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Simple Summary: An estimated ~25–30% of patients with advanced prostate cancer (PCa) develop
the aggressive and lethal form of the disease known as treatment-induced neuroendocrine prostate
cancer (t-NEPC). Owing to lack of treatment options, the identification of the underlying molecular
mechanisms that propagate the t-NEPC phenotype is critical towards developing novel therapeu-
tic strategies against advanced PCa. Further, the roles of extracellular vesicles (exosomes) and
microRNAs—an increasingly recognized and key mode of propagation of the NEPC phenotype—
remain elusive. Our studies reveal that TBX2 promotes SOX2- and N-MYC- driven t-NEPC through
regulation of the intermediary factor—miR-200c-3p; and that TBX2/miR-200c-3p/SOX2/MYCN sig-
naling can promote t-NEPC via both intracellular and exosome-mediated intercellular mechanisms.

Abstract: Deciphering the mechanisms that drive transdifferentiation to neuroendocrine prostate
cancer (NEPC) is crucial to identifying novel therapeutic strategies against this lethal and aggressive
subtype of advanced prostate cancer (PCa). Further, the role played by exosomal microRNAs (miRs)
in mediating signaling mechanisms that propagate the NEPC phenotype remains largely elusive. The
unbiased differential miR expression profiling of human PCa cells genetically modulated for TBX2
expression led to the identification of miR-200c-3p. Our findings have unraveled the TBX2/miR-
200c-3p/SOX2/N-MYC signaling axis in NEPC transdifferentiation. Mechanistically, we found that:
(1) TBX2 binds to the promoter and represses the expression of miR-200c-3p, a miR reported to be
lost in castrate resistant prostate cancer (CRPC), and (2) the repression of miR-200c-3p results in the
increased expression of its targets SOX2 and N-MYC. In addition, the rescue of mir-200c-3p in the
context of TBX2 blockade revealed that miR-200c-3p is the critical intermediary effector in TBX2
regulation of SOX2 and N-MYC. Further, our studies show that in addition to the intracellular mode,
TBX2/miR-200c-3p/SOX2/N-MYC signaling can promote NEPC transdifferentiation via exosome-
mediated intercellular mechanism, an increasingly recognized and key mode of propagation of the
NEPC phenotype.

Keywords: exosomes; N-MYC; SOX2; TBX2; treatment-induced neuroendocrine prostate cancer;
miR-200c-3p
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1. Introduction

Androgen deprivation therapy (ADT) remains the cornerstone of treatment for ad-
vanced prostate cancer (PCa). However, relapse occurs invariably in all advanced patients
with adenocarcinoma when the disease manifests as castrate-resistant prostate cancer
(CRPC). Up to 25% of CRPC then progresses to neuroendocrine prostate cancer (NEPC),
characterized by aberrant expression of neuroendocrine lineage markers and loss of andro-
gen receptor signaling [1,2] This phenomenon has interchangeably been referred to in the
literature as plasticity, tumor subtype switching, NEPC transdifferentiation, or treatment-
induced NEPC (t-NEPC). Although NEPC can arise de novo in rare cases (0.5–2%), t-NEPC
is increasingly being recognized as a variant of ADT-resistant CRPC that arises as a conse-
quence of therapy [3–5].

These NEPC cells, which occur as scattered foci within the larger backdrop of CRPC,
share molecular features with small-cell carcinoma, are aggressive in nature, and constitute
a major therapeutic challenge in the clinical management of advanced PCa due to their
unresponsiveness to even second-generation ADTs such as enzalutamide. The inherent
pathophysiology of the NEPC that exists as scattered foci may therefore offer clues into
the development and sustenance of the phenotype. Furthermore, NEPC variants have
increased following the use of the newer ADTs such as enzalutamide, compounding the
problem, and presenting a clinical conundrum [3–5]. Therefore, identifying the relevant
molecular/signaling mechanisms that potentiate t-NEPC/NEPC transdifferentiation, and
more importantly, deciphering how PCa cells communicate with each other in propagating
the NEPC phenotype is central to efforts in designing novel and effective therapeutic
modalities against advanced PCa.

Although progress has been made in the recent years in identifying a few molecular
drivers of t-NEPC/NEPC transdifferentiation including SOX2 and N-MYC [6–13], the
signaling mechanisms that foster the NEPC pathophysiology particularly in the context of
the intercellular communication between PCa cells in sustaining the phenotype remains
largely elusive.

Extracellular vesicles (EVs), particularly exosomes, have in recent years been rec-
ognized as key mediators of cancer progression and metastasis [14–17]. MicroRNAs
(miRs)—a component of the exosomal cargo—are a class of small noncoding RNAs that
bind to the target mRNAs, repress gene expression, and play fundamental roles in the
development, differentiation, and manifestation of pathophysiological conditions [18,19].
Numerous studies have shown that the transfer of miRs between cells via exosomes is a
vital means of communication in cancer [20,21]. However, the roles played by exosomes
and miRs in the development of advanced PCa, particularly NEPC transdifferentiation,
remain largely unknown [14–16]. miR-200c-3p, a miR that has a documented role in cancer
progression, is known to negatively regulate epithelial-to-mesenchymal transition (EMT)
and metastasis in several malignancies [22–24] and is implicated in neuronal pathways [25].

We previously reported that TBX2, a T-box transcription factor, plays a key role in
PCa including metastatic progression [26]. In the present study, using in vitro and in vivo
models, we report that TBX2 drives SOX2- and N-MYC- mediated NEPC transdifferenti-
ation via the repression of miR-200c-3p and that miR-200c-3p as a mediator is sufficient
for TBX2/SOX2/N-MYC signaling to promote NEPC transdifferentiation. Further, our
results demonstrate the intercellular exosome-mediated paracrine (non cell-autonomous)
mode as a mechanism of NEPC transdifferentiation is supported by TBX2/miR-200c-
3p/SOX2/N-MYC signaling in addition to mediating the intracellular (cell-autonomous)
changes in neuroendocrine gene expression. In summary, our study reveals a crucial
signaling axis downstream of TBX2 that drives the NEPC pathophysiology including
exosome-mediated transfer, and our findings could provide critical clues in understanding
the molecular/signaling events that drive and propagate therapy resistance in this lethal
subset of advanced PCa.
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2. Materials and Methods
2.1. Cell Culture and Treatments

Human PCa cell lines (PC3, C4-2B, LNCaP, and 22Rv1) were maintained in RPMI-
1660 and/or DMEM media supplemented with 5–10% fetal bovine serum (FBS) and 1%
penicillin and streptomycin at 37 ◦C in a humidified CO2 (5%) incubator. PCa cells were
received from Dr. Leland W. K. Chung, Uro-Oncology Research Program, Department of
Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA. Viral packaging cell
line (293FT) was a generous gift from Dr. Vadivel Ganapathy, Department of Cell Biology and
Biochemistry, Texas Tech University Health Sciences Center, Lubbock. Cell lines used in the
study were intermittently evaluated in-house and were free of mycoplasma contamination.

