure of the amount of

insulin signaling. Such use of protein movement to different

subcellular locations to quantify signaling events precisely is now

very well established in yeast and mammalian cells (Datta et al.,

1999; Cai et al., 2008; Baltanas et al., 2013; Blaustein et al., 2013;

Bush & Colman-Lerner, 2013).

Reporters that quantify ‘classical’ and ‘new’ physiological variables by

changes in emission or excitationfluorescence spectra. The last 10 years

has seen a great deal of work developing fluorescent protein derivatives

in which the proteins themselves are the reporters. In these proteins,

changes in fluorescent resonance energy transfer in dual fluorophore

proteins, or changes in the spectrum of light emitted by single

fluorophore proteins, can quantify a number of ‘classical’ cell physio-

logical variables. Incorporation of appropriate localization moieties into

such proteins allows them to quantify these variables in different

subcellular locations and compartments. ‘Simple’ variables that can be

quantified by such fluorescent protein reporters include pH (pHlourin

and super ecliptic pHlourins (Miesenbock et al., 1998), pHRed (Tantama

et al., 2011)), redox states (e.g., Grx1-roGFP2 to quantify GSH/GSSG

redox; Gutscher et al., 2008), level of H202 (HyPer; Lukyanov &

Belousov, 2014), levels of calcium (Zhao et al., 2011), ATP/ADP ratio

(Berg et al., 2009), and the ratio of NAD+/NADH (Hung et al., 2011).

As mentioned, the development of sensors that respond to the

activity of newfound molecules has also opened the way to definition

and measurement, in single cells, of aging-relevant variables that

20 years ago were unknown. For example, the discovery of the

metazoan mTORC1 (Kim et al., 2002) complex enabled the develop-

ment of sensor molecules for its activity (Zhou et al., 2015). The

development of such sensors makes it possible to define and quantify

variables related to mTORC1 activity such as: nutritional-mTORC1-status

and growth-factor-dependent-mTORC1-status. The values of these two

new variables would reflect, respectively, cellular nutrient supply, and

stimulation by extracellular growth factors, and would change in

response to inhibition by drugs such as rapamycin.

Advances in gene technology and image cytometry
support better live-cell measurement of states

At the same time as the above developments demonstrate the relatively

broad scope now available to design reporters to quantify additional

physiological variables, other technical advances have made it easier to

assemble DNA for new reporter constructs, to make transgenic organisms

that contain the constructs, and quantify reporter output. Rapid assembly

of reporter constructs is aided by improved in vitroDNAassemblymethods

and widespread adoption of construction by homologous recombination

in yeast (Sands & Brent, 2015). Rapid construction of transgenic strains

with well-behaved reporters in C. elegans has been greatly aided by the

development of methods that allow integration of reporters at defined

chromosomal sites (Frokjaer-Jensen et al., 2008). Moreover, in all organ-

isms, construction of well-defined reporter strains has been greatly aided

by CRISPR/Cas9 methods that use engineered proteins and RNAs to direct

DNA binding, nicking, and cleavage to defined sites throughout the

genome (Frokjaer-Jensen, 2013; Doudna & Charpentier, 2014).

Advances in microscopy and improvement in protein fluorophores

have increased the sensitivity and accuracy with which physiological

variables can be quantified. Key improvements include increasing use of

fluorescent lifetime microscopy to quantify physiological variables (e.g.,

NADH) (Stringari et al., 2011) and to increase signal to noise (Zeug et al.,

2012), and steady improvement in means to illuminate the volume to be

interrogated (Gao et al., 2014; Winter & Shroff, 2014; Chen et al.,

2014). They also include lower technology low-measurement-error

microscopic methods to facilitate longitudinal measurement of the same

set of variables from designated cells in an organism as an organism ages

(Mendenhall et al., 2015). Meanwhile, steady increases in the numbers

of different emission maxima, excitation maxima; and fluorescent

lifetimes of fluorescent proteins (Chudakov et al., 2010; Sands et al.,

2014) have increased the numbers of distinguishable signals that can be

quantified from the same cell.

Fig. 3 Interindividual differences in gene expression in isogenic populations of C. elegans and differences in lifespan predicted by differences in gene expression. Data

replotted from (Mendenhall et al., 2012). Left Panel. Distribution of values of reporter expression among animals in the population. Vertical bars show brightest and dimmest

10% of animals. Right Panel. Animals in the highest range of values for gene expression (solid bright green line) live longer than those in the lowest range (dashed darker

green line). Therefore, in this example, both high and low ranges of values of the physiological variable, Phsp-16.2-GFP-signal, operationally define distinct and consequential

whole-organism physiological states.