2.2. Exosome Isolation and Characterization

For exosomes isolation, PCa cells (PC3Neo/PC3TBX2DN, C4-2BNeo/C4-2BTBX2DN, and
LNCaPNeo and LNCaPTBX2) were grown in regular media. At 70% confluency, fresh media
supplemented with 5% exosome-depleted FBS (Gibco, Grand Island, NY, USA) were re-
placed. After 36 h, conditioned media were collected to fractionate the EV (e.g., apoptotic
bodies (ABs), microvesicles (MVs), exosomes) and soluble factors (SFs) as described ear-
lier [27]. The EVs were washed with PBS, and protein-based quantification was performed
using protein DC assay kit (Bio-Rad, Hercules, CA, USA). Size distribution analysis of
all EVs was performed using Zetasizer ZSP (Malvern Panalytical, Malvern, UK) at 25 ◦C.
Multiple scans were acquired from each preparation and averaged. Data are represented
from an average of three biological replicates. The size of exosomes was also determined
using transmission electron microscope (TEM). In brief, 5 µL of the exosome sample
was placed onto a copper grid (200-mesh) with carbon-coated formvar film (Ted Pella,
Redding, CA, USA) and incubated for 2 min at room temperature (RT). After removal
of excess liquid using blotting paper, 5 µL (2% w/v) of uranyl acetate solution (Electron
Microscopy Sciences, Hatfield, PA, USA) was added for negative staining for 1 min at RT.
The grid was washed 2 times with 5 µL of filtered molecular grade water, air-dried, and
stored. Images were acquired using Hitachi H-7650 transmission electron microscope at
60.0 KV and 20,000×magnification at Texas Tech University College of Arts and Sciences
Microscopy facilities.

2.3. RNA Isolation, cDNA Synthesis, and quantitative real-time RT-PCR (qRT-PCR) Analysis

RNA was isolated using the RNeasy Mini Kit (Qiagen Inc., Valencia, CA, USA). After
DNA digestion and quantified using NanoDrop One (Thermo Fisher Scientific, Waltham,
MA, USA), a total of 2 µg RNA was transcribed into cDNA using the high-capacity RNA-
to-cDNA kit (Applied Biosystems, Carlsbad, CA, USA). Quantitative real-time RT-PCR
(qRT-PCR) was performed in a QuantStudio 12K Flex real-time PCR system using powerUP
SYBR Green reagent (Applied Biosystems) with a specific set of primers listed in Table S1.
The relative amount of mRNA expression was normalized with β-actin. For the microRNA
(miR) assay, total miR was isolated using mirPremier miR isolation kit (Sigma-Aldrich, St.
Louis, MO, USA), and cDNA was synthesized using miR-first-strand synthesis kit (Agilent
Technologies, Santa Clara, CA, USA). The small nuclear RNA (U6) was used to normalize
the miRs expression. List of miR primers is given in the Table S2.

2.4. Protein Extraction and Quantification

Protein extracts from PCa cells and exosomes were prepared using radio-immunoprecipitation
assay (RIPA) buffer in the presence of protease and phosphatase inhibitors cocktails (Pierce,
Rockford, IL, USA) after brief sonication. Protein concentration was measured using the
protein DC assay kit (Bio-Rad) in a 96-well plate. Absorbance was recorded at 750 nm
using an iMark plate reader (Bio-Rad), and protein concentration was calculated using BSA
as a standard.
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2.5. SDS-PAGE and Western Blot Analysis

Equal amounts of protein (ranging from 20 to 100 µg) were resolved onto 10% SDS-
PAGE gel and electroblotted onto PVDF membrane. Membranes were blocked with
5% BSA in Tris buffer saline supplemented with 0.1% Tween (TBST) for 1 h at RT and
probed with different primary antibodies including anti-CD81 (sc-166029) and anti-SOX2
(sc-365823) from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA), anti-CD9 (Cell Sig-
naling Technology, Danvers, MA, USA, CST#13403) for overnight at 4 ◦C. N-MYC anti-
body was kindly provided by Dr. Min Kang, PharmD, TTUHSC. After washing, mem-
branes were probed with horseradish peroxidase-conjugated secondary antibodies (rab-
bit/mouse, CST, Danvers, MA, USA) at RT for 1 h, and signals were detected using west
pico-chemiluminescent kit (Thermo Fisher Scientific) under ChemiDoc Touch Imaging
System (Bio-Rad, Hercules, CA, USA). β-actin was used as a loading control for the protein.

2.6. In Silico Analysis for microRNA Putative Targets

To predict the microRNA targets, we used multiple in silico analysis tools including
miRDB [28] and targetscan [29]. Based on the miR’s abundance and higher targeting score
for those genes which were consistently altered in TBX2-modulated PCa cells, miR-200c-
3p was considered for the further study. In addition, miRNET2.0 [30] was utilized to
create a network graph showing the genes interaction of the top 5 overexpressed and
top 5 underexpressed miRs that were identified following next-generation sequencing
of exosomes from PC3TBX2DN and PC3Neo cells. We used degree filter 2.0 and shortest
distance filter 2.0 across all nodes to remove nodes with low degree centrality and to extract
minimally covered subgraphs [30].

2.7. Plasmid Propagation, Transduction, and Modulation of miR-200c-3p Expression

The custom constructs for miR-200c-3p overexpression (Cat# mh10263), inhibition
(miROff-200c-3p, Cat #mh30308), and their respective controls (Cat# m001 and Cat#m007)
were purchased from Applied Biological Material Inc. (Richmond, BC, Canada). These
lentiviral miR-constructs along with the packaging plasmid (pCMVdeltaR8.2dvpr, ad-
dgene#8455) and envelop plasmid (pCMV-VSV-G, addgene#8454) were used for lipo-
fectamine 2000-mediated transfection of 293FT cells to produce lentiviral pseudotyped
particles. The supernatant containing viral particles was collected after 36 h of transfection,
centrifuged 300× g for 5 min, and filtered through a 0.45 µm membrane and used to infect
the target cells (TBX2-modulated PCa cells) in presence of 10 µg/mL of hexadimethrine
bromide (polybrene, Sigma-Aldrich, St. Louis, MO, USA). Infection with viral particles
was repeated three times, and selection was performed using 500 µg/mL G418 (neomycin)
for 2 weeks and completed once negative control cells showed 100% death.

2.8. Chromatin Immunoprecipitation (ChIP) Assays

Chromatin immunoprecipitation (ChIP) assays were performed as described previ-
ously [31] with slight modifications. The PC3Neo and PC3TBX2DN cells were grown to about
80% confluency in 150 mm dishes. For DNA-protein crosslinking, formaldehyde was used
directly in the culture media at a final concentration of 1% for 8 min at RT and quenched
by addition of glycine at a final concentration of 0.125 M for 5 min at RT. Thereafter, media
were removed, and cells were washed 3 times with cold PBS. Cells were harvested and
washed twice with PBS containing protease inhibitor cocktail (Pierce, Rockford, lL, USA).
The cell pellets were lysed using SDS-lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM 0.5 M
EDTA, and 1% SDS) supplemented with 1× protease inhibitor cocktail and sonicated
using a Bioruptor (Diagenode Inc., Denville, NJ, USA). The soluble chromatin fraction was
quantified, and 100 µg of chromatin was incubated for 2 h at 4 ◦C with anti-TBX2 and
IgG antibody. Thereafter, prewashed Dynabeads protein G (11 µL) (Invitrogen #1003D,
Carlsbad, CA, USA) was added to the chromatin-antibody mixture and incubated at 4 ◦C
on a rotator for 2 h. ChIP mixture was washed five times with low salt buffer (20 mM
Tris-HCl, pH 8.1; 0.1% SDS, 1% Triton X-100, 2 mM EDTA, and 150 mM NaCl), four times
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with high salt buffer (20 mM Tris HCl pH 8.1, 0.1% SDS, 1% Triton X-100, 2 mM EDTA,
and 500 mM NaCl), and finally washed with TE buffer (10 mM Tris HCl pH 8 and 1 mM
EDTA). Reverse crosslinking was performed overnight at 65 ◦C, followed by RNase A
(Sigma-Aldrich) at 37 ◦C for 2 h, and proteinase K digestion (Sigma-Aldrich) at 55 ◦C for
2 h. DNA was purified using the PCR purification kit (Qiagen, Hilden, Germany) and
amplified by end-point PCR and qRT-PCR using specific primers pairs listed in Table S2.

2.9. Tumor Xenograft Experiments in Mice

All animal experiments were performed as per the protocol approved by the Insti-
tutional Animal Care and Use Committee (IACUC). Luciferase-tagged PCa cells (PC3Neo

or PC3TBX2DN) were engrafted (1 × 106 per mouse) in the anterior prostate lobes of
4–6 week-old NUDE mice. Xenograft tumors were resected after 10 weeks, and tumor size
and volume were recorded [26]. Volume measurement was performed using the formula

(X × Y2)/2, (1)

where X is the larger and Y is the smaller of the two dimensions. All the tissues were fixed
in 10% neutral-buffered formalin for 6 h at RT and embedded in paraffin for further study.

2.10. Immunohistochemistry of Tumor Tissues

To determine the expression pattern of the neuroendocrine markers in PC3TBX2DN and
PC3Neo xenograft tissues, slides were stained with anti-SOX2 (CST#14962) and anti-N-MYC
(CST#51705) antibodies (Cell Signaling Technology, MA, USA). The list of all the antibodies
used in this study is provided in Table S3. In brief, the slides were deparaffinized by
incubation in xylene two times (10 min each). Thereafter, slide sections were hydrated
by sequential incubation in decreasing concentration of ethanol (100%–10%) 5 min in
each and rinsed with running water. Antigen unmasking was performed in decloaking
chamber using 1× antigen unmasking buffer (H-3300, Vector Lab, Burlingame, CA, USA).
Thereafter, blocking of the endogenous peroxidase was performed for 10 min with Bloxall
(SP-6000, Vector Lab). To block the tissue sections, normal goat or horse serum (Vector Lab)
diluted in PBS (3 drops in 10 mL) were used for 40 min. Slides were incubated with the
primary antibodies against SOX2 and N-MYC in a humidified chamber for overnight at
4 ◦C. Thereafter, slides were washed with PBS and incubated for 45 min with biotinylated
antibody stock (1 drop) and 3 drops of stock serum in 10 mL PBS. After washing with TBST
for 5 min, premixed Vectastain ABC (2 drops reagent A in 5 mL PBS and 2 drops of reagent B)
were added onto the slides and incubated for 30 min. Then, slides were washed with TBST
and PBS (5 min with each). To develop the desired color, peroxidase substrate was added,
and slides were washed with water. Hematoxylin (H-3401, Vector Lab) counterstain was
added and incubated for 1 min at RT and washed with water, and then slides were dipped
5 times in 1× Techa’s bluing solution and washed with water. Slides were mounted with
Vectamount (H-5000, Vector Lab), and coverslip was applied after dehydration by incubating
in 100% ethanol 2 times (10 s each) and then in xylene two times (10 s each) and air-dried.
For negative control immunostaining, tissue sections were probed with normal mouse IgG
in parallel (Santa Cruz Biotechnology, Dallas, TX, USA). Fiji, an image-processing package
(https://imagej.net/software/fiji/, version 2.3.0, accessed on 10 September 2021), was used
to analyze the optical density of the stained slides using the formula

OD = log (Max intensity/Mean intensity), (2)

where max intensity = 255 for 8-bit images.

https://imagej.net/software/fiji/


Cancers 2021, 13, 5020 6 of 18

2.11. Exosome Internalization and Fluorescence Microscopy

22Rv1 cells were grown on 12 mm glass coverslips placed into a 24-well plate. After
attachment, cells were starved overnight. The PKH67 labeled (green) exosomes (20 µg/mL)
from TBX2 modulated PCa cells were incubated for 8 h with starved cells. Thereafter,
cells were washed with PBS (3 times) and fixed with 4% paraformaldehyde for 10 min
at RT, followed by 3 washes with PBS. The glass coverslips containing the fixed cells
were mounted on glass slide using ProLong gold-antifade containing DAPI (Invitrogen,
Eugene, OR, USA). Z-stack TD images were acquired using Nikon A1 R confocal mi-
croscope at the Imaging Core Facility of Texas Tech University Health Sciences Center,
Lubbock, TX, USA.