On single cell physiological states, Mendenhall et al.8
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Maps of trajectories in state space might help frame
quantitative single-cell physiological measurements
as biological explanations

The above technological developments will enable collection of dozens

of physiological variables from single cells in living animals. They will also

allow its interpretation within the conceptual framework of high-

dimensional physiological state space. This framework provides means to

view temporal progression, and so becomes more powerful when

coupled to longitudinal measurements of the same cell or organism over

time. Figure 4 shows a simple example of this, the collection (A and B)

and plotting of (C) three variables from two cells in the intestine, before

and after exposure of animals to ethanol. Figure 5 shows a more

complex, hypothetical example. In this example, the difference in

measured physiological variables for a particular cell in different animals

increases with age. In this example, the increased variation is most

marked in animals in a low-G physiological state.

For aging research, we believe this picture of the movement of cells in

trajectories through physiological state space might be particularly

appropriate. There are a number of reasons for our belief. One is that

understanding of aging has developed sufficiently to permit listing of a

finite number of processes believed to contribute to it (National Institute

Fig. 4 Single-cell trajectories through

physiological state space defined by

changes in the values of reporter gene

expression. (A) Layout of intestine cells in

the adult worm, showing cells int4V and

int4D. (B) Induced expression of Phsp-17::gfp

and Phsp-16.2::mCherry reporters in cells

int4V and int4D in control animals and

animals treated with an acute stimulus

(ethanol exposure). (C) Trajectories of

measured int4V and int4D cells from

control- and ethanol-exposed animals 16 h

after 30 min 7% ethanol exposure, plotted

in a three-dimensional state space whose

axes correspond to expression of the Phsp-17
and Phsp-16.2 reporters and Pvit-2 reporters.

On single cell physiological states, Mendenhall et al. 9
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on Aging 2011; Lopez-Otin et al., 2013). Defining and enumerating (are

there few, or many?) common decline and failure paths in different cell

types will allow ordering of their steps with respect to these known

processes. A second is that longitudinal physiological studies of cells in

aging organisms will enable experimentation (both hypothesis-directed

and discovery-driven) to understand single-cell consequences of genetic

and pharmacological interventions already known to alter whole-

organism lifespan and healthspan. A third is to enable and track

experimentation designed to suggest or test hypotheses for additional

molecules and molecular events responsible for entry into, maintenance

within, and exit from, physiological states. Should additional molecular

mechanisms be identified, researchers can use those to devise directed

pharmacological or genetic interventions to manipulate the probability

of state transitions, for purposes of prevention and therapy.

Single-cell physiological measurements should aid
understanding of whole-organism phenotypes

We should be explicit as to how measurements of single-cell variables

might inform studies of whole-organism physiology. The first way is that

live cell measurements are nondestructive, and allow correlation of their

values with whole-organism measurements at some later point. A

second is that many of the variables described here, such as redox, or

hypoxia, are quantified in single cells because that is the only way, or the

most accurate way, to measure them. Values are then averaged from

dozens or hundreds of cells to permit assertions about the physiological

state of the cell population or whole organ. A third is the ability to learn

more than is revealed by population averages. It has long been clear

(Ferrell & Machleder, 1998) and is now a truism, that measurements

from large numbers of single cells can reveal heterogeneity in values not

apparent from whole-population (or whole organ) measures. Revealed

heterogeneity (Bahar et al., 2006) may be particularly valuable to aging

researchers, whose work (when it does not directly address mortality) is

still particularly concerned with phenomena of pathology and morbidity.

For example, suppose that the value of a particular variable was zero in

some cells (widely distributed or spatially grouped) within an organ, and

cells with a zero value were known to be on a trajectory associated with

a particular kind of necrotic death. Such knowledge might provide

insights into possible causes of organ failure not apparent from existing

pathological criteria or from population measurements. Such quantita-

tive knowledge might allow operational definition of state transitions

now articulated in qualitative terms like ‘tipping points’ (An et al., 2012).