2.12. Statistical Analysis

All the data represented were obtained from three biological replicates and expressed
as mean ± SD. Wherever appropriate, PRISM GraphPad 9.1 (San Diego, CA, USA) was
used to perform all the statistical analysis. For the two group comparisons, data were
subjected to unpaired two-tailed Student’s t-tests, while one-way ANOVA was used for
the comparison among more than two groups. The p values ≤ 0.05 was considered to
be statistically significant. In order to determine the potential association between TBX2,
MYCN, and SOX2 in human PCa samples obtained from c-bioportal [32,33], Spearman and
Pearson correlation coefficients were analyzed along with the respective p values.

3. Results
3.1. TBX2 Regulates Expression of NEPC Markers in PCa via Cell-Autonomous and
Exosome-Mediated Non Cell-Autonomous Mechanisms

We previously reported that TBX2 is upregulated in human PCa, and that the progres-
sion of human PCa xenografts to CRPC is associated with increased TBX2 expression [26].
A recent bioinformatics-based analysis of publicly available human NEPC datasets identi-
fied TBX2 as a key upstream regulator of several upregulated genes in human NEPC [34].
Accordingly, we endeavored to determine the impact of genetic modulation of TBX2 on the
dysregulation of markers associated with the development of NEPC. Relative to respective
Neo controls, PC3TBX2DN and C4-2BTBX2DN cells exhibited significantly reduced expression
of neuroendocrine markers (Figure 1A,B), while LNCaPTBX2 cells exhibited increased ex-
pression of neuroendocrine markers (Figure 1C). Specifically, TBX2 modulation—by the
Dominant Negative (DN) and overexpression approaches—resulted in the modulation
of mRNAs encoding several neuroendocrine markers including SOX2, MYCN, NKX2-2,
SCG3, NCAM1, ASH1, CHGB, and AURKA. Among these markers, we observed that SOX2,
MYCN, NKX2-2, and SCG3 were consistently altered with TBX2 genetic modulation (by
DN and overexpression approaches) across all three human PCa cell lines used, i.e., PC3,
C4-2B, and LNCaP (Figure 1A–C). These results suggested that TBX2 in PCa cells exerts its
effects on NEPC transdifferentiation through intracellular gene expression changes.

Scattered foci of NEPC are often detected within the setting of CRPC [3,5]. It has
been reported that in addition to transdifferentiating to NEPC, NEPC cells in turn, can
potentiate transdifferentiation of adjacent CRPC cells to NEPC [14–16]. Therefore, we
reasoned that in addition to orchestrating intracellular changes promoting neuroendocrine
transdifferentiation, TBX2 expression may also mediate the non cell-autonomous (intercel-
lular) communication via paracrine effects to promote NEPC transdifferentiation. To test
this hypothesis, we isolated EV fractions including apoptotic bodies (ABs), microvesicles
(MVs), exosomes, and soluble factors (SFs) from the conditioned media of PC3TBX2DN,
C4-2BTBX2DN, or the respective Neo control cells. Isolated EV fractions from the culture
supernatants of PC3TBX2DN or PC3Neo cells were first characterized with regard to size
using Zetasizer. We found no significant differences in ABs (1890 vs. 1625 nm), MVs
(780 vs. 595 nm) and exosomes (91 vs. 84 nm) isolated from PC3TBX2DN or PC3Neo cell
(Figure 1D–F, respectively). In addition, transmission electron microscopy further con-
firmed that the exosomes from PC3TBX2DN or PC3Neo cells conformed to the established
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exosomal size range (30–150 nm) and that there were no significant differences in the size
(Figure 1G). Western blot analysis of isolated EVs using previously reported markers of
ABs (THBS1), MVs (ARF6), and exosomes (CD9 and CD81) [35,36] further confirmed the
successful EV fractionation (Figure 1H).

To investigate the potential impact of individual EV fractions and soluble factors (SFs)
derived from TBX2 modulated cells on neuroendocrine transdifferentiation, 22Rv1 and
LNCaP human PCa cells were treated as depicted in Figure 1I. The efficient internalization
of exosomes was confirmed by PKH67 staining and confocal microscopy (Figure 1J). Treat-
ment of 22Rv1 and LNCaP human PCa cells with larger vesicles (e.g., ABs or MVs) and
soluble factors (SFs) isolated from PC3TBX2DN, C4-2BTBX2DN, or the respective Neo control
cells had no significant impact on neuroendocrine marker expression (Figures S1 and S2).
However, treatment of LNCaP or 22Rv1 cells with exosomal fractions isolated from TBX2
modulated cells (PC3TBX2DN, C4-2BTBX2DN, or LNCaPTBX2 cells) resulted in significant
changes in neuroendocrine marker expression when compared with exosomal fractions iso-
lated from the respective Neo control cells (Figure 1K–P). In agreement with TBX2-mediated
intracellular gene expression changes associated with neuroendocrine transdifferentiation,
gene expression changes following TBX2DN exosome treatment consistently showed sig-
nificant decreases in the expression of SOX2, MYCN, and NKX2-2 when compared with the
respective controls, while conversely, exosomes from LNCaPTBX2 consistently enhanced
the expression of SOX2, MYCN, and NKX2-2, when compared with the respective controls.
Taken together, these results suggest that in addition to the role of TBX2 in promoting
transdifferentiation to NEPC in a cell-autonomous manner, TBX2 also drives NEPC transd-
ifferentiation via exosome-mediated communication in an intercellular manner.

Figure 1. Cont.
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Figure 1. TBX2 regulates expression of neuroendocrine markers in PCa via cell-autonomous and exosome-mediated non
cell-autonomous modes: (A–C) Graph summarizing the quantitative real-time RT-PCR (qRT-PCR) results comparing
the expression of neuroendocrine markers in TBX2-modulated PCa cells: (A) PC3Neo and PC3TBX2DN; (B) C4-2BNeo

and C4-2BTBX2DN; and (C) LNCaPNeo and LNCaPTBX2 overexpressing cells. Data represent the average of triplicate
values ± S.D.; Student’s unpaired 2-tailed t-tests were performed to compare the two groups. *, p ≤ 0.05 **, p < 0.01;
***, p < 0.001, and ****, p < 0.0001, and ns indicates not significant. Extracellular vesicles were isolated from PC3Neo and
PC3TBX2DN cells and characterized according to: (D) size of apoptotic bodies (ABs); (E) microvesicles (MVs); (F) exosomes
(Exo); diameter shown in nanometers (d.nm) (G) TEM image (20000×) of exosomes. Bars represents 100 nm size; (H) purity
of extracellular vesicle (EV) preparation was assessed using Western blot assay probed with Thrombospondin 1 (THBS1) for
ABs, ADP-ribosylation factor 6 (ARF6) for MVs, and cluster of differentiation 9 (CD9) protein and cluster of differentiation
81 (CD81) protein as exosome-specific markers; (I) schematic representation of the treatment strategies with EVs or soluble
factors (SFs); (J) Z-stack transmitted detector (TD) images (60×) from the confocal microscope indicating that the majority
of exosomes stained with PKH67 (green) are internalized and are present in the cytoplasm of the recipient (22Rv1) cells.
Some of the exosomes (green) can also be seen near the nuclei (blue) stained with 4’,6-diamidino-2-phenylindole (DAPI).
Bars represents 20 nm size; (K–P) heatmap summarizing the results from qRT-PCR analysis comparing the expression
of neuroendocrine (NE) markers in LNCaP or 22Rv1 cells following treatment with exosomes (20 µg/mL) derived from
TBX2-modulated PCa cells (added a total of two times on alternate days) or with vehicle control. Data represent the average
of triplicates values ± S.D.; Student’s unpaired 2-tailed t-tests were performed to compare the two groups or one-way
ANOVA for more than two groups. *, p ≤ 0.05 **, p < 0.01; ***, p < 0.001 ****, and p < 0.0001, and ns indicates not significant.
The uncropped Western blot images can be found in Figure S7.

3.2. miR-200c-3p Is Downstream of TBX2 Signaling in PCa

In addition to being regulators of intracellular gene expression, miRs are recognized
as critical mediators of gene expression in adjacent cell populations following exosome
transfer. Indeed, miRs have been widely recognized for their crucial roles in the regulation
of gene expression through targeting the 3′UTR of downstream genes, and it is known
that one miR can regulate hundreds of different genes [18,19]. Based on our results,
we hypothesized that TBX2-mediated miR regulation may be responsible for both cell
autonomous (intracellular) and non cell-autonomous (intercellular) regulation of NEPC
transdifferentiation. We therefore performed an unbiased next-generation sequencing
(NGS) analysis of exosomes derived from PC3TBX2DN or PC3Neo cells in an effort to identify
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TBX2-regulated miRs as depicted in Figure 2A. The differential expression of miRs (top 20)
in PC3TBX2DN cells when compared with PC3Neo cells is shown in Figure 2B. Further, we
analyzed the targets of the top five upregulated and top five downregulated miRs of the
NGS analysis (Figure 2C). Because (a) miR-200c-3p has been reported to be decreased in
human CRPC [37–39] and (b) to negatively regulate SOX2 expression [23,24,39–41] and (c) our
in vitro data showed that SOX2 and N-MYC were consistently altered upon TBX2 modulation,
we prioritized miR-200c-3p for further study. In silico analysis (using miRDB and Targetscan)
was utilized to predict the probable binding sites for miR-200c-3p in the 3′ UTRs of MYCN and
SOX2 genes (Figure 2D). Quantitative real-time RT-PCR (qRT-PCR) was performed to confirm
the results of the NGS analysis. We found that while miR-200c-3p expression was dramatically
upregulated in PC3TBX2DN and C4-2BTBX2DN cells and in the exosomes derived from these cells
when compared with the respective Neo controls, the converse approach of TBX2 overexpression
in LNCaP cells led to downregulated miR-200c-3p expression in these cells as well as in the
exosomes obtained from these cells (Figure 2E,F). These results suggest that miR-200c-3p is a
downstream mediator of TBX2 signaling, and that TBX2/miR-200c-3p/SOX2/N-MYC signaling
axis has an important role in NEPC transdifferentiation.

Figure 2. miR-200c-3p is downstream of TBX2 signaling in PCa: (A) schematic representing exosome isolation and next
generation sequencing (NGS) of exosomal microRNA; (B) heat-map depicting the top 20 upregulated miRs in the exosomes
derived from PC3TBX2DN cells when compared with PC3Neo cells and normalized log2-fold changes are represented;
(C) miRNET2.0-based analysis [30] showing the interactions amongst the top 5 upregulated miRs (as green squares) and the
top 5 downregulated miRs (as red squares) in the exosomes from PC3TBX2DN cells compared with PC3Neo cells. The circular
nodes in yellow represent the genes that are enriched in neuronal pathways as found in KEGG and reactome databases.
The circular nodes in steel blue represent all other target genes for these differentially expressed miRs. Magnified image
is provided in Figure S3; (D) in silico analysis showing the 3′ UTRs of SOX2 and MYCN that contain the miR-200c-3p
putative target sites (blue); (E,F) validation of miR-200c-3p using quantitative real-time RT-PCR (qRT-PCR) analysis in: (E)
TBX2 modulated human PCa cells and (F) exosomes derived from TBX2 modulated human PCa cells. Data represent the
average of triplicates ± S.D.; Student’s unpaired 2-tailed t-tests were performed to compare the two groups **, p ≤ 0.01;
***, p ≤ 0.001; and ****, p ≤ 0.0001; (G) in silico analysis showing several TBX2 binding sites on the promoter of miR-200c-3p;
(H) Chromatin immunoprecipitation (ChIP) assay revealed two TBX2 binding sites located upstream (−681 and −931) of
the transcriptional start site (TSS) of miR-200c-3p; (I) TBX2 occupancy on miR-200c-3p promoter (located upstream at −681
and −931) analyzed using qRT-PCR and normalized to input. One-way ANOVA was performed where (n = 3), ***, p < 0.001;
****, p < 0.0001.
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We next sought to determine if TBX2 directly regulates miR-200c-3p. In silico analysis
was performed to identify potential TBX2 binding sites in the promoter region of this miR.
Based on the published consensus TBX2 binding sequence [42] and also due to similarity
with Brachyury [43], we identified multiple TBX2-binding sites in the promoter region of
miR-200c-3p (Figure 2G). ChIP assays showed that TBX2 binds directly to two sites within
the miR-200c-3p promoter region located upstream to the transcription start site (−681, and
−931 bp, Figure 2H) and showed ~8-fold and 6-fold of TBX2 occupancy, respectively, when
analyzed by qRT-PCR after normalization by input (Figure 2I). As TBX2 has been reported
to primarily function as a transcriptional repressor [44,45], these results strongly suggest
direct regulation of miR-200c-3p in PCa by TBX2 through transcriptional repression.