That said, we realize that defining relationships between the cell level

variables associated with aging-related states and the organism-level

variables that measure organismic health and lifespan will not always be

easy. For example, in our ownworkwith aging isogenic worms cultured in

the same environments, we observed three motility response states

(Herndon et al., 2002). When touched, animals in state A moved

sinusoidally away from a touch stimulus. Animals in state B reacted, but

moved away nonsinusoidally, and only when prodded with a wire.

Animals in state C did not move away from the stimulus but twitched at

heads and/or tails. Animals in states B and C animals showed correlated

changes in muscle cell ultrastructure. All animals followed the same

trajectory (state A to state B or C, state B to state C and then to death), but

the timing of state transitions and time in each state differed among

individuals. These experiments thus definedwhole-organismphysiological

states associated with decline in function, and demonstrated interindi-

vidual differences in the timing of state transitions thatwere not caused by

differences in the animal’s genetics or known environment and that

correlated with changes in muscle cell ultrastructure in fixed cells from

killed animals. But there the analysis stopped. No matter the sorts of

relationship we might be interested in elucidating – whether temporal,

causal, molecular, or simply ordinal, the linkage between the whole-

organism phenotype and the changes in fixed cells still remains unclear.

The obvious forward path is to combine single-cell and whole-animal

measures in living animals over time. For example, in aging C. elegans, an

increasing number of intestine cells lose DAPI-stainable DNA, whereas in

daf-2mutants,which live longer,more intestine cells retainDAPI-stainable

DNA (McGee et al., 2011). At the moment, no relationship, even a

temporal or ordinal one, between intestine cell DNA loss and organismic

death has been defined. Clearly, definition of such relationships must

precede deeper explanations. Such deeper explanations will then require

Fig. 5 Hypothetical single-cell trajectories in a three-dimensional state space during aging. Figure shows values for three physiological variables in a particular cell in young

and old Caenorhabditis elegans. Young animals and old animals are in two groups collected by sorting as in Fig. 3: long-lived, bright, high G and short-lived, dim, low G. In
this example, values for all three variables were lower in older animals. Moreover, cell-to-cell variation in the measured variables was higher in older animals, with the highest

variation in the dim, low G group. In practice, future experiments will likely measure more than three variables per cell and statements about the trajectories defined by

changes in values will be based not on inspection of plots but on computed changes in position in the appropriate high-dimensional space.
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coupling knowledge of cell biology and with deep understanding of the

biology of the whole organism (or, in humans, clinical insight).

Although it will be difficult, we confess to finding the idea that

investigators may soon possess numerous single-cell level physiological

variables to relate to organism-level variables to be exciting. Such

knowledge will aid hypothesis formation, and so guide molecular

studies of how these states might exert their effects on those

particular cell biological processes now viewed as fundamental to

aging (National Institute on Aging 2011; Lopez-Otin et al., 2013). As

mentioned, such knowledge should therefore help to suggest new

molecular targets for pharmacological intervention or germline genetic

manipulation. But even before such work could suggest targets,

knowledge of the, values of physiological variables may help stratify

health and disease states now thought to be the same. Studies in

model organisms may define variables that affect the probability of

particular state transitions; such variables will define new ‘biomarkers’

(Baker & Sprott, 1988) predictive of future outcomes. In humans,

stratification via biomarker assay based on single-cell physiological

variables might eventually guide preventive and therapeutic interven-

tions tailored to the physiological states of particular patients. Put into

different words, for individual patients, assay of physiological variables

would provide a personalized data type to complement the person-

alized genomic and other ‘big-data’ types (Council, 2011) that are

now envisioned as the basis for the development of a ‘precision

medicine’ (Handelsman, 2015).

Physiological understanding as a complement to
genetic and molecular understanding

We write this 15 years into the 21st century. During the previous

century, the study of aging made real progress. A large contribution to

this increased understanding came from advances in genetic concepts

and methods. These allowed controlled experiments to study the

consequences of experimental interventions in populations of genetically

identical organisms (Pearl, 1928), and established lifespan and other

defined phenomena associated with health as quantitative phenotypes.

Later genetics, used in concert with the tools of molecular biology,

allowed isolation of genes that affected lifespan (Klass, 1983; Friedman

& Johnson, 1988), and analysis of how the gene products caused the

phenotypes (Ogg et al., 1997). By analogy, advances in 21st century

methods that allow rigorous definition of cell physiological states may

now aid understanding of additional complex phenotypes pertinent to

organismic health and lifespan. The prospects for using concepts and

methods from near-future physiology to understand and eventually

manipulate longevity and health now seem bright.
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