3.3. Abrogated Metastasis in a Mouse Model Caused by Blocking Endogenous TBX2 Results in the
Upregulation of miR-200c-3p and Downregulation of SOX2/N-MYC

As our results thus far pointed to SOX2 and N-MYC as being regulated by TBX2/miR-
200c-3p signaling, we examined their expression in our in vitro and in vivo model systems.
A recent bioinformatics-based report using NEPC datasets identified a 12-gene human
NEPC signature including SOX2 [34]. Further, SOX2 has been reported to promote CRPC
and lineage plasticity resulting in transdifferentiation to NEPC [9,10,34,46]. In addition,
N-MYC has been reported to drive NEPC [11,13]. Western blot analysis showed that while
SOX2 and N-MYC expression were significantly reduced in PC3TBX2DN and C4-2BTBX2DN

cells; conversely, SOX2 and N-MYC expression were significantly increased in LNCaPTBX2

when compared with the respective Neo controls (Figure 3A). Further, consistent with the
corresponding mRNA data (Figure 1K–P), the treatment of LNCaP or 22Rv1 human PCa
cells with exosomes derived from TBX2DN cells (PC3TBX2DN or C4-2BTBX2DN) decreased
SOX2 expression, while conversely, exosomes obtained from LNCaPTBX2 cells increased
SOX2 expression when compared with the exosomes obtained from the respective Neo
control cells (Figure 3B).

Figure 3. Blocking TBX2 in an in vivo mouse model of PCa progression and metastasis leads to increased miR-200c-3p and
reduced SOX2 and N-MYC expression. (A) Western blots showing SOX2 and N-MYC expression in TBX2-modulated PCa
cells; (B) Western blots showing SOX2 expression in LNCaP or 22Rv1 cells treated with exosomes (20 µg/mL, added a total
of two times on alternate days) isolated from TBX2-modulated human prostate cancer (PCa) cells. Densitometric analysis of
the Western blots is provided in Figure S4; (C) a schematic of the orthotopic xenograft experiment; (D) immunohistochemical
(IHC) staining showing SOX2 and N-MYC expression in the orthotopic xenografts of PC3Neo or PC3TBX2DN human PCa cells.
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Densitometric analysis of the IHC images is provided in Figure S5; (E) miR-200c-3p expression in the orthotopic xenografts of
PC3Neo or PC3TBX2DN cells using quantitative real-time RT-PCR analysis (qRT-PCR). Data represent the average of triplicates
values ± S.D.; Student’s unpaired 2-tailed t-tests were performed to compare the two groups, *, p ≤ 0.05; **, p < 0.01, and
***, p ≤ 0.001, ****, p ≤ 0.0001. The uncropped Western blot images can be found in Figures S8–S10.

We previously reported that PC3TBX2DN xenografts (depicted in Figure 3C) display
reduced local invasion and abrogated metastatic ability to the regional lymph nodes when
compared with xenografts from the control PC3Neo cells [26]. Consistent with the in vitro
results, immunohistochemical analysis of the PC3TBX2DN orthotopic xenografts displayed
reduced SOX2 and N-MYC expression when compared with control PC3Neo xenografts
(Figure 3D). Further, miR-200c-3p was elevated in PC3TBX2DN xenografts when compared
with the Neo controls (Figure 3E). Altogether, these in vivo results supported our in vitro
findings that miR-200c-3p, SOX2, and N-MYC are downstream of TBX2 signaling, and
that while SOX2 and N-MYC display a positive relation with TBX2, miR-200c-3p shows an
inverse relation with TBX2.

3.4. miR-200c-3p Is the Intermediary Effector in TBX2 Regulation of SOX2 and MYCN

To elucidate the role of miR-200c-3p in TBX2/miR-200c-3p/SOX2/N-MYC signal-
ing, we rescued miR-200c-3p levels in human PCa cells in the context of TBX2 genetic
modulation. For this experiment, two separate approaches were used. First, we stably
knocked down miR-200c-3p in PC3TBX2DN, C4-2BTBX2DN and LNCaPNeo cells that showed
high miR-200c-3p expression. Second, we stably overexpressed miR-200c-3p in PC3Neo,
C4-2BNeo, and LNCaPTBX2 cells that showed decreased miR-200c-3p expression. Expression
analysis of miR-200c-3p confirmed the successful establishment of these models (Figure 4A).
Expression analysis showed that miR-200c-3p knockdown in PC3TBX2DN and C4-2BTBX2DN

restored SOX2 and MYCN, while activation of miR-200c-3p in LNCaP cells repressed
SOX2 and MYCN at the protein (Figure 4B) and mRNA levels (Figure 4C–E). These results
strongly point to TBX2/miR-200c-3p signaling as the upstream mediator of SOX2 and
MYCN in PCa.

Figure 4. Alteration of miR-200c-3p expression in the context of TBX2 modulation rescues SOX2 and MYCN. (A) Quantitative
real-time RT-PCR (qRT-PCR) analysis showing the validation of the approaches for miR-200c-3p modulation [following
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miR-200c-3p off (knockdown) or miR-200c-3p mimic (overexpression)] in human PCa cells; (B) Western blots showing
SOX2 and N-MYC expression following the rescue of miR-200c-3p expression in the context of TBX2 genetic modulation.
Densitometric analysis is provided in Figure S6; (C–E) heatmap summarizing the qRT-PCR results comparing the expression
of neuroendocrine markers following miR-200c-3p rescue approaches in TBX2-modulated human PCa cells. Data are
represented as mean ± SD (n = 3), Student’s unpaired 2-tailed t-tests were performed to compare the two groups or one-way
ANOVA for more than 2 groups. *, p ≤ 0.05; **, p < 0.01; ***, p <0.001; ****, and p < 0.0001, and ns indicates not significant.
The uncropped Western blot images can be found in Figure S11.

3.5. TBX2 Is Associated with SOX2 and MYCN in Human PCa

Based on our in vitro and in vivo data, we checked the status of TBX2, MYCN, and
SOX2 in publicly available data sets of human PCa. An analysis of 531 human PCa samples
using the c-bioportal database [32,33] revealed: (a) a strong positive correlation between
TBX2 and MYCN (Spearman 0.79, p = 9.36 × 10−116), (b) a moderate positive correlation
between TBX2 and SOX2 (Spearman 0.49, p = 2.86 × 10−33), and (c) a strong positive corre-
lation between MYCN and SOX2 (Spearman 0.59, p = 1.38 × 10−51) (Figure 5). Therefore,
consistent with our in vitro and in vivo studies, these data point to the TBX2/SOX2/N-
MYC signaling axis in human PCa.

Figure 5. TBX2 is associated with MYCN and SOX2 in human PCa samples. Plots showing pair-wise correlations between
the mRNA expression of TBX2, MYCN, and SOX2 in 531 PCa samples (c-bioportal) [32,33].

4. Discussion

Deciphering the signaling mechanisms that drive t-NEPC/NEPC transdifferentia-
tion is vital to understanding this pathophysiology and in developing novel therapeutic
modalities against this aggressive subtype of PCa. Despite progress in the recent years in
identifying a few discrete molecular drivers of t-NEPC/NEPC transdifferentiation includ-
ing SOX2 and N-MYC [6–13], fundamental questions remain that could provide critical
clues to the NEPC phenomenon. For instance, the molecular mechanisms/signaling events
that drive t-NEPC/NEPC transdifferentiation remain largely unknown. In addition, how
NEPC foci communicate with the neighboring adenocarcinoma/CRPC cells to further prop-
agate the NEPC phenotype remains unresolved. It is within this backdrop of progression
to advanced PCa that our results are of critical significance.

Our study identifies the TBX2/miR 200c-3p axis as a critical upstream regulator
of SOX2 and N-MYC—two established drivers of NEPC transdifferentiation [9–11,13]
(Figure 6). Further, the unbiased identification of miR-200c-3p as a downstream effector
of TBX2 (Figure 2B) juxtaposed with the miR-200c-3p rescue experiments in the context
of TBX2 genetic modulation (Figure 4A–E) reveals a hitherto little known but a central
biological function of miR-200c-3p as a crucial mediator of TBX2 signaling in driving the
NEPC phenotype. Our study sheds light on the dual level of control exerted by TBX2/miR-
200c-3p signaling in mediating SOX2/N-MYC driven NEPC pathophysiology, i.e., via:
(a) cell-autonomous intracellular gene expression changes and (b) non cell-autonomous
intercellular paracrine communication via exosomes. The relevance of our findings that
point to this dual mode of action of the TBX2/miR-200c-3p/SOX2/N-MYC signaling axis
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in NEPC transdifferentiation is in agreement with other observations in this space. For
example, interspersed foci with neuroendocrine marker expression within the backdrop
of CRPC is observed in pathologic specimens. In addition, paracrine factors secreted by
NEPC cells have the potential to interact with surrounding CRPC cells to further propagate
the NEPC phenotype [14,47].

Figure 6. Schematic of the proposed mechanism of TBX2/miR-200c-3p/SOX2/N-MYC signaling
in the progression from CRPC to NEPC. TBX2 upregulation in PCa adenocarcinoma/CRPC cells
results in the repression (down-headed arrow) of miR-200c-3p via direct binding to its promoter.
miR-200c-3p in turn—either through a cell-autonomous mode, or through a non cell-autonomous
mode via exosomes—mediates the repression of SOX2 and MYCN. The resultant net effect is that
TBX2 upregulation in PCa leads to the upregulation (up-headed arrow) of SOX2 and N-MYC, and
the propagation of the SOX2- and N-MYC- driven NEPC phenotype.

Our findings are corroborated by previous reports that have elucidated the role of EVs
(exosomes) as a delivery mechanism of cancer cells and have implicated them in diverse
facets of tumor progression and metastatic manifestation [14,15,17,21,27]. Intriguingly, a
pioneering study had shown that factors secreted by NEPC have the potential to promote
the growth of androgen dependent LNCaP tumors to grow in castrated mice [47]. The role
of exosomes in PCa pathophysiology was appreciated in subsequent investigations; how-
ever, the contribution of exosomes in fostering the molecular mechanisms that orchestrate
the NEPC phenotype remains largely elusive. Interestingly and in contrast with other EV
fractions (Figures S1 and S2), our initial experiments suggested that TBX2 exerts its effects
primarily through exosomes; therefore, our studies focused on this component of the EVs.

Previous reports have indicated that miRs are abundantly present in exosomes, and
exosomes have drawn increasing attention due to their ability to regulate many pathways
during tumor progression [21]. In light of the pathophysiology of NEPC, our hypothesis
that a miR could be the mediator of TBX2 signaling in NEPC transdifferentiation is borne
out of numerous reports that have established miRs as crucial regulators of gene expression
at both the intracellular and intercellular levels [18,19,21]. miR-200c-3p, one of the top miRs
that was dysregulated in the exosomes derived from TBX2DN cells, particularly caught our
attention because of its reported loss in CRPC [37,48]. This suggested that miR-200c-3p could
be a downstream signaling mediator of TBX2’s action in CRPC progression to NEPC. In
addition to identifying the presence of miR-200c-3p binding sites on 3′UTRs of SOX2 and N-
MYC, our experiments show that miR-200c-3p rescue in the context of TBX2 modulation leads
to SOX2/MYCN rescue (Figure 4B–D). In addition, we identify the direct binding of TBX2 on
the miR-200c-3p promoter. Taken together, these results strongly point to miR-200c-3p as a
critical mediator of TBX2/SOX2/N-MYC signaling axis in NEPC transdifferentiation.
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Our research group was the first to report elevated expression of TBX2 in CRPC and
showed that TBX2 in primary PCa mediates multiple steps of the metastatic cascade [26]—
pointing to its key role in disease progression. In agreement with our findings, a recent
report established TBX2 as one of the four transcription factors in the context of CHD1 loss
that drive transcriptional plasticity resulting in antiandrogen resistance in CRPC [49]. In
addition, a recent bioinformatics-analysis-based report of publicly available NEPC datasets
identified TBX2 as one of the key upstream regulators of several commonly upregulated
genes in human NEPC [34]. The findings in our present study unravel an additional layer to
TBX2’s key role in the progression to advanced PCa and in particular provide mechanistic
insights into the progression of CRPC to NEPC. Although not in the scope of the present
study, identifying additional targets of TBX2/miR-200c-3p signaling will provide important
information regarding how TBX2 regulates the transcriptome and point to other crucial
effectors of the TBX2/miR-200c-3p pathway that drive NEPC transdifferentiation. These
studies could lead to valuable insights towards identifying novel therapeutic targets for
the treatment of the disease progression from CRPC to NEPC.

Based on our previous study [26], we found the loss-of-function studies as ideal for
blocking TBX2, and hence, we used this approach for the present study. Further, the
repressive function of TBX2 in this study is in line with previous reports that have focused
on TBX2 repression of its effectors [42,44,45]. Although the TBX2 protein contains both the
activation and repression domains, TBX2 has predominantly been reported to function
as a transcriptional repressor [44]. The TBX2 DN mutant construct contains the T-box
DNA-binding domain but lacks the carboxy-terminal residues necessary for transcrip-
tional repression [50]—thereby making it an ideal approach to specifically investigate
transcriptional repression. In addition, previous reports including our study had found
that TBX2DN works in congruence with the RNA interference approach and upregulates
p21, a known TBX2 target [26,45,50].

Finally, although the present study was focused on the role of exosomal miR-200c-
3p in promoting the NEPC phenotype between neighboring PCa cells, in our orthotopic
mouse model of PCa metastasis, we observed increased expression of miR-200c-3p in the
human TBX2DN PCa xenografts that display abrogated metastatic ability to the lymph
nodes (compared with Neo controls) (Figure 3E). This opens up an intriguing question if
TBX2/miR-200c-3p/SOX2/N-MYC signaling could potentially drive metastatic manifesta-
tion at the secondary sites via exosomal transfer. The insights offered by these investigations
could provide further clues into the NEPC transdifferentiation puzzle especially in lieu of
our previous report that delineated the role of TBX2 in multiple facets of PCa progression
including distant metastasis [26].

As research on the clinical challenges posed by potent ADTs is garnering increasing
recognition, the emphasis on discovering key drivers of t-NEPC/NEPC transdifferentiation
is gaining momentum, and the list of key drivers keeps increasing [6–13]. The goal of
these studies including ours is to improve PCa therapy through advancing our under-
standing of the molecular effectors/signaling pathways that orchestrate t-NEPC/NEPC
transdifferentiation as a mechanism of acquired therapeutic resistance.

5. Conclusions

Our study has identified a novel mechanism wherein TBX2 drives NEPC transdiffer-
entiation via miR-200c-3p/SOX2/N-MYC signaling. Further, our investigations point to
positive correlations between TBX2 and SOX2/N-MYC expression in human PCa patient
samples. Our findings may pave the way for the development of novel and effective
therapeutic strategies against the progression from CRPC to NEPC through targeting the
TBX2/miR-200c-3p/SOX2/N-MYC axis.
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AB/ABs Apoptotic bodies
ANOVA Analysis of Variance
ARF6 ADP Ribosylation Factor 6
ASH1 Absent Small and Homeotic Disks Protein 1 Homolog
AURKA Aurora Kinase A

C4-2BTBX2DN Genetic modulation of endogenous TBX2 in C4-2B human
prostate cancer cells using the Dominant Negative (DN) construct
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CD Cluster of Differentiation
CHG Chromogranin
CRPC Castrate Resistant Prostate Cancer
DAPI 4,6-diamino-2-phenylindole
ENO2 Enolase 2
Exo Exosomes
FITC Fluorescein isothiocyanate
hsa-miR human microRNA
IACUC Institutional Animal Care and Use Committee
IgG Immunoglobulin G
IHC Immunohistochemistry
ires GFP Internal Ribosome Entry Sites Green Fluorescence Protein
KEGG Kyoto Encyclopaedia of Genes and Genomes

LNCaPTBX2 Genetic modulation of TBX2 in LNCaP human prostate cancer
cells using the over-expression construct

miR microRNA
Ms Mouse
MV/MVs Microvesicles
NCAM1 Neural cell adhesion molecule1
NE Neuroendocrine
Neo Control Vector
NEPC Neuroendocrine Prostate Cancer
NGS Next Generation Sequencing
NKX2-2 NK2 HomeoBox 2

N-MYC (encoded by MYCN)
Neuroblastoma-Derived V-Myc Avian Myelocytomatosis
Viral Related Oncogenic protein

PCa Prostate Cancer

PC3TBX2DN Genetic modulation of endogenous TBX2 in PC3 human prostate
cancer cells using the Dominant Negative (DN) construct

qRT-PCR
Real-Time Quantitative Reverse Transcription Polymerase
Chain Reaction

RT Room temperature
SCG3 Secretogranin III
SD Standard deviation
SF/SFs Soluble factors
SOX2 SRY-Box transcription Factor 2
SYP Synaptophysin
TBX2 T-Box transcription Factor 2
T.D Transmitted Detector
THBS1 Thrombospondin 1
t-NEPC Treatment-induced Neuroendocrine Prostate Cancer
UTR UnTranslated Region
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